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Abstract: A tremendous amount of drug experiments revealed that there exists a strong inherent
relation between the molecular structures of drugs and their biomedical and pharmacology charac-
teristics. Due to the effectiveness for pharmaceutical and medical scientists of their ability to grasp
the biological and chemical characteristics of new drugs, analysis of the bond incident degree (BID)
indices is significant of testing the chemical and pharmacological characteristics of drug molecular
structures that can make up the defects of chemical and medicine experiments and can provide the
theoretical basis for the manufacturing of drugs in pharmaceutical engineering. Such tricks are widely
welcomed in developing areas where enough money is lacked to afford sufficient equipment, relevant
chemical reagents, and human resources which are required to investigate the performance and the
side effects of existing new drugs. This work is devoted to establishing a general expression for cal-
culating the bond incident degree (BID) indices of the line graphs of various well-known chemical
structures in drugs, based on the drug molecular structure analysis and edge dividing technique, which
is quite common in drug molecular graphs.
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1. Introduction

The frontier of biomedical science has rarely been as exciting and as full of spectacular innovations
as it is today. The last decade has seen rapid technological progress and developments in medicine
manufacturing, chemical and pharmaceutical techniques. A large number of new nano-materials,
crystalline materials and efficacious drugs emerge every year. Enormous amount of chemical experi-
ments and work is required to determine the chemical properties of new compounds and drugs to test
their physical features, chemical reactivity, and biological activity. Advanced equipment, sufficient
reagents and human resources are required to investigate the performance and the reaction of these
new drugs.

Medicinal chemistry is a problem-solving discipline concerned with the discovery, design, and use
of drugs. Medicinal chemists are now increasingly involved in the drug discovery and development
process; they have become tremendously important in the innovation and discovery of drugs. The
main paradigm of medicinal chemistry is that biological activity, as well as physical and chemical
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properties of organic compounds such as melting point, boiling point, and toxicity of drugs, is inherent
in their molecular structures.

Mathematical chemistry had a tremendous growth spurt in the second half of the twentieth cen-
tury and the same trend is continuing now. Mathematical chemistry focuses on mathematical ideas
and concepts which are adapted or developed for being used in chemistry. Nonempirical parame-
ters of chemical structures derived from graph-theoretic formalisms are being widely used by many
researchers in studies and pertaining to molecular design, pharmaceutical drug-design, and environ-
mental hazard assessment of chemicals. Graph theory applied in the study of molecular structures
represents an interdisciplinary science, called chemical graph theory or molecular topology. It is used
to mathematically model molecules in order to gain insight into the physical properties of the chem-
ical compounds. Some physical properties, such as the boiling point, are related to the geometric
structure of the compound. In theoretical chemistry, the physico-chemical properties of chemical
compounds are often modeled by topological indices. Topological indices are numerical quantities of
a molecular graph, which are invariant under graph isomorphism and reflect certain structural features
of the corresponding molecule. During recent decades, topological indices have been widely used in
quantitative structure-property relationship and quantitative structure-activity relationship studies.

For the convenience of our discussion about the medicine mathematical model, we first recall some
relevant terminologies and notations, which can be found in [1] with a clear explanation. Conven-
tionally the structure of a drug is considered as an undirected (chemical) graph where each vertex
expresses an atom and each edge represents a chemical bond between these atoms. We consider G
as a simple graph corresponding to a drug structure with an atom (vertex) set as V(G) and a chemi-
cal bond (edge) set as E(G). The Topological index of a molecule structure can be considered as a
non-empirical numerical quantity which quantitates the molecular structure and its branching pattern.
In this point of view, it is used as a descriptor of the molecule under testing. A topological index
defined on the molecule structure G can be regarded as a real-valued function f : G → R+ which
maps each drug molecular structure to certain real numbers. Scientists have established significant
indices decades ago that have broad applications in the correlation and prediction of several molecular
properties and also in tests of similarity and isomorphism of the drug molecules [2]. Several reports
help to determine the topological indices of special molecular graphs in chemical, nanomaterials,
and pharmaceutical engineering which help researchers to understand the physical features, chemical
reactivity, and biological activity of their corresponding molecular structures.

A large number of such indices depend only on vertex degree of the molecular graph. A con-
siderable amount of these degree-based topological indices can be represented as the sum of edge
contributions of a graph. These kinds of degree-based topological indices (TI) are known as bond
incident degree (BID) indices whose general form is

T I(G) =
∑

δ(G)≤a≤b≤△(G)

xa,b(G).θa,b, (1)

where θa,b is a nonnegative real valued function that depends on a and b, δ(G) is the minimum degree
in the graph G, △(G) is the maximum degree in the graph G, and xa,b(G) is the number of edges in
G connecting the vertices of degrees a and b (Ali, Raza, and Bhatti [3]). For instance, we mention
here some special cases of eq. 1 in which the function θa,b is defined in the following manner (sec-
ond equation, third equation, fourth equation, fifth equation, sixth equation, seventh equation, eighth
equation, ninth equation and tenth equation):

θa,b = a + b, First Zagreb index, (2)

θa,b = ab, Second Zagreb index, (3)

θa,b =
1
√

ab
, Randić index, (4)
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θa,b =
2

√
a + b

, Harmonic index, (5)

θa,b =

√
a + b − 2

ab
, Atom-bond connectivity index, (6)

θa,b =
1

√
a + b

, Sum-connectivity index, (7)

θa,b =

√
ab

1
2 (a + b)

, First geometric-arithmetic index, (8)

θa,b =

(
ab

a + b − 2

)3

, Augmented Zagreb index, (9)

θa,b =
√

(a − 1)(b − 1), Reduced reciprocal Randić index. (10)

Besides, there are many other BID indices in the literature. Details about BID indices can be
found in the papers by Vukičević and Gašperov [4]; Gutman, Furtula and Elphick [5]; Deng, Yang
and Xia [6]; Furtula, Gutman and Dehmerc [7]; Goubko and Gutman [8]; Gutman and Tošović [9];
Ali, Iqbal and Iqbal [10] and related references cited therein.

In order to control and prevent diseases, efficient anti-cancer and anti-HIV drugs are required. The
development and analysis of drugs for treatment of cancer and HIV has become a major research
objective in the past decade. The joint effort of mathematicians, chemists and clinicians is required
for efficient drug design. Recently, bond incident degree indices has proved to be highly useful for
analysis of anti-cancer and anti-HIV drug activity.

Let δ(G) and ∆(G) be the minimum and maximum degree of G, respectively. The vertex set V(G)
can be divided into several partitions such that Vi represents a vertex having degree i is also addressed
as an i− degree vertex and vi = |Vi|. Line graph L(G) of a graph G has the vertex set V(L(G)) = E(G)
where the two distinct vertices of L(G) are adjacent if the corresponding edges of G are adjacent.

With continued work on Gao et al. [11] we obtained the bond incident degree (BID) indices of line
graphs of various essential chemical structures in drugs.

2. Bond Incident Degree Indices of Line Graph of Graphene G(m, n)

Graphene is one of the most promising nanomaterials as it is extraordinarily strong and electrically
super-conductive. It is a one-atom thick and single tightly packed sheet of hexagonally arranged
carbon atoms. It is a two dimensional layer of honeycomb lattice, in which carbon atoms are bonded
together in a repeating pattern of hexagons, with each carbon atom covalently bonded to three other
carbon atoms. Graphene, unlike a buckyball or nanotube, has no inside because it is flat. It enables
both disease detection and drug delivery. Graphene has great potential for the detection and treatment
of cancer. It is the main element of certain carbon allotropes including charcoal, fullerenes and
graphite etc. See Shigehalli and Kanabur [12] for more details.

Theorem 1. The bond incident degree (BID) indices of line graph of G(m, n) are

(i) For n = 1 and m = 1 is T I(L(G(m, n))) = 6(θ2,2),
(ii) For n = 1 and m ≥ 2 is T I(L(G(m, n))) = 4(θ3,3 + θ3,4)m+ 2[2(θ2,2)+ 2(θ2,3)− 3(θ3,3)− 2(θ3,4)],

(iii) For n ≥ 2 and m = 1 is T I(L(G(m, n))) = 2[θ2,3+2(θ3,4)+θ4,4]n+2[2(θ2,2)+θ3,3−2(θ3,4)−2(θ4,4)],
(iv) For n ≥ 2 and m ≥ 2 is T I(L(G(m, n))) = 6(θ4,4)mn + 2[2(θ3,3) + 2(θ3,4) − 3(θ4,4)]m + 2[θ2,3 +

2(θ3,4) − 2(θ4,4)]n + 2[θ2,2 + 2(θ2,3) − 2(θ3,3) − 4(θ3,4) + θ4,4],

where G(m, n) is a molecular graph of graphene with n rows and m columns.
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Figure 1. 2-Dimensional Line Graph of Graphene Sheet

Proof. By analyzing the molecular structure of the line graph of graphene G(m, n), for n = 1 and
m = 1, we infer n22 = 6. Therefore, using the definition of bond incident degree indices, we obtain

T I(L(G(m, n))) =
∑

2≤a≤b≤2

xa,b(L(G(m, n))).θa,b =
∑

uv∈E22

x2,2(L(G(m, n))).θ2,2 = 6(θ2,2).

For n = 1 and m ≥ 2: we infer n22 = 4, n23 = 4, n33 = 4m − 6 and n34 = 4m − 4. Therefore, by using
the definition of bond incident degree indices, we obtain

T I(L(G(m, n))) =
∑

2≤a≤b≤4

xa,b(L(G(m, n))).θa,b

=
∑

uv∈E22

x2,2(L(G(m, n))).θ2,2 +
∑

uv∈E23

x2,3(L(G(m, n))).θ2,3

+
∑

uv∈E33

x3,3(L(G(m, n))).θ3,3 +
∑

uv∈E34

x3,4(L(G(m, n))).θ3,4

= (4).θ2,2 + (4).θ2,3 + (4m − 6).θ3,3 + (4m − 4).θ3,4
= 4(θ3,3 + θ3,4)m + 2[2(θ2,2) + 2(θ2,3) − 3(θ3,3) − 2(θ3,4)].

For n ≥ 2 and m = 1: we infer n22 = 4, n23 = 2n, n33 = 2, n34 = 4n − 4 and n44 = 2n − 4. Therefore,
by using the definition of bond incident degree indices, we obtain

T I(L(G(m, n))) =
∑

2≤a≤b≤4

xa,b(L(G(m, n))).θa,b

=
∑

uv∈E22

x2,2(L(G(m, n))).θ2,2 +
∑

uv∈E23

x2,3(L(G(m, n))).θ2,3 +
∑

uv∈E33

x3,3(L(G(m, n))).θ3,3

+
∑

uv∈E34

x3,4(L(G(m, n))).θ3,4 +
∑

uv∈E44

x4,4(L(G(m, n))).θ4,4

= (4).θ2,2 + (2n).θ2,3 + (2).θ3,3 + (4n − 4).θ3,4 + (2n − 4).θ4,4
= 2[θ2,3 + 2(θ3,4) + θ4,4]n + 2[2(θ2,2) + θ3,3 − 2(θ3,4) − 2(θ4,4)].

For n ≥ 2 and m ≥ 2: we infer n22 = 2, n23 = 2n + 4, n33 = 4m − 4, n34 = 4m + 4n − 8 and
n44 = 6mn−6m−4n+2. Similarly, by using the definition of bond incident degree indices, we obtain

T I(L(G(m, n))) =
∑

2≤a≤b≤4

xa,b(L(G(m, n))).θa,b

=
∑

uv∈E22

x2,2(L(G(m, n))).θ2,2 +
∑

uv∈E23

x2,3(L(G(m, n))).θ2,3 +
∑

uv∈E33

x3,3(L(G(m, n))).θ3,3

+
∑

uv∈E34

x3,4(L(G(m, n))).θ3,4 + +
∑

uv∈E44

x4,4(L(G(m, n))).θ4,4

= (2).θ2,2 + (2n + 4).θ2,3 + (4m − 4).θ3,3 + (4m + 4n − 8).θ3,4 + (6mn − 6m − 4n + 2).θ4,4
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= 6(θ4,4)mn + 2[2(θ3,3) + 2(θ3,4) − 3(θ4,4)]m + 2[θ2,3 + 2(θ3,4) − 2(θ4,4)]n
+ 2[θ2,2 + 2(θ2,3) − 2(θ3,3) − 4(θ3,4) + θ4,4].

□

3. Bond Incident Degree Indices of Line Graph of Three Classes of Nanostar Dendrimers

Dendrimers are large and complex molecules with very well-defined chemical structures. They are
produced in an iterative sequence of reaction steps. The nanostar dendrimers are part of a new group
of macromolecules with a precise tailored architecture. These are hyper-branched nanostructures
that can be synthesized by divergent or convergent methods, and they are built up from branched
units called monomers using a nanoscale fabrication process. In this section, we determine the bond
incident degree (BID) indices of line graphs of three famous infinite classes NS 1[n], NS 2[n] and
NS 3[n] of dendrimer stars which widely appear in the drug structures. For detailed structure, see
Ashrafi and Nikzad [13].

Theorem 2. The bond incident degree (BID) indices of line graphs of three infinite classes NS 1[n],
NS 2[n] and NS 3[n] of dendrimer stars are

(i) T I(L(NS 1[n])) = 9[1
2 (θ2,2) + θ2,3 + 5

2 (θ3,3)](2n) + 3[2(θ2,3) − 8(θ3,3) + 3(θ3,5) + θ5,5],
(ii) T I(L(NS 2[n])) = 6[θ2,2 + 2(θ2,3) + 5(θ3,3)](2n) + 4[θ2,3 − 4(θ3,3) + θ3,4],

(iii) T I(L(NS 3[n])) = 2[4(θ2,2)+14(θ2,3)+2(θ2,4)+11(θ3,3)+6(θ3,4)+2(θ4,4)](2n)−2[2(θ2,2)+3(θ2,3)+
3(θ3,3)],

where n is the number of steps of growth of these three classes of dendrimer stars.

Figure 2. Line Graph of the First Type of Nanostar Dendrimer L(NS 1[2])

Proof. By observing the structures of the line graphs of these three infinite classes of dendrimer stars,
we deduce its edge partition as follows;

• For L(NS 1[n]): n22 =
9
2 (2n), n23 = 9(2n) + 6, n33 =

45
2 (2n) − 24, n35 = 9 and n55 = 3.

• For L(NS 2[n]): n22 = 6(2n), n23 = 12(2n) + 4, n33 = 30(2n) − 16 and n34 = 4.
• For L(NS 3[n]): n22 = 8(2n)− 4, n23 = 28(2n)− 6, n24 = 4(2n), n33 = 22(2n)− 6, n34 = 12(2n) and

n44 = 4(2n).

Therefore, according to the definition of bond incident degree indices, we check

• For L(NS 1[n]):-
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Figure 3. Line Graph of the Second Type of Nanostar Dendrimer L(NS 2[2])

Figure 4. Line Graph of the Third Type of Nanostar Dendrimer L(NS 3[2])

T I(L(NS 1[n])) =
∑

2≤a≤b≤5

xa,b(L(NS 1[n])).θa,b

=
∑

uv∈E22

x2,2(L(NS 1[n])).θ2,2 +
∑

uv∈E23

x2,3(L(NS 1[n])).θ2,3 +
∑

uv∈E33

x3,3(L(NS 1[n])).θ3,3

+
∑

uv∈E35

x3,5(L(NS 1[n])).θ3,5 +
∑

uv∈E55

x5,5(L(NS 1[n])).θ5,5

=

[
9
2

(2n)
]
.θ2,2 + [9(2n) + 6] .θ2,3 +

[
45
2

(2n) − 24
]
.θ3,3 + (9).θ3,5 + (3).θ5,5

= 9
[
1
2

(θ2,2) + θ2,3 +
5
2

(θ3,3)
]

(2n) + 3
[
2(θ2,3) − 8(θ3,3) + 3(θ3,5) + θ5,5

]
.

• For L(NS 2[n]):-

T I(L(NS 2[n])) =
∑

2≤a≤b≤4

xa,b(L(NS 2[n])).θa,b

=
∑

uv∈E22

x2,2(L(NS 2[n])).θ2,2 +
∑

uv∈E23

x2,3(L(NS 2[n])).θ2,3 +
∑

uv∈E33

x3,3(L(NS 2[n])).θ3,3

+
∑

uv∈E34

x3,4(L(NS 2[n])).θ3,4
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= [6(2n)] .θ2,2 + [12(2n) + 4] .θ2,3 + [30(2n) − 16] .θ3,3 + (4).θ3,4
= 6

[
θ2,2 + 2(θ2,3) + 5(θ3,3)

]
(2n) + 4

[
θ2,3 − 4(θ3,3) + θ3,4

]
.

• For L(NS 3[n]):-

T I(L(NS 3[n])) =
∑

2≤a≤b≤4

xa,b(L(NS 3[n])).θa,b

=
∑

uv∈E22

x2,2(L(NS 3[n])).θ2,2 +
∑

uv∈E23

x2,3(L(NS 3[n])).θ2,3 +
∑

uv∈E24

x2,4(L(NS 3[n])).θ2,4

+
∑

uv∈E33

x3,3(L(NS 3[n])).θ3,3 +
∑

uv∈E34

x3,4(L(NS 3[n])).θ3,4 +
∑

uv∈E44

x4,4(L(NS 3[n])).θ4,4

= [8(2n) − 4].θ2,2 + [28(2n) − 6].θ2,3 + [4(2n)].θ2,4 + [22(2n) − 6].θ3,3 + [12(2n)].θ3,4 + [4(2n)].θ4,4
= 2[4(θ2,2) + 14(θ2,3) + 2(θ2,4) + 11(θ3,3) + 6(θ3,4) + 2(θ4,4)].(2n) − 2[2(θ2,2) + 3(θ2,3) + 3(θ3,3)].

□

4. Bond Incident Degree Indices of Line Graph of Dendrimer Stars D3[n]

Dendrimers are nano-sized, radially symmetric molecules with well-defined chemical structure
consisting of tree-like arms or branches. The structure of dendrimer molecules begins with a central
atom or group of atoms labeled as the core. From this central structure, the branches of other atoms
called dendrons grow through a variety of chemical reactions. In this section, we analyze an essential
chemical structure D3[n] which denoted the n-th growth of star dendrimer for ∀n ∈ N ∪ {0}. For more
details on the structure of this chemical molecular graph which is quite common in drug structures
see Farahani [14].

Figure 5. 2-Dimensional Line Graph of the Nth Growth of Star Dendrimer L(D3[2])

Theorem 3. The bond incident degree (BID) index of line graph of D3[n] is

T I(L(D3[n])) = 3[10(θ2,3) + 4(θ3,3) + 6(θ3,4) + 3(θ4,4)](2n) − 6[2(θ2,3) + θ3,3 + 2(θ3,4) + θ4,4],

where D3[n] is a molecular graph of the dendrimer stars having nth growth.
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Proof. By observing the structure of line graph of dendrimer stars D3[n], we deduce its edge partition
as, n23 = 30(2n) − 12, n33 = 12(2n) − 6, n34 = 18(2n) − 12 and n44 = 9(2n) − 6. Therefore, according
to the definition of bond incident degree indices, we check

T I(L(D3[n])) =
∑

2≤a≤b≤4

xa,b(L(D3[n])).θa,b

=
∑

uv∈E23

x2,3(L(D3[n])).θ2,3 +
∑

uv∈E33

x3,3(L(D3[n])).θ3,3

+
∑

uv∈E34

x3,4(L(D3[n])).θ3,4 +
∑

uv∈E44

x4,4(L(D3[n])).θ4,4

= [30(2n) − 12].θ2,3 + [12(2n) − 6].θ3,3 + [18(2n) − 12].θ3,4 + [9(2n) − 6].θ4,4
= 3[10(θ2,3) + 4(θ3,3) + 6(θ3,4) + 3(θ4,4)](2n) − 6[2(θ2,3) + θ3,3 + 2(θ3,4) + θ4,4].

□

5. Bond Incident Degree Indices of Line Graph of Polyomino Chain of 8-cycles

A k-polyomino system is a finite 2-connected plane graph such that each interior face (also called
cell) is surrounded by a regular 4k-cycle (C4k) of length one. In other words, it is an edge-connected
union of cells in the planar square lattice. This polyomino system divides the plane into one infinite
external region and a number of finite internal regions where all internal regions must be squares. For
the origin of polyominoes and more details can be found in Klarner and Polyominoes [15], Ghorbani
and Ghazi [16] and Mansour and Schork [17].

Figure 6. Line Graph of the Zig-zag Chain of 8-cycles

Theorem 4. The bond incident degree (BID) indices of line graph of polyomino chain of 8-cycles is:

T I(L(G)) = 8[θ2,2 + θ2,3 + 2(θ3,4) + θ4,4]n + 2[2(θ2,2) + θ3,3 − 2(θ3,4) − 2(θ4,4)].

where G is a molecular graph of the zig-zag chain of 8-cycles and n is the number of steps.

Proof. By means of structure analysis of line graph of the zig-zag chain of 8-cycles, we infer n22 =

8n + 4, n23 = 8n, n33 = 2, n34 = 16n − 4 and n44 = 8n − 4. Therefore, using the definition of bond
incident degree indices, we obtain

T I(L(G)) =
∑

2≤a≤b≤4

xa,b(L(G)).θa,b

=
∑

uv∈E22

x2,2(L(G)).θ2,2 +
∑

uv∈E23

x2,3(L(G)).θ2,3+∑
uv∈E33

x3,3(L(G)).θ3,3 +
∑

uv∈E34

x3,4(L(G)).θ3,4 +
∑

uv∈E44

x4,4(L(G)).θ4,4
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= (8n + 4).θ2,2 + (8n).θ2,3 + (2).θ3,3 + (16n − 4).θ3,4 + (8n − 4).θ4,4
= 8[θ2,2 + θ2,3 + 2(θ3,4) + θ4,4]n + 2[2(θ2,2) + θ3,3 − 2(θ3,4) − 2(θ4,4).

□

6. Bond Incident Degree Indices of Line Graph of Triangular Benzenoid

The benzene molecule is a usual molecule in chemistry, physics and nano-sciences and is very use-
ful to synthesize aromatic compounds. Triangular benzenoid denoted by T (n) is a family of benzenoid
molecular graphs, which is the generalization of benzene molecule C6H6 in which benzene rings form
a triangular shape. Triangular benzenoid consists of hexagons arranged in rows and in each row one
hexagon increases. Details related to its structure can be found in Ghorbani and Ghazi [16].

Figure 7. Line Graph of Triangular Benzenoid L(Tn)

Theorem 5. The bond incident degree (BID) indices of line graph of T (n) are

(i) For n = 1 is T I(L(T (n))) = 6(θ2,2),
(ii) For n ≥ 2 is T I(L(T (n))) = 3(θ4,4)n2+6[θ3,3+θ3,4−θ4,4]n+3[θ2,2+2(θ2,3)−3(θ3,3)−2(θ3,4)+θ4,4],

where T (n) is a molecular graph of triangular benzenoid and n represents the n-steps of its growth.

Proof. Using the edge dividing technique for the line graph of triangular benzenoid T (n), for n = 1,
we derive n22 = 6. Hence, by means of the definition of bond incident degree indices, we get

T I(L(T (n))) =
∑

2≤a≤b≤2

xa,b(L(T (n))).θa,b

=
∑

uv∈E22

x2,2(L(T (n))).θ2,2

= 6(θ2,2).

For n ≥ 2, we derive n22 = 3, n23 = 6, n33 = 6n − 9, n34 = 6n − 6 and n44 = 3n2 − 6n + 3. Similarly,
by means of the definition of bond incident degree indices, we get

T I(L(T (n))) =
∑

2≤a≤b≤4

xa,b(L(T (n))).θa,b

=
∑

uv∈E22

x2,2(L(T (n))).θ2,2 +
∑

uv∈E23

x2,3(L(T (n))).θ2,3 +
∑

uv∈E33

x3,3(L(T (n))).θ3,3

+
∑

uv∈E34

x3,4(L(T (n))).θ3,4 +
∑

uv∈E44

x4,4(L(T (n))).θ4,4

= (3).θ2,2 + (6).θ2,3 + (6n − 9).θ3,3 + (6n − 6).θ3,4 + (3n2 − 6n + 3).θ4,4
= 3(θ4,4)n2 + 6[θ3,3 + θ3,4 − θ4,4]n + 3[θ2,2 + 2(θ2,3) − 3(θ3,3) − 2(θ3,4) + θ4,4].

□
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7. Bond Incident Degree Indices of Line Graph of Carbon Tube Network

Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Their name is derived
from their long, hollow structure. They have many structures differing in length, thickness, and
number of layers. The properties of nanotubes can be different depending on how the graphene sheet
has rolled up to form the tube causing it to act either metallic or as a semiconductor.

Consider the m×n quadrilateral section Pn
m with m ≥ 2 hexagons on the top and bottom sides and

n ≥ 2 hexagons on the lateral sides cut from the regular hexagonal lattice. See Bača et al. [18] for
more details.

Figure 8. Line Graph of the Quadrilateral Section Pn
m Cuts From the Regular Hexagonal

Lattice

If we identify two lateral sides of Pn
m such that we identify the vertices u j

0 and u j
m for j =

0, 1, 2, ..., n, then we obtain the nanotube NAn
m.

Theorem 6. The bond incident degree (BID) index of line graph of NAn
m is

T I(L(NAn
m)) = 6(θ4,4)mn + 2[2(θ3,3) + 2(θ3,4) − 3(θ4,4)]m,

where NAn
m is a molecular graph of carbon nanotube for m, n ≥ 2.

Proof. For the line graph of tube NAn
m, we derive n33 = 4m, n34 = 4m and n44 = 6mn− 6m. Hence, by

means of the definition of bond incident degree indices, we get

T I(L(NAn
m)) =

∑
3≤a≤b≤4

xa,b(L(NAn
m)).θa,b

=
∑

uv∈E33

x3,3(L(NAn
m)).θ3,3 +

∑
uv∈E34

x3,4(L(NAn
m)).θ3,4 +

∑
uv∈E44

x4,4(L(NAn
m)).θ4,4

= (4m).θ3,3 + (4m).θ3,4 + (6mn − 6m).θ4,4
= 6(θ4,4)mn + 2[2(θ3,3) + 2(θ3,4) − 3(θ4,4)]m.

□

Let n be even, n ≥ 2, and m ≥ 2. If we identify the top and bottom sides of the quadrilateral section
Pn

m in such a way that we identify the vertices u0
i and un

i for i = 0, 1, 2, ...,m, and the vertices v0
i and vn

i
for i = 1, 2, 3, ...,m, then we obtain the carbon nanotube NCn

m.

Theorem 7. The bond incident degree (BID) indices of line graph of NCn
m are

(i) For n is even and n ≥ 2 is T I(L(NCn
m)) = 6(θ4,4)mn + [2(θ2,3) + 4(θ3,4) − 7(θ4,4)]n,

Ars Combinatoria Volume 158, 49–66



Bond Incident Degree (BID) Indices of Line Graphs of some Chemical Structures in Drugs 59

(ii) For n is odd and n ≥ 2 is T I(L(NCn
m)) = 6(θ4,4)mn+ [2(θ2,3)+ 4(θ3,4)− 7(θ4,4)]n+ 2(θ3,4 − θ2,3),

where NCn
m is a molecular graph of carbon nanotube for n ≥ 2 even and m ≥ 2.

Proof. For n ≥ 2 and n is even, by means of structure analysis of the line graph of tube NCn
m, we

derive n23 = 2n, n34 = 4n and n44 = 6mn − 7n. Hence, by using the definition of bond incident degree
indices, we get

T I(L(NCn
m)) =

∑
2≤a≤b≤4

xa,b(L(NCn
m)).θa,b

=
∑

uv∈E23

x2,3(L(NCn
m)).θ2,3 +

∑
uv∈E34

x3,4(L(NCn
m)).θ3,4 +

∑
uv∈E44

x4,4(L(NCn
m)).θ4,4

= (2n).θ2,3 + (4n).θ3,4 + (6mn − 7n).θ4,4
= 6(θ4,4)mn + [2(θ2,3) + 4(θ3,4) − 7(θ4,4)]n.

For n ≥ 2 and n is odd: By means of structure analysis of line graph of tube NCn
m, we derive n23 =

2n − 2, n34 = 4n + 2 and n44 = 6mn − 7n. Hence, by using the definition of bond incident degree
indices, we get

T I(L(NCn
m)) =

∑
2≤a≤b≤4

xa,b(L(NCn
m)).θa,b

=
∑

uv∈E23

x2,3(L(NCn
m)).θ2,3 +

∑
uv∈E34

x3,4(L(NCn
m)).θ3,4 +

∑
uv∈E44

x4,4(L(NCn
m)).θ4,4

= (2n − 2).θ2,3 + (4n + 2).θ3,4 + (6mn − 7n).θ4,4
= 6(θ4,4)mn + [2(θ2,3) + 4(θ3,4) − 7(θ4,4)]n + 2(θ3,4 − θ2,3).

□

8. Bond Incident Degree Indices of Line Graph of Circumcoronene Series of Benzenoid Hk

A benzenoid system is a connected collection of congruent regular hexagons arranged in a plane
in such a way that two hexagons are either completely disjoint or have one common edge. The
Circumcoronene Homologous Series of Benzenoid is a connected family of molecular graphs and has
remarkable structure. This family generates from several copies of benzene C6. We denote the k-th
terms of this series by Hk for k ≥ 1. The first terms of this series are H1 = benzene, H2 = coronene,
H3 = circumcoronene, H4 = circumcircumcoronene. See Farahani [19] for more structural details.

Theorem 8. The bond incident degree (BID) indices of line graph of Hk are

(i) For k = 1 is T I(L(Hk)) = 6(θ2,2),
(ii) For k ≥ 2 is T I(L(Hk)) = 18(θ4,4)k2+12[θ3,3+θ3,4−3(θ4,4)]k+6[2(θ2,3)−3(θ3,3)−2(θ3,4)+3(θ4,4)],

where Hk is a molecular graph of the circumcoronene series of benzenoid and k represents the growth
of this series for k ≥ 1.

Proof. Consider the line graph of circumcoronene series of benzenoid Hk for k ≥ 1, for k = 1, we
deduce n22 = 6. Thus, using the definition of bond incident degree indices, we infer

T I(L(Hk)) =
∑

2≤a≤b≤2

xa,b(L(Hk)).θa,b

=
∑

uv∈E22

x2,2(L(Hk)).θ2,2

= 6(θ2,2).
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Figure 9. Line Graph of the Circumcoronene Series of Benzenoid L(Hk) for k≥1

For k ≥ 2, we deduce n23 = 12, n33 = 12k − 18, n34 = 12k − 12 and n44 = 18k2 − 36k + 18. Similarly,
using the definition of bond incident degree indices, we infer

T I(L(Hk)) =
∑

2≤a≤b≤4

xa,b(L(Hk)).θa,b

=
∑

uv∈E23

x2,3(L(Hk)).θ2,3 +
∑

uv∈E33

x3,3(L(Hk)).θ3,3

+
∑

uv∈E34

x3,4(L(Hk)).θ3,4 +
∑

uv∈E44

x4,4(L(Hk)).θ4,4

= (12).θ2,3 + (12k − 18).θ3,3 + (12k − 12).θ3,4 + (18k2 − 36k + 18).θ4,4
= 18(θ4,4)k2 + 12[θ3,3 + θ3,4 − 3(θ4,4)]k + 6[2(θ2,3) − 3(θ3,3) − 2(θ3,4) + 3(θ4,4)].

□

9. Bond Incident Degree Indices of Line Graph of Capra-Designed Planar Benzenoid Series

Capra-designed planar benzenoid has symmetric structure. Capra Ca map operation enables one
to build a new structure of a planar graph G. It is a method of drawing and modifying the covering
of a polyhedral structure. Capra-operation of arbitrary graph G is Ca(G), iteration of Capra will be
denoted by CaCa(G) (or we denote Ca2(G)). By iterating the Capra-operation on the hexagon (i.e.
benzene graph C6) and its Ca-transforms, a benzenoid series can be designed. The first members of
this series are denoted as Ca(C6), Ca2(C6) and Ca3(C6). For more details regarding to the definition
of Capra-transform and the structure of capra-designed planar benzenoid series see Farahani and
Vlad [20] and [21].

Theorem 9. The bond incident degree (BID) index of line graph of Cak(C6) is

T I(L(Cak(C6))) =6(θ4,4)(7k) + [2(θ3,3) + 6(θ3,4) − 5(θ4,4)](3k) + 12[θ2,3
− θ4,4]k2 + 24[θ4,4 − θ2,3]k + 3[8(θ2,3) − 2(θ3,4) − 7(θ4,4)],
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Figure 10. Line Graph of the Capra-designed Planar Benzenoid Sereis L(Ca2(C6))

where Cak(C6) is a molecular graph of the capra-designed planar benzenoid series and k represents
the number of steps of this series.

Proof. By analyzing the molecular structure of line graph of Cak(C6), we check that the edge set
of line graph of Cak(C6) can be divided into four partitions, n23 = 12(k2 − 2k + 2), n33 = 2(3k),
n34 = 6(3k) − 6 and n44 = 6(7k) − 5(3k) − 12k2 + 24k − 21. Thus, using the definition of bond incident
degree indices, we infer

T I(L(Cak(C6))) =
∑

2≤a≤b≤4

xa,b(L(Cak(C6))).θa,b

=
∑

uv∈E23

x2,3(L(Cak(C6))).θ2,3 +
∑

uv∈E33

x3,3(L(Cak(C6))).θ3,3

+
∑

uv∈E34

x3,4(L(Cak(C6))).θ3,4 +
∑

uv∈E44

x4,4(L(Cak(C6))).θ4,4

= [12(k2 − 2k + 2)].θ2,3 + [2(3k)].θ3,3 + [6(3k) − 6].θ3,4 + [6(7k)
− 5(3k) − 12k2 + 24k − 21].θ4,4
= 6(θ4,4)(7k) + [2(θ3,3) + 6(θ3,4) − 5(θ4,4)](3k) + 12[θ2,3 − θ4,4]k2 + 24[θ4,4 − θ2,3]k
+ 3[8(θ2,3) − 2(θ3,4) − 7(θ4,4)].

□

10. Bond Incident Degree Indices of Line Graph of Bridge Molecular Structures

Let’s consider {Gi}
d
i=1 be a set of finite pairwise disjoint molecular graphs with vi ∈ V(Gi). The

bridge molecular graph B(G1, ...,Gd) = B(G1, ...,Gd; v1, ..., vd) of {Gi}
d
i=1 with regard to the vertices

{vi}
d
i=1 is acquired from the molecular graphs G1, ...,Gd in which the vertices vi and vi+1 are attached

through an edge from i = 1, 2, ..., d − 1. In this section we determine the formulas of some degree
based indices for the line graphs of infinite family of drug structures of the bridge molecular graph
with G1, ...,Gd. Then we determine L(Gd(H, v)) = L(B(H, ...,H, v, ..., v)) for special situations of the
bridge molecular graphs.

We analyze the line graphs of bridge molecular graphs as follows and the main parts of the graphs
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are path, cycle and complete molecular graph, respectively. See Gao et al. [11] and [22] for more
structural details.

Theorem 10. The bond incident degree (BID) indices of line graph of Gd(Pn, v) are

(i) For n ≥ 2 and d = 2 is T I(L(Gd(Pn, v))) = 2(θ2,2)n + 2[θ1,2 − 2(θ2,2)],
(ii) For n = 2 and d = 3 is T I(L(Gd(Pn, v))) = 2(θ1,3) + 2(θ2,3) + θ3,3,

(iii) For n = 2 and d ≥ 4 is T I(L(Gd(Pn, v))) = 2[θ2,4+ 1
2 (θ4,4)]d+2[θ1,3+θ2,3+θ3,4−3(θ2,4)−2(θ4,4)],

(iv) For n = 3 and d = 3 is T I(L(Gd(Pn, v))) = 2(θ1,2) + θ1,3 + 2(θ2,3) + 3(θ3,3),
(v) For n = 3 and d ≥ 4 is T I(L(Gd(Pn, v))) = d[θ1,3 + 2(θ3,4) + θ4,4] + 2[θ1,2 − θ1,3 + θ2,3 + θ3,3 −

2(θ3,4) − 2(θ4,4)],
(vi) For n ≥ 4 and d = 3 is T I(L(Gd(Pn, v))) = 3(θ2,2)n + [3(θ1,2) − 10(θ2,2) + 3(θ2,3) + 3(θ3,3)],

(vii) For n ≥ 4 and d = 4 is T I(L(Gd(Pn, v))) = 4(θ2,2)n + 2[2(θ1,2) − 7(θ2,2) + 2(θ2,3) + θ3,3 + 2(θ3,4)],
(viii) For n ≥ 4 and d ≥ 5 is T I(L(Gd(Pn, v))) = dn(θ2,2) + d[θ1,2 − 4(θ2,2) + θ2,3 + 2(θ3,4) + θ4,4] +

2[θ2,2 + θ3,3 − 2(θ3,4) − 2(θ4,4)],

where Gd(Pn, v) is a bridge molecular graph of path graph Pn with n vertices.

Figure 11. Line Graph of the Bridge Molecular Graph L(Gd(Pn, v))

We can prove this theorem in the similar way by using the definition of bond incident degree
indices. The edge counting of the molecular structure of the line graph of bridge molecular graph
Gd(Pn, v) of path graph Pn with n vertices is,

• For n ≥ 2 and d = 2, we infer n12 = 2 and n22 = 2n − 4.
• For n = 2 and d = 3, we infer n13 = 2, n23 = 2 and n33 = 1.
• For n = 2 and d ≥ 4, we infer n13 = n23 = n34 = 2, n24 = 2d − 6 and n44 = d − 4.
• For n = 3 and d = 3, we infer n12 = 2, n13 = 1, n23 = 2 and n33 = 3.
• For n = 3 and d ≥ 4, we infer n12 = 2, n13 = d−2, n23 = 2, n33 = 2, n34 = 2d−4 and n44 = d−4.
• For n ≥ 4 and d = 3, we infer n12 = 3, n22 = 3n − 10, n23 = 3 and n33 = 3.
• For n ≥ 4 and = 4, we infer n12 = 4, n22 = 4n − 14, n23 = 4, n33 = 2 and n34 = 4.
• For n ≥ 4 and d ≥ 5, we infer n12 = n23 = d, n22 = dn − 4d + 2, n33 = 2, n34 = 2d − 4 and

n44 = d − 4.

Theorem 11. The bond incident degree (BID) indices of line graph of Gd(Cn, v) are

(i) For n ≥ 3 and d = 2 is T I(L(Gd(Cn, v))) = 2(θ2,2)n + 2[2(θ2,3) − 3(θ2,2) + θ3,3 + 2(θ3,4)],
(ii) For n ≥ 3 and d = 3 is T I(L(Gd(Cn, v))) = 3(θ2,2)n+ [4(θ2,3)−9(θ2,2)+2(θ2,4)+2(θ3,3)+4(θ3,5)+
θ4,4 + 4(θ4,5) + θ5,5,

(iii) For n ≥ 3 and d = 4 is T I(L(Gd(Cn, v))) = 4(θ2,2)n+ 2[2(θ2,3)− 6(θ2,2)+ 2(θ2,4)+ θ3,3 + 2(θ3,5)+
θ4,4 + 2(θ4,5) + 2(θ4,6) + θ5,6],

(iv) For n ≥ 3 and d ≥ 5 is T I(L(Gd(Cn, v))) = dn(θ2,2) + [2(θ2,4) − 3(θ2,2) + θ4,4 + 4(θ4,6) + θ6,6]d +
2[2(θ2,3) − 2(θ2,4) + θ3,3 + 2(θ3,5) − θ4,4 + 2(θ4,5) − 6(θ4,6) + θ5,6 − 2(θ6,6)],

where Gd(Cn, v) is a bridge molecular graph of cyclic graph Cn with n vertices.

We can prove this theorem in the similar way by using the definition of bond incident degree
indices. The edge counting of the molecular structure of the line graph of bridge molecular graph
Gd(Cn, v) of cyclic graph Cn with n vertices is,
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Figure 12. Line Graph of the Bridge Molecular Graph L(Gd(C6, v))

• For n ≥ 3 and d = 2, we infer n22 = 2n − 6, n23 = 4, n33 = 2 and n34 = 4.
• For n ≥ 3 and d = 3, we infer n22 = 3n − 9, n23 = 4, n24 = 2, n33 = 2, n35 = 4, n44 = 1, n45 = 4

and n55 = 1.
• For n ≥ 3 and d = 4, we infer n22 = 4n − 12, n23 = n24 = n35 = n45 = n46 = 4 and n33 = n44 =

n56 = 2.
• For n ≥ 3 and d ≥ 5, we infer n22 = dn − 3d, n23 = n35 = n45 = 4, n24 = 2d − 4, n33 = n56 = 2,

n44 = d − 2, n46 = 4d − 12 and n66 = d − 4.

Theorem 12. The bond incident degree (BID) indices of line graph of Gd(Kn, v) are

(i) For n = 2 and d ≥ 2 is T I(L(Gd(Kn, v))) = 2(θ2,2)d + 2[θ1,2 − 2(θ2,2)],
(ii) For n = 3 and d = 2 is T I(L(Gd(Kn, v))) = 2[2(θ2,3) + θ3,3 + 2(θ3,4)],

(iii) For n = 3 and d = 3 is T I(L(Gd(Kn, v))) = 2[2(θ2,3) + θ2,4 + θ3,3 + 2(θ3,5) + 2(θ4,5)] + θ4,4 + θ5,5,
(iv) For n ≥ 4 and d = 2 is T I(L(Gd(Kn, v))) = 6

[
2n − 8 + 2(n−4)

]
θ(2n−4),(2n−4) + 4

[
2(n−3) +

2( n2−7n+12
2 )

]
.θ(2n−4),(2n−3) +

[
n3 − 3n2 − 10n + 48 − 3{2(n−3)} − 2(n−1) − 4

{
2( n2−7n+12

2 )
}]
.θ(2n−3),(2n−3) +

(2n − 2).θ(2n−3),(2n−2),

where Gd(Kn, v) is a bridge molecular graph of complete graph Kn with n vertices.

Figure 13. Line Graph of the Bridge Molecular Graph L(G4(K4, v))

Theorem 13. The bond incident degree (BID) index of line graph
of Gd(Kn, v) is for n ≥ 4 and d = 3 is T I(L(Gd(Kn, v))) =

9
[
2n − 8 + 2(n−4)

]
θ(2n−4),(2n−4) + 4

[
2(n−3) + 2( n2−7n+12

2 )
]
.θ(2n−4),(2n−3) + 2

[
2(n−3) + 2( n2−7n+12

2 )
]
.θ(2n−4),(2n−2) +[

n3 − 3n2 − 10n + 48 − 3{2(n−3)} − 2(n−1) − 4
{
2( n2−7n+12

2 )
}]
.θ(2n−3),(2n−3) + (2n − 2).θ(2n−3),(2n−1) +[

1
2n3 − 3

2n2 − 5n + 24 − 9{2(n−4)} − 3{2(n−3)} + 2(n−1) − 2
{
2( n2−7n+12

2 )
}]
.θ(2n−2),(2n−2)+(2n−2).θ(2n−2),(2n−1)+

θ(2n−1),(2n−1), where Gd(Kn, v) is a bridge molecular graph of complete graph Kn with n vertices.

■

Theorem 14. The bond incident degree (BID) index of line graph of Gd(Kn, v) is
for n ≥ 4 and d ≥ 4 is T I(L(Gd(Kn, v))) = 3d

[
2n − 8 + 2(n−4)

]
.θ(2n−4),(2n−4) +

4
[
2(n−3) + 2( n2−7n+12

2 )
]
.θ(2n−4),(2n−3) + 2(d − 2)

[
2(n−3) + 2( n2−7n+12

2 )
]
.θ(2n−4),(2n−2) +[

n3 − 3n2 − 10n + 48 − 3{2(n−3)} − 2(n−1) − 4
{
2( n2−7n+12

2 )
}]
.θ(2n−3),(2n−3) + (2n − 2).θ(2n−3),(2n−1) +

(d − 2)
[

1
2n3 − 3

2n2 − 5n + 24 − 9{2(n−4)} − 3{2(n−3)} + 2(n−1) − 2
{
2( n2−7n+12

2 )
}]
.θ(2n−2),(2n−2) + (2n −
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2).θ(2n−2),(2n−1) + 2(dn − d − 3n + 3).θ(2n−2)(2n) + (2).θ(2n−1),(2n) + (d − 4).θ(2n)(2n), where Gd(Kn, v) is a
bridge molecular graph of complete graph Kn with n vertices.

We can prove these theorems in the similar way by using the definition of bond incident degree
indices. The edge counting of the molecular structure of the line graph of bridge molecular graph
Gd(Kn, v) of complete graph Kn with n vertices is

• For n = 2 and d ≥ 2, we infer n12 = 2 and n22 = 2d − 4.
• For n = 3 and d = 2, we infer n23 = 4, n33 = 2 and n34 = 4.
• For n = 3 and d = 3, we infer n23 = n35 = n45 = 4, n24 = n33 = 2 and n44 = n55 = 1.
• For n ≥ 4 and d = 2, we infer n(2n−4)(2n−4) = 6

[
2n − 8 + 2(n−4)

]
, n(2n−4)(2n−3) =

4
[
2(n−3) + 2( n2−7n+12

2 )
]
, n(2n−3)(2n−3) = n3 − 3n2 − 10n + 48 − 3

{
2(n−3)

}
− 2(n−1) − 4

{
2( n2−7n+12

2 )
}

and
n(2n−3)(2n−2) = 2n − 2.
• For n ≥ 4 and d = 3, we infer n(2n−4)(2n−4) = 9

[
2n − 8 + 2(n−4)

]
, n(2n−4)(2n−3) =

4
[
2(n−3) + 2( n2−7n+12

2 )
]
, n(2n−4)(2n−2) = 2

[
2(n−3) + 2( n2−7n+12

2 )
]
, n(2n−3)(2n−3) = n3 − 3n2 − 10n + 48 −

3
{
2(n−3)

}
− 2(n−1) − 4

{
2( n2−7n+12

2 )
}
, n(2n−3)(2n−1) = 2n − 2, n(2n−2)(2n−2) =

1
2n3 − 3

2n2 − 5n + 24 −

9
{
2(n−4)

}
− 3

{
2(n−3)

}
+ 2(n−1) − 2

{
2( n2−7n+12

2 )
}
, n(2n−2)(2n−1) = 2n − 2 and n(2n−1)(2n−1) = 1.

• For n ≥ 4 and d ≥ 4, we infer n(2n−4)(2n−4) = 3d
[
2n − 8 + 2(n−4)

]
, n(2n−4)(2n−3) =

4
[
2(n−3) + 2( n2−7n+12

2 )
]
, n(2n−4)(2n−2) = 2(d−2)

[
2(n−3) + 2( n2−7n+12

2 )
]
, n(2n−3)(2n−3) = n3−3n2−10n+48−

3
{
2(n−3)

}
− 2(n−1) − 4

{
2( n2−7n+12

2 )
}
, n(2n−3)(2n−1) = 2n− 2, n(2n−2)(2n−2) = (d − 2)1

2n3 − 3
2n2 − 5n+ 24−

9
{
2(n−4)

}
− 3

{
2(n−3)

}
+ 2(n−1) − 2

{
2( n2−7n+12

2 )
}
, n(2n−2)(2n−1) = 2n − 2, n(2n−2)(2n) = 2(dn − d − 3n + 3),

n(2n−1)(2n) = 2 and n(2n)(2n) = d − 4.

11. Conclusion

We live in an age in which technology is moving at a rapid pace, creating new fields and disrupting
existing models and processes. Numerous studies discovered that a large number of new diseases
are originated in the world every year, which are caused by contentiously emerging viruses at a high
speed. Some of these viruses are such harmful that they can even cause several deaths. Recent
endeavors in field of molecular topology shed light on unprecedented use of topological indices in
rectifying the viral diseases that is valuable for pharmaceutical and medical scientists to comprehend
the biological and chemical characteristics of new drugs. The method of computing bond incident de-
gree (BID) indices is very suitable and serviceable for developing countries in which they can obtain
the medical and biological information of new drugs without chemical experiment conditions. In this
paper, we established the bond incident degree indices of line graphs of some molecular graphs of
drug structures, in terms of vertex dividing technique with respect to their degrees and drug structure
analysis. These results can be utilized by many scientists to theoretically identify the chemical charac-
teristics of the drug molecular structures, which illustrate the promising prospects of the applications
for pharmaceutical engineering.
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