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Abstract: Let G = (V, E) be a simple graph. A vertex v ∈ V(G) ve-dominates every edge uv
incident to v, as well as every edge adjacent to these incident edges. A set D ⊆ V(G) is a vertex-edge
dominating set if every edge of E(G) is ve-dominated by a vertex of D. The MINIMUM VERTEX-
EDGE DOMINATION problem is to find a vertex-edge dominating set of minimum cardinality. A
linear time algorithm to find the minimum vertex-edge dominating set for proper interval graphs is
proposed. The vertex-edge domination problem is proved to be APX-complete for bounded-free
graphs and NP-Complete for Chordal bipartite and Undirected Path graphs.
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1. Introduction

Let G = (V, E) be a simple connected graph of order n and size m. By an open neighborhood
of a vertex v of G, we mean the set NG(v) = {u ∈ V(G) : uv ∈ E(G)} and the closed neighborhood,
NG[v] = NG(v) ∪ {v}. The degree of a vertex v, denoted by dG(v), is the cardinality of an open
neighborhood. By a end vertex we mean a vertex of degree one, while a support vertex is a vertex
adjacent to a end vertex. We denote by Pn, a path of order n. A closed path is a cycle. For a set S ⊆ V ,
the subgraph of G induced by S is defined as G[S ] = (S , ES ), where ES = {xy : xy ∈ E(G), x, y ∈ S }.
A set of vertices S is a clique in G if G[S ] is a maximal complete subgraph of G.

A graph G is a chordal graph if every cycle in G of length at least 4 has a chord. Let F be a
nonempty family of sets. A graph G = (V, E) is called an intersection graph for a finite family F
of a nonempty set if there is a one-to-one correspondence between F and V such that two sets in F
have nonempty intersection if and only if their corresponding vertices in V are adjacent. We call F an
intersection model of G. For an intersection model F , we use G(F ) to denote the intersection graph
for F . If F is a family of intervals on a real line, then G(F ) is called an interval graph for F and F
is called an interval model of G. If F is a family of intervals on a real line such that no interval in F
properly contains an other interval in F , then G(F ) is called a proper interval graph for F and F is
called a proper interval model of G.

A vertex v ∈ V(G) is a simplicial vertex of G if NG[v] is a clique of G. An ordering α =
(v1, v2, . . . , vn) is a perfect elimination ordering (PEO) of G if vi is a simplicial vertex of Gi =

G[vi, vi+1, . . . , vn] for all i, 1 ≤ i ≤ n. A PEO α = (v1, v2, . . . , vn) of a chordal graph is a bi-compatible
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elimination ordering (BCO) if α−1= (vn, vn−1, . . . , v1) is also a PEO of G. This implies that vi is sim-
plicial in G[v1, v2, . . . , vi] as well as in G[vi, vi+1, . . . , vn]. A graph G is chordal if and only if it has a
PEO and proper interval graphs are characterized in terms of BCO, see [1].

A set S of vertices is a dominating set, abbreviated DS, of G if every vertex not in S is adjacent to
some vertex in S . The domination number of a graph G, denoted by γ(G), is the minimum cardinality
of a dominating set of G. The MINIMUM DOMINATION problem is to find a dominating set of
minimum cardinality. For more details on domination and its variants, see [2,3]. The decision version
of domination problem is defined as follows:

Domination Problem

INSTANCE: A graph G = (V, E) and a positive integer k ≤ |V |.
QUESTION: Does G have a dominating set of cardinality at most k?
A vertex v ∈ V(G) vertex-edge dominates every edge uv incident to v, as well as every edge

adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set (or simply, a ve-
dominating set) if for every edge e ∈ E, there exists a vertex v ∈ S such that v ve-dominates e.
The vertex-edge domination number of a graph G, denoted by γve(G), is the minimum cardinality
of a ve-dominating set of G. The Minimum Vertex-edge domination problem is to find a vertex-edge
dominating set of minimum cardinality. The concept of vertex-edge domination was introduced by
Peters [4] and studied further in [5–8]. The decision version of vertex-edge domination problem is
defined as follows:

Vertex-edge Domination Problem

INSTANCE: A graph G = (V, E) and a positive integer k ≤ |V |.
QUESTION : Does G have a vertex-edge dominating set of cardinality at most k?
Lewis [7] showed that the decision version of vertex-edge domination problem is NP-complete for

bipartite graphs, chordal graphs and planar graphs and it is linearly solvable for trees.
An edge e ∈ E(G) edge-vertex dominates a vertex v ∈ V(G) if e is incident with v or e is incident

with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex dominating set, abbreviated EVDS,
of a graph G if every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domi-
nation number of G, denoted by γev(G), is the minimum cardinality of an edge-vertex dominating set
of G. An edge-vertex dominating set of G of minimum cardinality is called a γev(G)-set. Edge-vertex
domination in graphs was introduced in [4] and studied further in [7, 9, 10].

Approximation, Hardness and APX-complete results of Restrained domination and secure dom-
ination are given in [11, 12]. In section 2, we give the complexity difference between minimum
domination problem and minimum vertex-edge domination problem. In section 3, it has been proved
that minimum vertex-edge domination problem is NP-complete for Chordal bipartite and Undirected
Path graphs. In the fourth section, a linear time algorithm is presented to find a minimum vertex-edge
dominating set of proper interval graphs. In the final section, the minimum vertex-edge dominating
set is proved APX-complete for graphs with maximum degree 7. From this APX-completeness re-
sult, we conclude that there is an approximation algorithm for the minimum vertex-edge domination
problem for graphs with degree at most 7 with an approximation factor at least 1.0025694.

2. Preliminary Result

Every dominating set is a vertex-edge dominating set and we have the following:

Proposition 1. [4] For any graph G, γve(G) ≤ γ(G).
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We now present some complexity difference between domination problem and vertex-edge dom-
ination problem. We define a graph class, called GP3-graphs, for which the decision version of
domination problem is NP-Complete, but the MINIMUM VERTEX-EDGE DOMINATION problem
is easily solvable.

Definition 1. A graph G = (V, E) is a GP3-graph if it can be obtained from a general connected
graph H = (V ′, E′) where V ′ = {v1, v2, . . . , vn′}, by adding a path P3, say xiyizi to every vertex vi of H.

Let G be a GP3-graph of order n = 4n′ as constructed above. Let Vi = {vi, xi, yi, zi} for i =
1, 2, . . . , n′. If D is a vertex-edge dominating set of G, then the set D contains at least one vertex from
each set Vi, to ve-dominate the edges incident to vertices of Vi. Thus, γve(G) ≥ n′. However, the set
{xi : 1 ≤ i ≤ n′} is a VED-set of G and so γve(G) ≤ n′. Consequently, γve(G) = n′ = n

4 . Thus we have
the following observation.

Observation 1. If G is GP3-graph, then γve(G) = |V(G)|
4 .

Lemma 1. If G is a GP3-graph constructed from a graph H, then H has a dominating set of cardi-
nality k if and only if G has a dominating set of cardinality n′ + k.

Proof. Let D be a dominating set of H and |D| = k. Then D ∪ {yi : 1 ≤ i ≤ k} is a dominating set of
G of cardinality n′ + k.

Conversely, Suppose that D′ is a dominating set of G with cardinality n′ + k. In order to dominate
the vertices zi, the dominating set D′ contains the vertices yi. It is easy to see that D \ {yi : 1 ≤ i ≤ n′}
is a dominating set of H of cardinality at most k. □

Since the decision version of the domination problem is known to be NP-complete for general
graphs [13], the following theorem follows directly from Lemma 1.

Theorem 1. The decision version of the domination problem is NP-complete for GP3-graphs.

3. NP-completeness Result

In [7], lewis proved the NP-Completeness for the class of chordal graphs, the same is found to
be true for subclass of chordal graphs, namely chordal bipartite graphs and undirected path graphs.
To this we construct a new graph G′ from a connected graph G as follows : Let G = (V, E) be a
graph with vertex set V(G) = {v1, v2, . . . , vn}. We construct a graph G′ = (V ′, E′) from G such that
V ′ = V(G′) = V ∪ {ai, bi, ci, di, ei, fi : 1 ≤ i ≤ n} and E′ = E(G′) = E ∪ {viai, aibi, bici, cidi, ciei, ei fi :
1 ≤ i ≤ n}.

One can refer [14] for the definitions of Chordal Bipartite and Undirected Path graph. The follow-
ing lemma is easy to prove.

Lemma 2. Let graph G′ be constructed from a graph G.

• If G is Chordal Bipartite, then G′ is also Chordal Bipartite
• If G is Undirected Path graph, then G′ is also Undirected Path graph.

Now, we present a polynomial reduction of Vertex-edge domination problem from the domination
problem.

Lemma 3. If G has a dominating set of cardinality k if and only if G′ has a vertex-edge dominating
set of cardinality k + n.

Proof. Let D be a minimum dominating set of G. The vertices in D ve-dominate the edges of G and
the edges viai. Thus D ∪ {ci : 1 ≤ i ≤ n} is a vertex-edge dominating set of G′ of cardinality k + n.

Conversely, Let D′ be a minimum vertex-edge dominating set of G′. To ve-dominate the edge ei fi,
the vertex ci should belongs to D′. The vertex ci ∈ D′ also ve-dominates the edges aibi, bici, cidi, diei.
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To ve-dominate the edge viai either vi or ai or bi or a neighbor of vi other than ai should belong to
D′. If xi ∈ D′ where xi = ai or bi, then we can define D′′ = (D′ ∪ {vi}) \ {xi} and D′′ is still a ve-
dominating set of G′. Thus without loss of generality, the set D′ contains the vertices from V(G) and
{ci : 1 ≤ i ≤ n}. Let D∗ = D′ ∩ V(G).
Claim: D∗ is a dominating set of G.

Suppose there exist vi ∈ V(G) \ D∗ such that uvi < E for any u ∈ D∗, the edge viai is not ve-
dominated by any vertex of D′, a contradiction. Thus |D∗| = |D′| − n = k. □

The decision version of domination problem is NP-complete for Chordal Biparite [15] and Undi-
rected Path graphs [16]. From Lemma 2 and Lemma 3, we have the following theorem;

Theorem 2. The Vertex-edge domination problem is NP-complete for Chordal Bipartite and Undi-
rected Path graphs.

4. Algorithm

Lewis [7], proved that the vertex-edge domination problem is NP-Complete for Chordal graphs.
Here, we present a linear time algorithm for a subclass of chordal graph, namely Proper Interval
graph. Let G be a connected proper interval graph with a BCO σ = (v1, v2, . . . , vn). Algorithm VED-
PROPER INTERVAL GRAPHS takes G as a input and returns a minimum vertex-edge dominating
set of G. Algorithm VED-PROPER INTERVAL GRAPHS maintains an array D for selecting the
vertices in to the set VED. If D[v] = 1, then all the edges incident to vertex v is ve-dominated;
otherwise D[v] = 0.

VED-PROPER INTERVAL GRAPHS

Input: A connected proper interval graph G with BCO σ = (v1, v2, . . . , vn) of G and an array with
D[vi] = 0 for all vi where 1 ≤ i ≤ n.

Output: A minimum vertex-edge dominating set of G.
Algorithm:

VED = ∅;
for i = 1 to n − 1 do

if D[vi] , 1 then
Let NGi(vi) = {vi1 , vi2 , . . . , vir}, where i1 < i2 < . . . < ir;
if |NGi+1(vi+1)| ≥ 1 then

VED = VED ∪ {vi+1r}

D[v] = 1 for all v ∈ NGi+1[vi+1r ];
else

VED = VED ∪ {vi+1}

end if
end if

end for
return VED.

Theorem 3. For 0 ≤ i ≤ n − 1, the set VEDi is contained in some minimum vertex-edge dominating
set of G.

Proof. We prove the result by induction on the number of iteration i of the algorithm. The base case
i = 0 is true as VED0 = ∅ is contained in a minimum vertex-edge dominating set. Assume that the
induction hypothesis is true for all positive integers less than or equal to i − 1. Equivalently, the set
VEDi−1 is contained in some minimum vertex-edge dominating set, say D′ of G. Notice that at the
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ith iteration of algorithm, the vertex vi is being processed. If D[vi] = 1, then the algorithm does not
select any new vertex in to the set VEDi. So VEDi = VEDi−1 and hence it is contained in D′. Now
assume that D[vi] = 0.
Case 1: |NGi+1(vi+1)| = r ≥ 1

Let NGi+1(vi+1) = {vi+11 , vi+12 . . . , vi+1r} where i + 11 ≤ i + 12 ≤ . . . ≤ i + 1r. In this case, we have
VEDi = VEDi−1 ∪ {vi+1r}. If l = i+ 1r, then VEDi is contained in a minimum vertex-edge dominating
set of G. Suppose l > i + 1r, the vertex vl is not adjacent to vi+1. The vertex vl is not adjacent to vi,
since vi is simplicial in Gi[vi, vi+1, . . . , vn]. The vertex vl does not ve-dominate the edge vivi+1. Hence
l < i + 1r. The set D′′ = (D′ \ {vl}) ∪ {vi+1r} is a minimum vertex-edge dominating set of G containing
the vertex vi+1r .
Case 2: |NGi+1(vi+1)| = 0

In this case we have VEDi = VEDi−1 ∪ {vi+1}. Since vi+1 has no neighbors in Gi+1, to ve-dominate
the edge vivi+1 the vertex vi+1 should belong to minimum vertex-edge dominating set of G. Thus
D′ ∪ {vi+1} is a minimum vertex-edge dominating set of G containing the vertex vi+1. □

Next we show that how the algorithm VED-PROPER INTERVAL GRAPHS runs in Linear time.
The BCO σ = (v1, v2, . . . , vn) of a proper interval graph can be computed in Linear time [17]. Each

iteration of the algorithm VED-PROPER INTERVAL GRAPHS checks the degree of the vertex vi+1

in the graph Gi+1. Thus the total time taken is O(n + m).

Theorem 4. For a given connected proper interval graph G with n vertices and m edges, the algo-
rithm VED-PROPER INTERVAL GRAPHS takes O(n + m) time to compute a minimum vertex-edge
dominating set of G.

5. APX-completeness of Bound Degree Graphs and Approximation Result

In this section we show that Minimum vertex-edge dominating set is APX-complete for graphs
with maximum degree 7. First we provide an approximation ratio of Minimum vertex-edge dominat-
ing set in terms of maximum degree.

Proposition 2. [4] For any graph G with maximum degree ∆(G), γev(G) ≤ ∆(G)γve(G).

Proposition 3. [7] For any graph G of order n, without isolates, and maximum degree ∆(G),⌈
n

2∆(G) − 2

⌉
≤ γev(G).

From Proposition 2 and 3, one can easily prove the following proposition.

Proposition 4. For any graph G of order n, without isolates, and maximum degree ∆(G),⌈
n

2∆(G)(∆(G) − 1)

⌉
≤ γve(G).

Hence for any graph G = (V, E), D′ = V(G) is an vertex-edge dominating set such that |D′| ≤
2∆(G)(∆(G) − 1)γve(G). Thus we have the following theorem;

Theorem 5. The MINIMUM VERTEX-EDGE DOMINATION problem in any graph G with maximum
degree ∆(G) can be approximated with an approximation ratio of 2∆(G)(∆(G) − 1).

To prove the APX-completeness of MINIMUM VERTEX-EDGE DOMINATION problem, it is
enough to prove that there is a L-reduction from Minimum domination problem. We recall the no-
tation of L-reduction [18]: Given two NP optimization problems π1 and π2 and a polynomial time
transformation f from instances of π1 to instances of π2, we say that f is an L-reduction if there are
positive constants α and β such that for every instance x of π1 the following holds.
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Figure 1. Graph Transformation for Theorem 7

1. optπ2( f (x)) ≤ α.optπ1( f (x)).

2. for every feasible solution y of f (x) with objective value mπ2( f (x), y) = c2 we can in polynomial
time find a solution y′ of x with mπ1(x, y′) = c1 such that |optπ1(x) − c1| ≤ β|optπ2( f (x)) − c2|.

We define the problems considered in this section as given below:

MIN DOM SET-B

Instance: A graph G = (V, E) with degree at most B.
Solution: A dominating set of G, a subset V ′ ⊂ V such that each vertex u ∈ V \ V ′ has at least one

neighbor in V ′.
Measure: Cardinality of dominating set |V ′|.

MIN VE-DOM SET-B

Instance: A graph G = (V, E) with degree at most B.
Solution: A vertex-edge dominating set of G, a subset V ′ ⊂ V such that each edge e ∈ E(G) gets

ve-dominated by the vertices of V ′ .
Measure: Cardinality of vertex-edge dominating set |V ′|.

Theorem 6. [19] MIN DOM SET-3 is APX-complete.

Theorem 7. MIN VE-DOM SET-7 is APX-complete.

Proof. The MINIMUM DOMINATION problem is APX-complete for graphs with maximum de-
gree 3. It is enough to establish an L-Reduction f from the instances of the MINIMUM DOM-
INATION SET problem for graphs with maximum degree 3 to the instances of the MINIMUM
VE-DOMINATION PROBLEM for graphs with maximum degree 7. Given a graph G = (V, E),
with degree at most 3, construct a graph G′ = (V ′, E′) as follows. Let V(G) = {v1, v2, . . . , vn},
then V ′ = V(G′) = V ∪ {u1, u2, . . . , un} ∪ {w1,w2, . . . ,wn} and E′ = E(G′) = E ∪ {uivi : vi ∈

V(G)} ∪ {wiv j : v j ∈ NG(vi)}. See Figure 1 for transformation from G to G′.
Claim: G has a dominating set of cardinality at most k if and only if G′ has a ve-dominating set of
cardinality k.

Proof of Claim. Let D be a minimum dominating set of G, where |D| ≤ k. It is easy to see that the
set D is a vertex-edge dominating set for G′. Thus, γve(G′) ≤ γ(G). Let D′ be a minimum vertex-
edge dominating set of G′, where |D′| ≤ k. If xi ∈ D′ where xi = wi or ui, then we can define,
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D′′ = (D′ ∪ {vi}) \ {xi} and D′′ is still a ve-dominating set of G′. Thus, without loss of generality we
can assume D′ contains vertices from V(G). Assume that vi ∈ V(G) is not adjacent to any vertex of
D′. The edge uivi is not ve-dominated by any vertex in D′, a contradiction to D′ is a ve-dominating set.
Hence D′ is a dominating set of G. Therefore, γ(G) ≤ |D′| = γve(G′). Thus we have γve(G′) = γ(G).
This proves our claim. □

Let D∗ and S ∗ be a minimum dominating set of G and a minimum vertex-edge dominating set of
G′, respectively. By claim, we have |S ∗| = |D∗|. Again ||D∗| − γ(G)| ≤ ||S ∗| − γve(G′)|. Therefore, the
reduction is an L-reduction with α = 1 and β = 1. The proof of theorem is complete. □

We now provide the lower bounds for MIN VE-DOM SET-7 problem by using the reduction in
Theorem 7 and by using following Theorem 8.

Theorem 8. [20] It is NP-hard to decide whether an instance of the MIN DOM SET-3 problem with
n vertices has a dominating set of cardinality greater than 2.01549586n, or less than 2.0103305n.
Equivalently, it is NP-hard to approximate the MIN DOM SET-3 problem 1.0025641.

By Theorem 8, we have 2.0103305n ≤ γ(G) ≤ 2.01549586n, where n is the number of vertices
in G. By Theorem 7, we have γve(G′) = γ(G). Thus 2.0103305n ≤ γve(G′) = γ(G) ≤ 2.01549586n.
Since n′ = |V(G′)| = 3n, (2.0103305)n′

3 ≤ γve(G′) ≤ (2.01549586) n′
3 , implies 0.67011016n′ ≤

γve(G′) ≤ 0.67183195n′. So we have the following theorem;

Theorem 9. It is NP-hard to decide whether an instance of the MIN VE-DOM SET-7 problem with
n′ vertices has an vertex-edge dominating set of cardinality greater than 0.67183195n′ or less than
0.67011016n′. Equivalently, it is NP-hard to approximate the MIN VE-DOM SET-4 problem within
0.67183195n′
0.67011016n′ ∼ 1.0025694.

Acknowledgment

The second author thanks National Board for Higher Mathematics, Mumbai, India for financial
support NBHM/R.P.1/2015/Fresh/168. The authors thank DST for the support to Mathematics de-
partment, SASTRA University SR/FST/MSI-107/2015.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Jamison, R.E. and Laskar, R., 1982. Elimination orderings of chordal graphs. In: Proceedings
of the seminar on Combinatorics and Applications(Indian Statistical Institute, Calcutta) pp. 192-
200.

2. Haynes, T.W., Hedetniemi, S. and Slater, P., 2013. Fundamentals of Domination in Graphs. CRC
press.

3. Haynes, T.W., Hedetniemi, S. and Slater, P., 1998. Domination in Graphs: Advanced Topics.
(Marcel Dekker, New York)

4. Peters Jr, K.W., 1986. Theoretical and algorithmic results on domination and connectivity
(Nordhaus-Gaddum, Gallai type results, max-min relationships, linear time, series-parallel).
Clemson University.

5. Boutrig, R., Chellali, M., Haynes, T.W. and Hedetniemi, S.T., 2016. Vertex-edge domination in
graphs. Aequationes Mathematicae, 90, pp.355-366.

Ars Combinatoria Volume 158, 19–26



H Naresh Kumar and Y B Venkatakrishnan 26

6. Krishnakumari, B., Venkatakrishnan, Y.B. and Krzywkowski, M., 2014. Bounds on the vertex-
edge domination number of a tree. Comptes Rendus Mathematique, 352(5), pp.363-366.

7. Lewis, J.R., 2007. Vertex-edge and edge-vertex parameters in graphs (Doctoral dissertation,
Clemson University).

8. Lewis, J., Hedetniemi, S.T., Haynes, T.W. and Fricke, G.H., 2010. Vertex-edge domination. Util-
itas Mathematica, 81, pp.193-213.

9. Krishnakumari, B., Venkatakrishnan, Y.B. and Krzywkowski, M., 2016. On trees with total dom-
ination number equal to edge-vertex domination number plus one. Proceedings-Mathematical
Sciences, 126, pp.153-157.

10. Venkatakrishnan, Y.B. and Krishnakumari, B., 2018. An improved upper bound of edge-vertex
domination number of a tree. Information Processing Letters, 134, pp.14-17.

11. Wang, H., Zhao, Y. and Deng, Y., 2018. The complexity of secure domination problem in graphs.
Discussiones Mathematicae Graph Theory, 38(2), pp.385-396.

12. Chen, L., Zeng, W. and Lu, C., 2012. NP-completeness and APX-completeness of restrained
domination in graphs. Theoretical Computer Science, 448, pp.1-8.

13. Johnson, D.S. and Garey, M.R., 1979. Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman.
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