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Abstract: One of the fundamental properties of the hypercube Qn is that it is bipancyclic as Qn

has a cycle of length l for every even integer l with 4 ≤ l ≤ 2n. We consider the following problem
of generalizing this property: For a given integer k with 3 ≤ k ≤ n, determine all integers l for
which there exists an l-vertex, k-regular subgraph of Qn that is both k-connected and bipancyclic. The
solution to this problem is known for k = 3 and k = 4. In this paper, we solve the problem for k = 5.
We prove that Qn contains a 5-regular subgraph on l vertices that is both 5-connected and bipancyclic
if and only if l ∈ {32, 48} or l is an even integer satisfying 52 ≤ l ≤ 2n. For general k, we establish that
every k-regular subgraph of Qn has 2k, 2k + 2k−1 or at least 2k + 2k−1 + 2k−3 vertices.
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1. Introduction

A graph G = (V, E) on n vertices is an n-vertex graph. A 2n-vertex graph is bipancyclic if it has
a cycle of length l for all even integers l satisfying 4 ≤ l ≤ 2n. The Cartesian product of two graphs
G and H is the graph G2H with vertex set V(G) × V(H) in which two vertices (x, y) and (u, v) are
adjacent if and only if either x = u and y is adjacent to v in H, or y = v and x is adjacent to u in G.
Throughout the paper n denote a positive integer.

The n-dimensional hypercube Qn is the Cartesian product of n copies of the complete graph K2. It is
an n-regular, n-connected, bipartite, and bipancyclic graph on 2n vertices with diameter n. Because of
such rich properties, hypercubes are one of the most widely used interconnection network topologies
[1]. The connectivity of a network is an important parameter to evaluate the reliability and fault
tolerance of a network [2]. Bipancyclicity is a fundamental property of the hypercube networks as
it allows the embedding of cycles of various lengths effectively into hypercubes. Cycle networks
are used to design simple algorithms with low communication cost and it has applications in image
processing and signal processing [1, 3].

We consider the following problem of generalizing the property of bipancyclicity of hypercubes
to the existence of l-vertex, k-regular subgraphs for various values of l that are also k-connected and
bipancyclic. This will give subgraphs of Qn with less number of vertices which retain the important
properties of Qn such as regularity, high connectivity, and bipancyclicity.

Problem 1. For a given integer k with 3 ≤ k ≤ n, determine all integers l for which there exists an
l-vertex, k-regular subgraph of Qn that is both k-connected and bipancyclic.
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This problem is also related to the problem of embedding regular graphs into hypercubes. Cybenko
et al. [4] proved that the problem of deciding whether or not a given graph is embeddable into a
hypercube is NP-complete, in fact, the problem is NP-complete even for trees [5].

Since the hypercube Qn is a bipartite graph, every regular subgraph of it has even number of
vertices. For k = 3, Ramras [6] established that every even integer from 8 to 2n except 10 can be
the number of vertices of a 3-regular subgraph of Qn. Borse and Shaikh [7] improved this result by
showing that such a 3-regular subgraph can be bipancyclic also. They solved the above problem for
k = 3 and k = 4 in [7] and [8], receptively. They established that, for k ∈ {3, 4}, Qn has a k-regular,
k-connected, bipancyclic subgraph on l vertices if and only if l = 2k or l is an even integer with
2k + 2k−1 ≤ l ≤ 2n. The problem remains open for k ≥ 5.

Besides hypercubes, the special case k = 3 of the above problem is settled for the class of the
Cartesian product of cycles in [9] and for the class of the Cartesian product of paths in [10]. Also,
Borse et al. [11] proved the existence of a factorization of the Cartesian product of r cycles, each
of length a power of 2, into isomorphic k-regular, k-connected and bipancyclic subgraphs with the
number of vertices a power of 2, for 2 ≤ k < 2r. Moreover, the number of vertices of a smallest
k-regular subgraph of an r-regular graph G is related to the conditional k-edge-connectivity of G [12].

In this paper, we settle Problem 1 for the case k = 5. The following is the main result of the paper.

Theorem 1 (Main Theorem). For n ≥ 5, there exists a 5-regular, 5-connected and bipancyclic sub-
graph of the hypercube Qn on l vertices if and only if l ∈ {32, 48} or l is an even integer such that
52 ≤ l ≤ 2n.

For general k, Borse and Shaikh [8] obtained the following result about the non-existence of k-
regular subgraphs of Qn on a certain number of vertices.

Theorem 2 ( [8]). For a given integer k with 1 ≤ k ≤ n, every subgraph of Qn with minimum degree
at least k either is isomorphic to Qk or has at least 2k + 2k−1 vertices.

In this paper, we improve this theorem as follows.

Theorem 3. For a given integer k with 2 ≤ k ≤ n, if H is a subgraph of Qn with minimum degree at
least k, then one of the following holds:

(i) H is isomorphic to Qk.

(ii) H is a spanning subgraph of the subgraph of Qn induced by V(C2Qk−2) for some cycle C of
length six.

(iii) H has at least 2k + 2k−1 + 2k−3 vertices.

Thus, if 2 ≤ k ≤ n and 1 ≤ l < 2k + 2k−1 + 2k−3 with l < {2k, 2k + 2k−1}, then Qn does not have a
k-regular subgraph on l vertices and hence no k-regular, l-vertex graph is embeddable into Qn.

We provide preliminary results in Section 2 and prove Theorem 3 in Section 3. The proof of Main
Theorem 1 is divided into the next three sections. A construction of 5-regular subgraphs of Qn is given
in Section 4. The connectivity and bipancyclicity properties of these subgraphs are dealt in Section 5
and Section 6, respectively.

2. Preliminaries

We can write Qn as Qn−k2Qk for 0 ≤ k ≤ n, where Q0 is the complete graph K1. A k-cycle means
a cycle of length k.We need the following lemmas.

Lemma 1 ( [3]). Let Gi be an mi-regular and mi-connected graph for i = 1, 2. Then the graph G12G2

is (m1 + m2)-regular and (m1 + m2)-connected.
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Lemma 2 ( [13]). If P and Q are non-trivial paths and one of them has an even number of vertices,
then the graph P2Q is bipancyclic.

Hence C2K2 is bipancyclic if C is a non-trivial path or a cycle of length at least three.

Lemma 3 ( [8]). For n ≥ 3, the hypercube Qn has a Hamiltonian cycle C with a chord e such that
there is a 4-cycle in Qn containing e and three edges of C.

Lemma 4 ( [8]). Let l be an even integer such that 6 ≤ l ≤ 2n − 2. Then there exists an l-cycle C in
Qn containing six vertices x, y, z, u, v, w and there are two vertices g, h in V(Qn) − V(C) such that

(i) g is adjacent to x, y, z;

(ii) h is adjacent to u, v, w;

(iii) xu, uy and yv are edges of C.

We obtain a similar result as follows.

Lemma 5. Let l be an even integer such that 8 ≤ l ≤ 2n − 2. Then there exists an l-cycle C in Qn and
a vertex u in V(Qn) − V(C) having four pairwise non-adjacent neighbours in C.

Proof. Suppose n = 4. Clearly, C = < v1, v2, . . . , v8, v1 > is a required 8-cycle in Q4 as shown by bold
lines in Figure 1. Replacing the edge v1v2 of C by a path of length 3 avoiding u gives a 10-cycle C′

and replacing the edge v3v4 of C′ by a path of length 3 or 5 that is edge-disjoint with C′ produces
required 12-cycle and 14-cycle. Thus the result holds for n = 4.
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v3v4v5
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v7

v8

Figure 1. 8-Cycle C in Q4

Suppose n ≥ 5.Write Qn as Qn−22Q2. Then Qn is obtained from four copies Q1
n−2, Q

2
n−2, Q

3
n−2, Q

4
n−2

of Qn−2 such that Qi
n−2 is joined to Qi+1

n−2 for i = 1, 2, 3 by a matching between their corresponding
vertices. Vertices of Q1

n−2 are joined to the corresponding vertices of Q4
n−2.

Figure 2. The l-cycle Z
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Since n− 2 ≥ 3, by Lemma 3, each Qi
n−2 contains a Hamiltonian cycle Ci with a chord ei such that

there is a 4-cycle in Qi
n−2 containing ei and three edges from Ci. For simplicity let r = 2n−2. Label the

set of vertices of Qi
n−2 by {vi

p | p = 1, 2, . . . , r} so that Ci = < vi
1, v

i
2, . . . , v

i
r, v

i
1 > and e = vi

2vi
r−1. We

now construct a cycle Z of length l in Qn, as required, from the cycles C1,C2,C3,C4 and the chord
e1 of C1. If 8 ≤ l ≤ 2n−1 + 4, then l = 2t + 6, where 1 ≤ t = l/2 − 3 ≤ 2n−2 − 1 = r − 1. In this
case, take Z as the cycle shown in Figure 2(a). If 2n−1 + 6 ≤ l ≤ 2n − 4, then l = 2m + 2n−1 with
3 ≤ m = l/2 − 2n−2 ≤ 2n−1 − 2n−2 − 2 = r − 2. In this case, choose Z to be the cycle shown in Figure
2(b). Finally, for l = 2n − 2 take Z as the cycle given in Figure 2(c). In each case, Z is a cycle of
length l in Qn, and further, the vertex v1

1 is not on Z but it has four pairwise non-adjacent neighbours
v1

2, v
1
r , v

2
1, v

4
1 in Z. This completes the proof.

□

3. Proof of Theorem 3

In this section, we prove Theorem 3. For a graph G, let G[S ] denote the induced subgraph of G
on a vertex subset S ⊆ V(G). The minimum degree of G is denoted by δ(G). If G is isomorphic to
a graph H, then we write G � H. Since Qn = Qn−12K2, we can split Qn into two copies Q0

n−1 and
Q1

n−1 of Qn−1. If H is a subgraph of Q0
n−1, then there is a subgraph H′ of Q1

n−1 isomorphic to H such
that the vertex set of H′ is the set of neighbours of H in Q1

n−1.We say that H′ is the subgraph of Q1
n−1

corresponding to H.
We need the following result.

Lemma 6 ( [8]). For a given integer k with 1 ≤ k < n, if H is a subraph of Qn isomorphic to Qk, then
every vertex in V(Qn) − V(H) has at most one neighbour in H.

Proof of Theorem 3. By Theorem 2, (i) holds or |V(H)| ≥ 2k + 2k−1. Suppose (i) does not hold. Then
|V(H)| ≥ 2k + 2k−1. We prove, by induction on k, that (ii) holds if |V(H)| = 2k + 2k−1, otherwise (iii)
holds. Suppose k = 2. Then |V(H)| = 6 or |V(H)| ≥ 7. If |V(H)| = 6, then it follows that H is a
chordless 6-cycle or a 6-cycle with a chord and so (ii) holds. If |V(H)| ≥ 7 > 22 + 22−1 + 22−3, then
(iii) follows. Thus the result is true for k = 2.

Suppose k ≥ 3. Assume that the result holds for the subgraphs of Qn of minimum degree at least
k − 1. Let e be an edge of H. Without loss of generality, we may assume that the end vertices of e
differ in the first coordinate only. Write Qn = Q0

n−1 ∪ Q1
n−1 ∪ D, where D is the set of all edges in Qn

whose end vertices differ in the first coordinate only. Then e ∈ D. Hence H intersects both Q0
n−1 and

Q1
n−1. Let Hi = H ∩ Qi

n−1 for i = 0, 1. Then δ(Hi) ≥ k − 1.We may assume that |V(H0)| ≤ |V(H1)|.
By induction hypothesis, H0 � Qk−1 or H0 is a spanning subgraph of Qn[V(C2Qk−3)] for some

6-cycle C or |V(H0)| ≥ 2k−1 + 2k−2 + 2k−4. Hence |V(H0)| = 2k−1 or |V(H0)| = 3(2k−2) or |V(H0)| ≥
2k−1 + 2k−2 + 2k−4.We consider these three cases separately.

Case (i). Suppose |V(H0)| ≥ 2k−1 + 2k−2 + 2k−4.

Consider |V(H)| = |V(H1)| + |V(H0)| ≥ 2|V(H0)| = 2k + 2k−1 + 2k−3 as |V(H1)| ≥ |V(H0)|. Therefore
(iii) holds.

Case (ii). Suppose |V(H0)| = 2k−1.

In this case, H0 is isomorphic to Qk−1. As δ(H) ≥ k, each vertex of H0 has a neighbour in H1. Let
W1 be the subgraph of Q1

n−1 corresponding to H0. Then W1 � Qk−1 and V(W1) ⊆ V(H1). Let W2 be the
subgraph of H1 induced by V(H1) − V(W1). Observe that no vertex of W2 has a neighbour in H0 and
by Lemma 6, it has at most one neighbour in W1. Therefore δ(W2) ≥ k− 1. By Theorem 2, W2 � Qk−1

or |V(W2)| ≥ 2k−1 + 2k−2. In the later case, (iii) holds as |V(H))| = |V(H0)| + |V(W1)| + |V(W2)| ≥
2k−1 + 2k−1 + 2k−1 + 2k−2 > 2k + 2k−1 + 2k−3. Suppose W2 � Qk−1. Then the subgraph of Qn induced by
the vertices of H0,W1,W2 is isomorphic to P32Qk−1 = (P32K2)2Qk−2, where P3 is a path on three
vertices. Since P32K2 is a 6-cycle with a chord, (ii) holds.
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Case (iii). H0 is a spanning subgraph of Qn[V(C2Qk−3)] for some 6-cycle C.
We consider two subcases depending on whether the cycle C has a chord or not.

Subcase (i). Suppose C is chordless.
Then H0 is (k−1)-regular and in fact, H0 � C2Qk−3. Let W1 be the subgraph of Q1

n−1 corresponding
to H0. Then V(W1) ⊆ V(H1). If V(W1) = V(H1), then W1 = H1. As H � H02K2 � (C2Qk−3)2K2 �

C2Qk−2, (ii) follows. Suppose V(H1)−V(W1) , ∅. Let W2 be the subgraph of H1 induced by V(H1)−
V(W1). As Qn is triangle-free, it follows from Lemma 6 that every vertex of W2 has at most three
neighbours in W1. This shows that δ(W2) ≥ k − 3. By Theorem 2, |V(W2)| ≥ 2k−3. Thus |V(H)| =
|V(H0)| + |V(W1)| + |V(W2)| ≥ 3(2k−2) + 3(2k−2) + 2k−3 = 2k + 2k−1 + 2k−3. Therefore (iii) holds in this
case.

Subcase (ii). Suppose C has a chord.
Then C is a spanning subgraph of P32K2 and hence H0 is a spanning subgraph of P32Qk−2. Let

1, 2, 3 be the vertices of the path P3 in order and let Li the copy of Qk−2 in H0 corresponding to the
vertex i for i ∈ {1, 2, 3}. Let Ri be the subgraph of Q1

n−1 corresponding to Li for i ∈ {1, 2, 3}. Then
Ri � Qk−2. Since the degree of every member of V(L1)∪V(L3) is k− 1 in H0, we have V(R1) ⊆ V(H1)
and V(R3) ⊆ V(H1). If V(H1) = V(R1) ∪ V(R2) ∪ V(R3), then (ii) holds (see Figure 3(a)). Suppose
V(H1) − V(R1) ∪ V(R2) ∪ V(R3) is non-empty and let W3 be the subgraph of H1 induced by this set.
Then, by Lemma 6, δ(W3) ≥ k − 2. Therefore, by Theorem 2, W3 � Qk−2 or |V(W3)| ≥ 2k−2 + 2k−3. In
the later case, (iii) holds.

Suppose W3 � Qk−2. It follows from Lemma 6 that every vertex of W3 has a neighbour in Ri for
i = 1, 3 but no neighbour in R2. Suppose V(R2) ∩ V(H1) = ∅. Then V(H1) = V(R1) ∪ V(R3) ∪ V(W3)
(see Figure 3(b)). It follows that H = Z2Qk−2, where Z is a 6-cycle whose six vertices correspond
to L1, L2, L3,R3,W3,R1 in order, and so, (ii) holds. Suppose V(R2) ∩ V(H1) , ∅. Then the graph
R2 ∩H1 has minimum degree at least k− 3 and hence, it has at least 2k−3 vertices by Theorem 2. Thus
|V(H)| = |V(H0)| + |V(R1)| + |V(R3)| + |V(W3)| + |V(R2 ∩ H1)| ≥ 6(2k−2) + 2k−3. Therefore (iii) holds.
This completes the proof. □

L1L1

L2L2

L3L3
�
�
�

R1R1

R2R2

R3R3

W3

b) V(R2) ∩ V(H1) = ∅a) V(H1) = V(R1) ∪ V(R2) ∪ V(R3)

Figure 3. The Subgraph H of Qn

Q0
n−1 Q1

n−1 Q0
n−1 Q1

n−1

Corollary 1. Every 5-regular subgraph of Qn has 32, 48 or at least 52 vertices.

4. Construction of 5-regular Subgraphs of Qn

In this section, we give a construction of an l-vertex, 5-regular subgraph of the hypercube Qn.

Suppose Qn has a 5-regular subgraph on l vertices. Then l is an even integer and by Corollary 1, we
have l ∈ {32, 48} or 52 ≤ l ≤ 2n. We prove that for every such l there exists a 5-regular subgraph of
Qn with n ≥ 6 that is both 5-connected and bipancyclic. The case when l is a multiple of 4 follows
trivially from the following result.
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Theorem 4 ( [8]). If n ≥ 4 and l is an even integer such that l = 16 or 24 ≤ l ≤ 2n, then there exists a
l-vertex, 4-regular subgraph of Qn that is both 4-connected and bipancyclic.

Lemma 7. If n ≥ 6 and l is a multiple of 4 such that l ∈ {32, 48} or 52 ≤ l ≤ 2n, then there exists a
5-regular, 5-connected and bipancyclic subgraph of Qn on l vertices.

Proof. We can write l = 4m, where m = 8 or m is an integer such that 12 ≤ m ≤ 2n−2. Express
Qn as Qn−12K2. Since n − 1 ≥ 4, Qn−1 has a 4-regular, 4-connected and bipancyclic subgraph H on
2m vertices by Theorem 4. Therefore, by Lemma 1, the graph H2K2 is a 5-regular and 5-connected
subgraph of Qn on 4m = l vertices. As H is bipancyclic, it has a Hamiltonian cycle and so has a
Hamiltonian path. Hence, by Lemma 2, H2K2 is bipancyclic. □

Suppose l is an even integer such that 52 ≤ l ≤ 2n but not a multiple of 4. Then n ≥ 6 and
54 ≤ l ≤ 2n − 2.We have the following four cases.

(i) l = 16k + 2 with 4 ≤ k ≤ 2n−4 − 1

(ii) l = 16k + 6 with 3 ≤ k ≤ 2n−4 − 1.

(iii) l = 16k + 10 with 3 ≤ k ≤ 2n−4 − 1.

(iv) l = 16k + 14 with 3 ≤ k ≤ 2n−4 − 1.

Case (i). l = 16k + 2 with 4 ≤ k ≤ 2n−4 − 1.

In this case, n ≥ 7 and 66 ≤ l ≤ 2n−14.Write Qn = Qn−32Q3. By Lemma 5, Qn−3 contains a cycle
C of length 2k and there is a vertex g ∈ V(Qn−3) − V(C) with four pairwise non-adjacent neighbours
x, y, z,w in C. Let V(Q3) = {a0, a1, . . . , a7} so that a0, a1, a2, a3, a0 and a4, a5, a6, a7, a4 are 4-cycles and
a0a7, a1a6, a2a5 and a3a4 are edges of Q3. Then C2Q3 is a 5-regular subgraph of Qn with 16k vertices
containing a copy Ci of C corresponding to the vertex ai of Q3. Let gi, xi, yi, zi,wi be the vertices of
Qi

n−3 corresponding to the vertices g, x, y, z,w, respectively.

Let L1 be the subgraph of Qn with V(L1) = {xi, yi, zi,wi, gi : i = 0, 7} and E(L1) =
{gixi, giyi, gizi, giwi : i = 0, 7} ∪ {g0g7}.We define a graph H1 from C2Q3 and L1 as follows.

H1 = (C2Q3) ∪ L1 − {x0x7, y0y7, z0z7,w0w7} (see Figure 4).

Clearly, H1 is a 5-regular subgraph of Qn on 16k + 2 = l vertices.

Now, to construct 5-regular subgraphs in Cases (ii), (iii) and (iv), we choose a cycle C in Qn−3

of length 2k by Lemma 4. Then there are six vertices x, y, z, u, v, w on C and two vertices g, h in
V(Qn−3) − V(C) such that g is adjacent to x, y, z, and h is adjacent to u, v, w, and xu, uy, yv are edges
of C. Let

H = C2Q3.

Then H is a 5-regular subgraph of Qn on 16k vertices. As in Case (i), let Ci be a copy of C corre-
sponding to the vertex ai of Q3 and let gi, hi, xi, yi, zi, ui, vi,wi be the vertices of Qi

n−3 corresponding to
g, h, x, y, z, u, v,w, respectively.
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Figure 4. The Subgraph H1 on 16k + 2 Vertices

Case (ii). Suppose l = 16k + 6 with 3 ≤ k ≤ 2n−4 − 1.
Clearly, 54 ≤ l ≤ 2n − 10. Let L2 be the subgraph of Qn with vertex set {gi, xi, yi, zi : i =

0, 1, 2, 5, 6, 7} and edge set

{gixi, giyi, gizi : i = 0, 1, 2, 5, 6, 7} ∪ {g0g1, g1g2, g2g5, g5g6, g6g7, g7g0}.

Define a subgraph H2 of Qn from the graphs H and L2 as follows.

H2 = (H ∪ L2) − {x0x1, y0y1, z0z1, x2x5, y2y5, z2z5, x6x7, y6y7, z6z7}.

The graph H2 is depicted in Figure 5. It is easy to see that H2 is a 5-regular subgraph of Qn on l
vertices.
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Figure 5. The Subgraph H2 on 16k + 6 Vertices
Case (iii). l = 16k + 10 with 3 ≤ k ≤ 2n−4 − 1.

Consider the three edge sets: F1 = {g0g1, g1g2, g2g5, g5g6, g6g7, g7g0}, F2 = {h2h3, h3h4, h4h5, h5h2},

and

F3 = {x0x7, y0y7, z0z7, x1x2, y1y2, z1z2, x5x6, y5y6, z5z6, u2u3, v2v3,w2w3, u4u5, v4v5,w4w5}.

Let L3 be the subgraph of Qn with vertex set
{gi, xi, yi, zi : i = 0, 1, 2, 5, 6, 7} ∪ {h j, u j, v j,w j : j = 2, 3, 4, 5} and edge set

{gixi, giyi, gizi : i = 0, 1, 2, 5, 6, 7} ∪ {h ju j, h jv j, h jw j : j = 2, 3, 4, 5} ∪ F1 ∪ F2.
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We now define a subgraph H3 of Qn which is shown in Figure 6 as

H3 = (H ∪ L3) − F3

Clearly, H3 is a 5-regular subgraph of Qn on 16k + 10 vertices.
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Figure 6. The subgraph H3 on 16k + 10 vertices

Case (iv). l = 16k + 14 with 3 ≤ k ≤ 2n−4 − 1.
We define the four edge sets M1,M2,M3,M4 as follows.

M1 = {g0g1, g1g2, g2g3, g3g4, g4g5, g5g6, g6g7, g7g0};

M2 = {h0h1, h1h2, h2h5, h5h6, h6h7, h7h0};

M3 = {u0u7, v0v7,w0w7, u1u6, v1v6,w1w6, u2u5, v2v5,w2w5}

and
M4 = {x0x1, y0y1, z0z1, x2x3, y2y3, z2z3, x4x5, y4y5, z4z5, x6x7, y6y7, z6z7}.

Let L4 be the subgraph of Qn having vertex set {gi, xi, yi, zi : i = 0, 1, . . . , 7} ∪ {h j, u j, v j,w j : j =
0, 1, 2, 5, 6, 7} and edge set {gixi, giyi, gizi : i = 0, 1, . . . , 7} ∪ {h ju j, h jv j, h jw j : j = 0, 1, 2, 5, 6, 7} ∪
M1 ∪ M2.We define a subgraph H4 of Qn as follows.

H4 = (H ∪ L4) − (M3 ∪ M4).

The graph H4 is shown in Figure 7. Clearly, it is a 5-regular subgraph of Qn on 16k + 14 vertices.
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Figure 7. The subgraph H4 on 16k + 14 vertices
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Thus we have constructed 5-regular subgraphs H1, H2, H3, and H4 of the hypercube Qn on l vertices
in each of the four cases. In the next two sections, we prove that these subgraphs are 5-connected and
bipancyclic.

5. Connectivity

In this section, we prove that all the four subgraphs H1,H2,H3, and H4 of Qn that are constructed
in Section 4 and shown in Figures 4, 5, 6, and 7, respectively are 5-connected.

If F is the matching in Hi consisting of edges having one end vertex in the lower side (L) and the
other end vertex in the upper side (R) in the figure of Hi, then F is an edge-cut of Hi. The graph Hi−F
has two components and further, the components are 4-connected and isomorphic to each other. We
prove that these components together with the matching F give a 5-connected graph. We first prove
the following observations for general graphs.

Lemma 8. Let G be a simple k-connected graph and let v1, v2, . . . , vk be distinct vertices of G. Let Ĝ
be a new graph obtained from G by adding a new vertex u and k edges uvi for i = 1, 2, . . . , k. Then Ĝ
is k-connected.

Proof. The graph Ĝ is shown in Figure 8(a). Suppose S ⊆ V(Ĝ) with |S | < k. If u < S , then S ⊆ V(G)
and so G − S is connected. Therefore Ĝ − S is connected as the vertex u has a neighbour in G − S .
Suppose u ∈ S . Then S − {u} contains at most k − 2 vertices of G and hence G − (S − {u}) = Ĝ − S is
connected. Thus Ĝ is k-connected. □

Lemma 9. Let G be a simple k-connected graph with at least 2k vertices and an independent set
{u1, u2, . . . , ur}, where 1 ≤ r ≤ k. Suppose G′ is a simple graph obtained from G by adding a new
vertex u and k new edges each having one end vertex u including the r edges uu1, uu2, . . . , uur. Let H
be the graph obtained from the graph G′2K2 by deleting the matching consisting of r edges between
the two copies of G′ corresponding to the vertices u1, u2, . . . , ur. Then the graph H is (k+1)-connected.

Proof. The graph H is shown in Figure 8(b). The graph G′2K2 is obtained from G′ and a copy
G′′ of G′ by adding edges between their corresponding vertices. Let v and vi be the vertices of
G′′ corresponding to u and ui for 1 ≤ i ≤ r, respectively and let M = {u1v1, u2v2, . . . , urvr}. Then
H = (G′2K2)−M. Since G′ has at least 2k+ 1 vertices, there are at least k+ 1 edges in H between G′

and G′′.
Suppose S ⊆ V(H) with |S | ≤ k. It is sufficient to prove that H − S is connected. Since G is

k-connected, by Lemma 8, the graph G′ is k-connected. Suppose S intersects both V(G′) and V(G′′).
Then both G′ − S and G′′ − S are connected and they are joined to each other by an edge. Hence
H − S is connected. Suppose S ⊆ V(G′). The degree of ui in G is at least k and so it is at least k + 1
in G′ for any i ∈ {1, 2, . . . , r}. If G′ − S has a component with vertex set a subset of the independent
set {u1, u2, . . . , ur} − S , then that component has just one vertex and so |S | = k + 1, a contradiction.
Thus every component of G′ − S has a neighbour in the connected graph G′′ in H − S . This shows
that H − S is connected. □
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(a): G′ (b): H
Figure 8. The Graphs of Lemma 8 and Lemma 9
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Let H1, H2, H3, and H4 be the 5-regular subgraphs of Qn constructed in Section 4. We now prove
that these graphs are 5-connected.

Lemma 10. The graph H1 is 5-connected.

Proof. The subgraphs of H1 induced by V(C0) ∪ V(C1) ∪ V(C2) ∪ V(C3) and by V(C4) ∪ V(C5) ∪
V(C6)∪V(C7) are isomorphic to C02Z for some 4-cycle Z. Hence, by Lemma 1, these two subgraphs
are 4-connected. Now, by Lemma 9, H1 is 5-connected. □

Lemma 11. The graph H2 is 5-connected.

Proof. The subgraphs of H2 induced by V(C0)∪V(C3) and by V(C1)∪V(C2) are isomorphic to C02K2

and so, by Lemma 1, they are 3-connected. Hence, by Lemma 9, the upper half subgraph R of H2 that
is induced by V(C0) ∪ V(C1) ∪ V(C2) ∪ V(C3) ∪ {g0, g1} is 4-connected. If L = H2[V(C4) ∪ V(C5) ∪
V(C6) ∪ V(C7) ∪ {g6, g7}], then L is isomorphic to R. Thus, by Lemma 9, H2 is 5-connected. □

Lemma 12. The graph H3 is 5-connected.

Proof. By Lemmas 1 and 9, the subgraphs H3[V(C0) ∪ V(C3)] and H3[V(C1) ∪ V(C2) ∪ {g1, g2}] of
H3 are 3-connected. By similar arguments of the proof of Lemma 11, we see that the upper half
subgraph R of H3 induced by V(C0) ∪ V(C1) ∪ V(C2) ∪ V(C3) ∪ {g1, g2, h2, h3} is 4-connected. If
L = H3[V(C4) ∪ V(C5) ∪ V(C6) ∪ V(C7) ∪ {g5, g6, h4, h5}], then L is isomorphic to R. Now, the result
follows from Lemma 9. □

Lemma 13. The graph H4 is 5-connected.

Proof. Let V1 = V(C0) ∪ V(C1) ∪ {g0, g1} and let V2 = V(C2) ∪ V(C3) ∪ {g2, g3}. By Lemma 9, the
subgraphs H4[V1] and H4[V2] of H4 are 3-connected. Therefore the graph H4[V1∪V2] is 4-connected.
Hence the graph R = H4[V1 ∪ V2 ∪ {h0, h1, h2}] is also 4-connected. The subgraph L of H4 induced by
V(H4) − V(R) is isomorphic to R and so, it is 4-connected.

We now prove that H4 is 5-connected. Suppose S ⊆ V(H4) with |S | ≤ 4. It is sufficient to prove
that H4 − S is connected. If S intersects both V(R) and V(L), then R− S and L− S are connected and
they are joined to each other by an edge leaving H4 − S connected. Suppose S ⊆ V(R). The set of
vertices of R that do not have any neighbour in V(L) is A = {h1, g1, g2, u0, v0,w0, u1, v1,w1, u2, v2,w2}.

Assume that R − S has a component D such that V(D) ⊆ A. No member of A is isolated in R − S as
each has degree five in R. Hence δ(D) ≥ 1. Observe that the subgraph of H4 induced by A is the forest
as shown in Figure 9. Therefore D is a tree containing at least two pendant vertices. So |S | = 4 and
every pendant vertex of D is adjacent to all the four members of S . This gives K2,3 as a subgraph of
H4 and so of Qn, a contradiction. Hence every component of R − S has a neighbour in the connected
graph L. Therefore H4 − S is connected. Similarly, H4 − S is connected if S ⊆ V(L). □

s s
sss ss s ss ss

�
�

�
�

TT TTTT

g1

g2

h1

u1 v1 w1

u0 u2 v0 v2 w0 w2

Figure 9. Subgraph of H4 Induced by A

6. Bipancyclicity

In this section, we prove that the 5-regular graphs H1, H2, H3, and H4 constructed in Section 4 are
all bipancyclic.
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A ladder on n ≥ 4 vertices has two edges at its two ends. If we identify one of these two edges
with an edge of a k-cycle, then it follows that the resulting graph has cycles of every even length from
k to k + n − 2. The following lemma is based on this fact.

Lemma 14. Let l,m, n be even integers and C be an m-cycle conatining an edge xy and L be a ladder
on n vertices containing an end edge x′y′. Then the graph C ∪ L ∪ {xx′, yy′} has cycles of all even
lengths from m + 2 to m + n (see Figure 10).

s s s s s
s s s s sC L

x

y

x′

y′

Figure 10. The Graph C ∪ L ∪ {xx′, yy′}

Lemma 15. The graph H1 is bipancyclic.

Proof. Recall that H1 contains the eight copies C0,C1, . . . ,C7 of a 2k-cycle C. Let Ei j be the set of
edges of H1 with one end vertex in the cycle Ci and the other in the cycle C j. Consider the subgraph
W = C0 ∪C1 ∪C2 ∪C3 ∪C4 ∪C5 ∪C6 ∪C7 ∪ E03 ∪ E32 ∪ E25 ∪ E54 ∪ E47 ∪ E76 ∪ E61 ∪ E10 of H1.

Then W is isomorphic to C2Z, where Z is an 8-cycle. By Lemma 2, W is bipancyclic. Therefore W
and so H1 contains a cycle of every even length from 4 to 16k = |V(W)|. Let Ci =< vi

1, v
i
2, . . . v

i
2k, v

i
1 >

for i = 0, 1, . . . 7 such that vi
1 is the label to the neighbor of gi. Then the cycle shown in Figure 11 is a

Hamiltonian cycle of H1. Thus the graph H1 is bipancyclic. □

rr rr r r r r r r

r r r r r r r rr r r r r r r r
r r r r r r r r
r r r r r r r r
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2k v0

2k v7
2kv6
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1 v1

1 v2
1 v3

1 v4
1 v5

1 v6
1 v7

1

C0 C1 C2 C3 C4 C5 C6 C7

Figure 11. Hamiltonian Cycle in H1

Recall that we have written Qn as Qn−32Q3 where the vertices of Q3 are labeled by a0, a1, . . . , a7, so
that a0, a1, a2, a3, a4, a5, a6, a7, a0 is a Hamiltonian cycle of Q3 with chords a0a3, a1a6, a2a5 and a4a7.

Furthermore, C is a 2k-cycle in Qn−3 and Ci is its copy in Qn corresponding to vertex ai of Q3 in
the construction of the graphs H2,H3 and H4. Let Ei j be the matching between cycles Ci and C j in
Qn corresponding to the edge aia j of Q3. For each i, label the vertices of Ci by vi

1, v
i
2, . . . , v

i
2k so that

Ci =< vi
1, v

i
2, v

i
3, v

i
4, . . . , v

i
p, . . . , v

i
q, . . . , v

i
2k, v

i
1 > and vi

1, v
i
3, v

i
p are the neighbours of the vertex gi, and

vi
2, v

i
4, v

i
q are the neighbours of the vertex hi for some p, q with 4 < p, q ≤ 2k and p , q. Hence the

neighbours xi, yi, zi of gi on Ci are relabeled as vi
1, v

i
3, v

i
p, respectively. Similarly, the vertices ui, vi,wi

are relabeled as vi
2, v

i
4, v

i
q, respectively.

Lemma 16. The graph H2 is bipancyclic.

Proof. The graph H2 has 16k + 6 vertices. Consider the subgraph W of H2, where W = C0 ∪ C1 ∪

C2∪C3∪C4∪C5∪C6∪C7∪E03∪E32∪E21∪E16∪E65∪E54∪E47∪E70. Then W2 is isomorphic to
C02Z, where Z is an 8-cycle. By Lemma 2, it contains cycles of every even length from 4 to 16k. A
cycle Z of length 16k + 6 in H2 is shown in Figure 12. Furthermore, Z′ = (Z − {g1, g6}) ∪ {v1

1v6
1, g0g7}

is a cycle of length 16k + 4 while Z′′ = (Z′ − {g0, g7})∪ {v0
1v7

1} is a cycle of length 16k + 2 in H2. Thus
H2 is bipancyclic. □
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Figure 12. (16k + 6)-cycle in H2
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Figure 13. l-cycles in H3 for l ∈ {16k + 6, 16k + 10}

Lemma 17. The graph H3 is bipancyclic.

Proof. The graph H3 is on 16k + 10 vertices. Consider the subgraph W of H3 on 12k vertices defined
as

W = C0 ∪C1 ∪C3 ∪C4 ∪C6 ∪C7 ∪ E03 ∪ E34 ∪ E47 ∪ E67 ∪ E16 ∪ E01.

Then W is isomorphic to C02Z, where Z is a 6-cycle. Hence W contain cycles of all even lengths
from 4 to 12k. Therefore these cycles are also contained in H3. Let L be the ladder on 4k vertices
defined as

L = (C2 − v2
1v2

2) ∪ (C5 − v5
1v5

2) ∪ {v2
i v5

i : i = 1, 2, . . . , 2k}.

Note that W has a Hamiltonian cycle Z1 =< v1
2, v

1
3, . . . , v

1
2k, v

1
1, v

0
1, v

0
2k, v

0
2k−1, . . . , v

0
2, v

3
2, . . . , v

3
2k, v

3
1, v

4
1, v

4
2k,

. . . , v4
2, v

7
2, . . . , v

7
2k, v

7
1, v

6
1, v

6
2k, . . . , v

6
2, v

1
2 > . Then the subgraph Z1 ∪ L ∪ {v2

2v1
2, v

5
2v6

2} of H3 has 16k
vertices. By Lemma 14, it has cycles of every even length from 12k + 2 to 16k. Let Z2 and Z3 be
the cycles of length 16k + 6 and 16k + 10 as shown in Figure 13(a) and 13(b), respectively. Then
Z′2 = (Z2 − {g0, g1}) ∪ {v0

1v1
1} is a cycle of length (16k + 4) whereas (Z′2 − {g6, g7}) ∪ {v6

1v7
1} is a

(16k + 2)-cycle in H3. Finally, (Z3 − {h3, h4})∪ {v3
2v4

2, h2h5} is a cycle of length 16k + 8 in H3. Thus H3

is bipancyclic. □

Lemma 18. The graph H4 is bipancyclic.

Proof. Recall that H4 has 16k + 14 vertices. We prove that H4 contain cycles of every even length
from 4 to 16k + 14. The subgraph of H4,

W = C0 ∪C3 ∪C4 ∪C7 ∪ E03 ∪ E34 ∪ E47
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is bipancyclic as it is isomorphic to C02P4, where P4 is a path on four vertices. This implies that H4

contain cycles of every even length from 4 to 8k. Consider the Hamiltonian cycle Z1 of W, where
Z1 =< v0

2, v
0
3, · · · , v

0
2k, v

0
1, v

3
1, v

3
2k, v

3
2k−1, · · · , v

3
k+2, v

4
k+2, v

4
k+3, · · · , v

4
2k, v

4
1, v

7
1, v

7
2k, v

7
2k−1, · · · , v

7
2, v

4
2, v

4
3, · · · ,

v4
k+1, v

3
k+1, v

3
k , · · · , v

3
2, v

0
2 >. We get two paths P and Q each of length 4k from C1 ∪ C6 and C2 ∪ C5,

respectively as follows.

P =< v1
2, v

1
3, . . . , v

1
2k, v

1
1, v

6
1, v

6
2k, v

6
2k−1, . . . , v

6
2 >,

Q =< v2
2, v

2
3, . . . , v

2
2k, v

2
1, v

5
1, v

5
2k, v

5
2k−1, . . . , v

5
2 > .

Then
L1 = P ∪ Q ∪ ({v1

i v2
i , v

5
i v6

i : i = 1, 2, . . . , 2k})

is a ladder on 8k vertices. Hence, by Lemma 14, Z1 ∪ L1 ∪ {v0
2v1

2, v
2
2v3

2} is a subgraph of H4 on 16k
vertices contains cycle of length p for every even integer p with 8k + 2 ≤ p ≤ 16k.

Let Z2 and Z3 be the cycles in H4 of length 16k + 8 and 16k + 14 as shown in Figures 14(a)
and 14(b), respectively. If Z′2 = (Z2 − {g5, g6}) ∪ {v5

1v6
1}; Z′′2 = (Z′2 − {g3, g4}) ∪ {v3

1, v
4
1} and Z′′′2 =

(Z′′2 − {g1, g2}) ∪ {v1
1, v

2
1}, then Z′2, Z′′2 and Z′′′2 are cycles of lengths 16k + 6, 16k + 4 and 16k + 2,

respectively. Finally, Z′3 = (Z3−{h5, h6})∪{v5
2v6

2} and Z′′3 = (Z′3−{h1, h2})∪{v1
2v2

2} are cycles of lengths
16k + 12 and 16k + 10, respectively. Hence H4 is bipancyclic. □

q qq qqq qq q q q q q qq q

q qq qq qq q

q qq qq qq qq qq qq qq qq qq qq qq qq qq qq qq q

qq qq q q q q qq q q q q qq q qq q q q

q q q qq q q q

q q q qq q q qq q q qq q q qq q q qq q q qq q q qq q q q
v7

2

v7
1

v7
2k

v0
1

v0
2

v0
2k

g7g0 g6g5g4g3g1 g2

v7
2

v7
1

v7
2k

v0
1

v0
2

v0
2k

g0 g1 g6 g7g2 g3 g4 g5
h1 h2

h0
h5 h6

h7

v1
2 v2

2 v3
2 v4

2 v5
2 v6

2

v1
1 v2

1 v3
1 v4

1 v5
1 v6

1

v1
2 v2

2 v3
2 v4

2 v5
2 v6

2

(a) l = 16k + 8 (b) l = 16k + 14

Figure 14. l-cycles in H4 for l ∈ {16k + 8, 16k + 14}

Remark 1. The problem of the existence of a k-regular subgraph of the hypercube Qn of a given
order is completely solved for k = 3, 4, 5. To solve the problem for the general value of k one needs
to identify the even integers in between 2k and 2n that cannot be the order of any k-regular subgraph
of Qn. By Theorem 3, we have two intervals (2k, 2k + 2k−1) and (2k + 2k−1, 2k + 2k−1 + 2k−3) with the
property that no even integer belonging to any of these intervals is the order of a k-regular subgraph
of Qn. There is no further gap for k ∈ {3, 4, 5}. However, there seems a further gap for k ≥ 6. The next
interval of the gaps can be found by characterizing the k-regular subgraph of Qn on 2k + 2k−1 + 2k−3

vertices. Thus, Problem 1 remains open for k ≥ 6.
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