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Abstract: In this paper, we investigate the (d, 1)-total labelling of generalized Petersen graphs P(n, k)
for d ≥ 3. We find that the (d, 1)-total number of P(n, k) with d ≥ 3 is d + 3 for even n and odd k or
even n and k = n

2 , and d + 4 for all other cases.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Let G = (V(G), E(G))
be a graph with vertex set V(G) and edge set E(G). A (d, 1)-total labelling of a graph G is an assign-
ment of integers to V(G) ∪ E(G) such that:

(i) any two adjacent vertices of G receive distinct integers,

(ii) any two adjacent edges of G receive distinct integers, and

(iii) a vertex and its incident edge receive the integers that differ by at least d in absolute value.

The span of a (d, 1)-total labelling is the maximum difference between two labels. The minimum span
of labels required for such a (d, 1)-total labelling of G is called the (d, 1)-total number and is denoted
by λT

d (G). It reduces to the traditional total coloring when d is taken as 1.
The notion of (d, 1)-total labelling of a graph G was first introduced by Havet and Yu [1, 2]. They

conjectured that λT
d (G) ≤ ∆(G) + 2d − 1 for every graph G [1,2], where ∆(G) is the maximum degree

of G. The validity of conjecture has been verified for complete graphs [3, 4], complete bipartite
graphs [5], planar graphs [6–11] and graphs with a given maximum average degree [12]. The exact
values of λT

d (G) were determined for some graphs, such as (d, 1)-total labelings of flower snarks and
quasi flower snarks [13] and the (2,1)-total number of joins of paths and cycles [14].

A well-known class of graphs is the generalized Petersen graphs P(n, k). By definnition [15],
P(n, k) is a graph on 2n (n ≥ 3) vertices with V(P(n, k)) = {ui, vi : 0 ≤ i ≤ n − 1} and E(P(n, k)) =
{uiui+k, uivi, vivi+1 : 0 ≤ i ≤ n − 1}, where subscripts are to be read modulo n and 1 ≤ k ≤ n − 1. For
example, P(5, 1) and P(5, 2) are shown in Figure 1.

A number of articles has been devoted to the study of the labeling and coloring of P(n, k), in
particular, to the study of L(2,1)-labeling and total coloring [16–21]. However, the (d, 1)-total labeling
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Figure 1. Generalized Petersen Graphs P(5, 1) and P(5, 2)

of generalized Petersen graphs still remains open. To fill the gap, in this paper, we study the (d, 1)-
total numbers of generalized Petersen graphs. We aim to determine the (d, 1)-total numbers of P(n, k)
for d ≥ 3. This paper is organized as follows. We first prove that the (d, 1)-total number of P(n, k) for
k = n

2 is d + 3 in Section 2, and we then discuss the (d, 1)-total number of P(n, k) for k , n
2 in Section

3.

2. (d,1)-Total Labelling of P(n, k) for k = n
2

For a graph G with ∆(G) ≤ d, there is always λTd (G) ≥ d + ∆(G) [4]. Since ∆(P(n, k)) = 3, we
have Lemma 1.

Lemma 1. λTd (P(n, k)) ≥ d + 3 for d ≥ 3.

To obtain the exact value of λTd (P(n, k)), we prove Lemma 2.

Lemma 2. λTd (P(n, k)) ≤ d + 3 if k = n
2 .

Proof. We use f to represent the assignment of integers to V(G) ∪ E(G). In the case of k = n
2 , we can

define the assignment as follows,

f (ui) =
{

1+(−1)i

2 , 0 ≤ i ≤ n
2 − 1,

2, n
2 ≤ i ≤ n − 1.

f (uiui+k) = d + 2, 0 ≤ i ≤ n
2 − 1.

f (uivi) = d + 3, 0 ≤ i ≤ n − 1.

f (vi) =
1−(−1)i

2 , 0 ≤ i ≤ n − 1.

f (vivi+1) = d + 1 + 1−(−1)i

2 , 0 ≤ i ≤ n − 1.

Clearly, the assignment f , defined above, gives a (d, 1)-total labelling. Indeed, it is easy to verify
that f fulfills all the three conditions, i.e.,

(i) any two adjacent vertices receive distinct integers,

(ii) any two adjacent edges receive distinct integers, and

(iii) a vertex and its incident edge receive the integers that differ by at least d.
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Figure 2. (d,1)-Total Labelings of P(8, 4) and P(10, 5)

We then have λTd (P(n, k)) ≤ d + 3 for k = n
2 . This completes the proof of Lemma 2.

Figure 2 shows (d,1)-total labelings of P(8, 4) and P(10, 5).
□

Lemma 2 determines the upper bound of λTd (P(n, k)) for k = n
2 while Lemma 1 gives the lower

bound of λTd (P(n, k)). Hence, we have Theorem 1.

Theorem 1. λTd (P(n, k)) = d + 3 for d ≥ 3 if k = n
2 .

3. (d,1)-Total Labelling of P(n, k) for k , n
2

Since P(n, k) � P(n, n − k), we need only to consider the labeling of P(n, k) for 1 ≤ k < n
2 .

Therefore, we assume 1 ≤ k < n
2 in the following discussion.

We first consider P(n, k) for even n and odd k. In this case, P(n, k) is 3-regular bipartite graphs, and
by borrowing the result obtained in Ref. [4], which indicates that λTd (G) = d + r if G is an r-regular
bipartite graph, we immediately obtain the (d, 1)-total number of P(n, k) for even n and odd k. We
state it as Theorem 2.

Theorem 2. λT
d (P(n, k)) = d + 3 if n is even and k is odd.

We now consider P(n, k) for odd n or even n and even k (k , n
2 ). In this case, P(n, k) is 3-regular

nonbipartite graph, and by borrowing the result obtained in Ref. [13], which indicates λTd (G) ≥ d+r+1
if G is an r-regular nonbipartite graph and d ≥ r ≥ 3, we have Lemma 3.

Lemma 3. λTd (P(n, k)) ≥ d + 4 for d ≥ 3 if n is odd or both n and k are even (k , n
2 ).

To determine the exact value of λTd (P(n, k)), we prove the following lemma.

Lemma 4. λTd (P(n, k)) ≤ d + 4 if n is odd or both n and k are even.

Proof. Let g = gcd(n, k) and l = n/g. We refer to cycle uiui+kui+2k · · · ui+(l−1)kui (0 ≤ i ≤ g − 1) as
an inner cycle, cycle v0v1 · · · vn−1v0 as an outer cycle, and uivi (0 ≤ i ≤ n − 1) as a spoke. Obviously,
P(n, k) contains g non-intersecting inner cycles with length l. With these notions, we can divide our
proof of Lemma 4 into the following two cases.
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Figure 3. (d,1)-Total Labelings of P(5, 2) and P(11, 3)

Case 1. g = 1. In this case, l and n are odd. It follows that both the inner cycle and the outer cycle
are odd cycles. We define the assignment f as follows,

f (uik) =
{

2, i = 0,
1−(−1)i+ j

2 , 1 ≤ i, j ≤ n − 1 and j is defined by jk (mod n) = 1.

f (u1+iku1+(i+1)k) =
{

d + 1, i = 0,
d + 3 + 1+(−1)i

2 , 1 ≤ i ≤ n − 1.
f (uivi) = d + 2, 0 ≤ i ≤ n − 1.

f (vi) =


1−(−1)i

2 , 0 ≤ i ≤ 1,
2, 2 ≤ i ≤ n − 1 and i (mod 2) = 0,
1 − f (ui), 2 ≤ i ≤ n − 2 and i (mod 2) = 1.

f (vivi+1) =
{

d + 1, i = 0,
d + 3 + 1+(−1)i

2 , 1 ≤ i ≤ n − 1.

Figure 3 shows (d,1)-total labelings of P(5, 2) and P(11, 3).

Case 2. g ≥ 2. We further divide this case into the following two subcases.

Case 2.1. l is even. In this case, n must be even. It follows that both the outer cycle and the inner
cycles are even cycles. We define the assignment f as follows,

f (uik+ j) =
1−(−1)i

2 , 0 ≤ i ≤ l − 1, 0 ≤ j ≤ g − 1.

f (uik+ ju(i+1)k+ j) = d + 3 + 1−(−1)i

2 , 0 ≤ i ≤ l − 1, 0 ≤ j ≤ g − 1.
f (uivi) = d + 2, 0 ≤ i ≤ n − 1.

f (vi) =
{

f (un−1), i = 0,
min({0, 1, 2} − { f (vi−1), f (ui)}), 1 ≤ i ≤ n − 1.

f (vivi+1) = d + 3 + 1−(−1)i

2 , 0 ≤ i ≤ n − 1.

Figure 4 shows (d,1)-total labelings of P(8, 2) and P(16, 6).

Case 2.2. l is odd. In this case, the inner cycles are odd cycles. We define the assignment f as

Ars Combinatoria Volume 158, 11–17



(d, 1)-Total Labelling of Generalized Petersen Graphs P(n, k) 15

Figure 4. (d,1)-Total Labelings of P(8, 2) and P(16, 6)

Figure 5. (d,1)-Total Labelings of P(9, 3) and P(10, 4)

follows,

f (uik+ j) =
{

2, i = 0, 0 ≤ j ≤ g − 1,
1+(−1)i

2 , 1 ≤ i ≤ l − 1, 0 ≤ j ≤ g − 1.

f (u(1+i)k+ ju(1+i+1)k+ j) =
{

d + 1, i = 0, 0 ≤ j ≤ g − 1,
d + 3 + 1+(−1)i

2 , 1 ≤ i ≤ l − 1, 0 ≤ j ≤ g − 1.
f (uivi) = d + 2, 0 ≤ i ≤ n − 1.

f (vi) =
{

f (un−1), i = 0,
min({0, 1, 2} − { f (vi−1), f (ui)}), 1 ≤ i ≤ n − 1.

f (vivi+1) =

 d + 2 + (−1)n, i = 0,

d + 3 + 1−(−1)i+n

2 , 1 ≤ i ≤ n − 1.

Figure 5 shows (d,1)-total labelings of P(9, 3) and P(10, 4).
It is obvious that in the above labeling scheme, any two adjacent edges receive distinct integers,

and each vertex and its incident edges receive the integers that differ by at least d. Besides, it is
also obvious that any two adjacent vertices of inner cycles receive distinct integers. To complete
our proof, we need further to verify that each vertex of outer cycle and its adjacent vertices receive
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distinct integers. We examine the labeling in each case. In case 1, according to the assignment of
f (uik) and f (vi), we can easily find that f (vi) , f (vi+1) for 0 ≤ i ≤ n − 1 and f (vi) , f (ui) for
i = 0 and 2 ≤ i ≤ n − 1. Furthermore, since jk (mod n)=1 and ik (mod n)=1 for f (u1), we have
f (u1) = 0 , f (v1). In case 2, since f (vi) = min({0, 1, 2} − { f (vi−1), f (ui)}) for 1 ≤ i ≤ n − 1, we then
have f (vi) , f (vi−1) and f (vi) , f (ui) for 1 ≤ i ≤ n − 1. Furthermore, since f (v0) = f (un−1), we
have f (vn−1) , f (v0) and f (v0) = 1 , f (u0). That is, our labeling scheme presented above fulfills all
the three conditions (i) (ii) and (iii), being a (d, 1)-total labeling. This concludes the proof of Lemma
4. □

By Lemmas 3 and 4, we have Theorem 3.

Theorem 3. λTd (P(n, k)) = d + 4 for d ≥ 3 if n is odd or both n and k are even (k , n
2 ).

In summary, we have presented a (d, 1)-total labelling of generalized Petersen graphs P(n, k) for
d ≥ 3, and given the exact values of λTd (P(n, k)). By combing Theorems 1, 2 and 3, we have the
following conclusion.

The (d, 1)-total number of P(n, k) with d ≥ 3 is d + 3 for even n and odd k or even n and k = n
2 ,

and d + 4 for all other cases.
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