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1. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring in n–variables over an infinite field k. We say that a
monomial ideal I ⊂ S is of Borel type, see [1], if it satisfies the following condition: (I : x∞j ) = (I :
(x1, . . . , x j)∞) for all 1 ≤ j ≤ n. The Castelnuovo–Mumford regularity of I is the number reg(I) =
max{ j − i|βi j(I) , 0}, where βi j(I) are the graded Betti numbers of I. The regularity of monomial
ideals of Borel type is extensively studied, see for instance [2–5].

Let G be a simple connected graph on the vertex–set V(G) = {x1, . . . , xn} and edge–set E(G).
There are a number of ways to study the algebraic properties of the graph by associating a monomial
ideal to it, well known among all are edge–ideals. Recently, Anwar and Khalid in [3] introduced a
new class of monomial ideals, namely; elimination ideals ID(G), associated to G. They showed that
the elimination ideals are monomial ideals of Borel type. They gave the description of Graphical
Degree Stability of graph G denoted by Stabd(G); a combinatorial measure associated to G. They
gave a systematic procedure to compute the graphical degree stability, namely Dominating Vertex
Elimination Method (DVE method). They computed the upper bound of the Castelnuovo–Mumford
regularity of elimination ideals for complete graph, star graph, line graph, cyclic graph, fan graph,
friendship graph and wheel graph.

Motivated from [3], we further extended this study to other family of graphs. We succeeded to
obtain a sharp combinatorial bound for the Castelnuovo–Mumford regularity of elimination ideals
associated to regular Harary graphs Hn−2,n (see theorem 2). We obtain similar result for the join of
complete graph and Path Graph; Kn ∨ Pm (see theorem 3) and for complete bipartite graph; Km,n (see
theorem 4)
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2. Background

Throughout in this paper, we consider G as a finite simple connected graph with vertex set
V(G) = {x1, . . . , xn} and S = k[x1, . . . , xn] be the associated polynomial ring over an infinite
field k, also the edge set of G will be denoted by E(G). As |V(G)| is finite, we may use the set
[n] = {1, 2, . . . , n} instead of V(G) and we shall always use [n] to label the vertices in figures.

Let xi ∈ V(G), then the number of edges incident to xi is called the degree of xi and is denoted by
deg(xi), if deg(xi) ≥ deg(x j) for all x j ∈ V(G), then xi is called dominating vertex of G, and the set of
all dominating vertices of G is called the dominating set of G, denoted as D(G). A vertex xi ∈ V(G)
with deg(xi) = 0 is called an isolated vertex of G. We call G a scattered graph, if it has at least one
isolated vertex, otherwise, non-scattered graph. A finite sequence of nonnegative integers is called
graphical degree sequence if it is a degree sequence of some graph. Throughout in this paper, we
assume that deg(x1) ≥ deg(x2) ≥ · · · ≥ deg(xn) in G. Now, we recall important definitions from [3].

Definition 1. Let Gi be a graph and pick a vertex x in D(Gi) such that Gi+1 := Gi − {x} is an induced,
non-scattered subgraph of Gi. This method of obtaining an induced, non-scattered subgraph Gi+1 from
Gi by eliminating a vertex from the dominating set D(Gi) is called the dominating vertex elimination
method, the method is known as DVE method. See [3] for more details.

Let G := G0 be a graph with vertex set [n], then the length of the maximum chain of induced, non
scattered subgraphs of G obtained by successively using DVE method is called the graphical degree
stability of G, and it is formally denoted by Stabd(G). In other words, if G := G0 ⊃ G1 ⊃ · · · ⊃ Gk

is the maximum chain of induced, non scattered subgraphs of G then Stabd(G) = k. Note that Gk is a
subgraph of G with vertex set [n − k].

Definition 2. Let Gi be a graph with vertex set V(Gi) = {x1, x2, . . . , xi} and having the degree sequence
(d1, d2, . . . , di), then the ideal Qi := ⟨xd1

1 , x
d2
2 , . . . , x

di
i ⟩ is called the sequential ideal of Gi. Let G :=

G0 ⊃ G1 ⊃ · · · ⊃ Gk be the maximum chain of induced, non scattered subgraphs of G obtained by

DVE method with Stabd(G) = k, then ID(G) :=
k⋂

j=0
Q j is called the elimination ideal of G.

Now, we recall some definitions from graph theory.

Definition 3. Let G and H be two graphs with mutually disjoint vertex sets V(G) = {u1, u2 . . . , un}

and V(H) = {w1,w2, . . . ,wm}. A graph, denoted by G∨H, is called the join of G and H if V(G∨H) =
V(G) ∪ V(H) and E(G ∨ H) = E(G) ∪ E(H) ∪ {uiw j|ui ∈ V(G), w j ∈ V(H)}.

Definition 4. Let G be a graph with vertex set V(G). A subset X of V(G) is called an independent
set if no two vertices of X are adjacent. A k-partite graph is a graph whose vertex set V(G) can be
partitioned into k distinct independent sets. A complete k-partite graph is a k-partite graph with every
two vertices from distinct independent sets are adjacent. If k=2, then graph is bipartite.

We conclude this section by recalling some important definitions and results regarding stable
properties of ideals.

Let I ⊂ S = k[x1, . . . , xn] be a monomial ideal. For any monomial u ∈ S set m(u) := max{ j| x j|u}
and m(I) = max{m(u)| u ∈ G(I)}, where G(I) denotes the set of minimal monomial generators of
I. The highest degree of monomial in G(I) is denoted by deg(I). Also, I≥t is the monomial ideal
generated by monomials of I of degree ≥ t. A monomial ideal I is stable if for each monomial u ∈ I
we have x j.

u
xm(u)
∈ I for all 1 ≤ j < m(u). We set q(I) = m(I)(deg(I) − 1) + 1.

Eisenbud, Reeves and Totaro proved the following result in [6].
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Theorem 1. Let I be a monomial ideal with deg(I) = d and e ≥ d be an integer such that I≥e is stable,
then reg(I) ≤ e.

In [2], the authors gave the following bound for the regularity of Borel type ideals.

Proposition 1. Let I be a Borel type ideal, then reg(I) ≤ q(I).

Remark 1. As Ass
(
S/ID(G)

)
is totally ordered under inclusion, therefore ID(G) is a Borel type ideal

by [2, Theorem 2.2].

In [2], the authors proved the following:

Proposition 2. If I and J are two monomial ideals with s ≥ deg(I) and t ≥ deg(J) be two integers
such that I≥s and J≥t are stable ideals, then (I ∩ J)≥max{s,t} is stable ideal.

3. Main Results

In this section, we give our main results regarding the Castelnuovo–Mumford regularity of elimi-
nation ideals for different classes of graphs.

3.1. Regularity of Regular Harary Graph Hn−2,n

First, we recall the definition of Harary graph.

Definition 5. Harary graph Hk,n is the smallest k-connected graph with n vertices. Let us have a set
V = {x1, x2, . . . , xn} of n vertices, then the construction of Harary graphs are as follows:
Case I: If k = 2m < n (n may be even or odd), then place all n vertices in a circle and join each vertex
xi to its m consecutive left vertices and to its m consecutive right vertices by drawing edges.
Case II: Let n is even. If k = 2m + 1 < n, then first construct H2m,n and then join each vertex
xi, 1 ≤ i ≤ n

2 , to its diametrically opposite vertex.
Case III: If both k and n are odd then first construct Hk−1,n, then join each vertex xi, 1 ≤ i ≤ n−1

2 + 1,
with vertex xi+ n−1

2
.

Note that the graphs in Case I and Case II are regular. Also note that if k = n − 1 then Case I and
Case II suggest that Hk,n is a complete graph Kn. When n is even, the diametrically opposite vertex of
xi is given by: xi ↔ xi+ n

2
i f 1 ≤ i ≤ n

2

xi ↔ xi− n
2

i f n
2 + 1 ≤ i ≤ n

We are interested in computing the regularity of elimination ideal associated to Hn−2,n when n is
even and degree k = n − 2.We begin by computing the graphical degree stability of Hn−2,n.

Lemma 1. Let Hn−2,n be a regular Harary graph with even vertices n = 2r ≥ 4 and degree of each
vertex is n − 2, then Stabd(Hn−2,n) = n − 3.

Proof. We prove it by induction on r for n = 2r ≥ 4. For r = 2, G0 := H2,4 is a regular graph with
degree sequence (2, 2, 2, 2), so its dominating set will be D(G0) = {x1, x2, x3, x4}. Now, pick vertex
x1 ∈ D(G0), after removing x1 we get G1 with degree sequence (2, 1, 1). The process will stop at G1

and Stabd(H2,4) = 1.
Consider the result is true for r = p, i.e. Stabd(H2p−2,2p) = 2p − 3.
Now take r = p + 1, and let G0 := H2p,2p+2. The degree sequence of G0 is (2p, . . . , 2p)︸         ︷︷         ︸

(2p+2)-tuple

with

dominating set is D(G0) = {x1, x2, . . . , x2p+2}. Choose vertex x1 from D(G0) and apply DVE method,
we get G1 with D(G1) solely consists of diametrically opposite vertex (see definition 5) of x1 of degree
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2p. All other vertices are of degree p−1. The degree sequence of G1 will be (2p, 2p − 1, . . . , 2p − 1)︸                         ︷︷                         ︸
(2p+1)-tuple

.

On removing x1 (after relabeling of the vertices) we get G2 := H2p−2,2p. Now

Stabd(H2p−2,2p) = 2p − 3

⇒ Stabd(H2p,2p+2) = 2 + Stabd(H2p−2,2p) = (2p + 2) − 3

which is required. □

Example 1. Consider H4,6, here n = 6 and k = 4, see Figure 1.

Figure 1. G0,G1,G2,G3

Corollary 1. Let Hn−2,n be a regular Harary graph with even vertices n ≥ 4 and degree of each vertex
is n − 2, then its sequential ideal is given as follows:

Qi =

⟨xn−i−2
1 , xn−i−2

2 , . . . , xn−i−2
n−i ⟩ i f i is even

⟨xn−i−1
1 , xn−i−2

2 , . . . , xn−i−2
n−i ⟩ i f i is odd

where 0 ≤ i ≤ n − 3.

Proof. The proof follows from the definition of elimination ideal and lemma 1. □

Theorem 2. Let Hn−2,n be a regular Harary graph with even vertices n ≥ 4 and degree of each vertex
is n − 2, then reg(ID(Hn−2,n)) ≤ (n − 1)(n − 2) − 1.

Proof. We shall discuss the two cases of corollary 1 separately.
Case 1. When i ∈ {0, 2, 4, . . . , n − 4}, the sequential ideal is given as Qi = ⟨x

a1
1 , . . . , x

an−i
n−i ⟩ where

a j = n − i − 2 for all 1 ≤ j ≤ n − i. Let γ(i) = ai(ai + 1) − 1 for all i ∈ {0, 2, 4, . . . , n − 4}. We
shall show that Qi≥γ(i) is a stable ideal. Take u ∈ Qi≥γ(i) , then u = vxak

k for some 1 ≤ k ≤ n − i where
v ∈ ⟨x1, . . . , xn−i⟩

γ(i)−ak .
If m(u) > k, then xlu

xm(u)
= xlv

xm(u)
xak

k ∈ Qi≥γ(i) for all l < m(u). So, Qi≥γ(i) is stable.
If m(u) = k, then clearly u ∈ ⟨x1, . . . , xn−i⟩

γ(i) which is a stable ideal and Qi≥γ(i) ⊆ ⟨x1, . . . , xn−i⟩
γ(i).

It remains to show that ⟨x1, . . . , xn−i⟩
γ(i) ⊆ Qi≥γ(i) . Let w ∈ ⟨x1, . . . , xn−i⟩

γ(i) then w = xβ1
1 xβ2

2 · · · x
βn−i
n−i with
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βs ≥ 0 for all 1 ≤ s ≤ n− i and Σn−i
s=1βs ≥ γ(i). Therefore, there exist at least one r ∈ {1, . . . , n− i} such

that βr ≥ ar and w = (xβ1
1 · · · x

βr−ar
r · · · xβn−i

n−i )xar
r ∈ Qi≥γ(i) , hence the result follows.

Case 2. When i ∈ {1, 3, 5, . . . , n − 3}, the sequential ideal then is given as Qi = ⟨x
a1
1 , . . . , x

an−i
n−i ⟩

where

a j =

n − i − 1 i f j = 1
n − i − 2 i f 2 ≤ j ≤ n − i

Let γ′(i) = ai(ai + 1) for all i ∈ {1, 3, 5, . . . , n − 3}, then we shall show that Qi≥γ′(i) is a stable ideal.
Take u ∈ Qi≥γ′(i) , then u = vxak

k for some 1 ≤ k ≤ n − i where v ∈ ⟨x1, . . . , xn−i⟩
γ′(i)−ak .

If m(u) > k, then xlu
xm(u)
= xlv

xm(u)
xak

k ∈ Qi≥γ′(i) for all l < m(u). So, Qi≥γ′(i) is stable.
If m(u) = k, then clearly u ∈ ⟨x1, . . . , xn−i⟩

γ′(i) which is stable ideal and Qi≥γ′(i) ⊆ ⟨x1, . . . , xn−i⟩
γ′(i).

We are to show that ⟨x1, . . . , xn−i⟩
γ′(i) ⊆ Qi≥γ′(i) . Let w ∈ ⟨x1, . . . , xn−i⟩

γ′(i) then w = xβ1
1 xβ2

2 · · · x
βn−i
n−i with

βs ≥ 0 for all 1 ≤ s ≤ n − i and Σn−i
s=1βs ≥ γ

′(i). Therefore, there exist at least one r ∈ {1, . . . , n − i}
such that βr ≥ ar and w = (xβ1

1 · · · x
βr−ar
r · · · xβn−i

n−i )xar
r ∈ Qi≥γ′(i) and the result follows.

By lemma 1, Stabd(Hn−2,n) = n− 3, so the corresponding elimination ideal is given as ID(Hn−2,n) =
n−3⋂
i=0

Qi. By proposition 2, ID(Hn−2,n) is stable for γ0, where

γ0 = max{γ(i), γ′( j)|i ∈ {0, 2, . . . , n − 4}, j ∈ {1, 3, . . . , n − 3}} = (n − 1)(n − 2) − 1

and by theorem 1 reg(ID(Hn−2,n)) ≤ (n − 1)(n − 2) − 1. □

Remark 2. In example 1,
D(G0) = {x1, x2, . . . , x6} with Q0 = ⟨x4

1, x
4
2, . . . , x

4
6⟩ and reg(Q0) = 19.

D(G1) = {x1} with Q1 = ⟨x4
1, x

3
2, . . . , x

3
5⟩ and reg(Q1) = 12

D(G2) = {x1, x2, x3, x4} with Q2 = ⟨x2
1, x

2
2, x

2
3, x

2
4⟩ and reg(Q2) = 5

D(G3) = {x1} with Q3 = ⟨x2
1, x2, x3⟩ and reg(Q3) = 2

3.2. Regularity of Kn ∨ Pm

In [3], following formula is given to compute the graphical degree stability of path graph:

Proposition 3. Let Pm, m ≥ 3, be a path graph then:

Stabd(Pm) =


m−3

3 i f m ≡ 0 (mod 3)
m−4

3 i f m ≡ 1 (mod 3)
m−2

3 i f m ≡ 2 (mod 3)

Lemma 2. Let Kn, n ≥ 2 be a complete graph and Pm, m ≥ 4 be a path graph then:

Stabd(Kn ∨ Pm) = n + Stabd(Pm)

Proof. We shall prove it by induction on n. Let n = 2 and m = 4, then G0 := K2 ∨ P4 with degree
sequence (5, 5, 4, 4, 3, 3) and D(G0) = {x1, x2}. Without loss of generality, remove x1 ∈ D(G0) to get
G1 with the degree sequence (4, 3, 3, 2, 2). So, D(G1) = {x1} and on removing x1 ∈ D(G1), we get
G2 = P4.

=⇒ Stabd(K2 ∨ P4) = 2 + Stabd(P4)

Suppose that result is true for n = q and m = r, then Stabd(Kq ∨ Pr) = q + Stabd(Pr).
Consider n = q + 1 and m = r then G0 := Kq+1 ∨ Pr with degree sequence

(q + r, . . . , q + r︸            ︷︷            ︸
(q+1)-tuple

, q + 3, . . . , q + 3︸             ︷︷             ︸
(r-2)-tuple

, q+2, q+2) and |V(G0| = q+r+1. Since r ≥ 4, D(G0) = {x1, . . . , xq+1}
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which are precisely the vertices that were initially belonged to Kq+1. As removing any vertex from
Kq+1 gives Kq, So without loss of generality pick x1 ∈ D(G0) and on removing it, we get G1 = Kq∨Pr.

=⇒ Stabd(Kq+1 ∨ Pr) = 1 + Stabd(Kq ∨ Pr) = 1 + q + Stabd(Pr)

which completes the proof. □

Corollary 2. Let Kn, n ≥ 2 be a complete graph and Pm,m ≥ 4 be a path graph, then the sequential
ideal of Kn ∨ Pm is given as follows:

Qi =

⟨xm+n−i−1
1 , . . . , xm+n−i−1

n−i , xn−i+2
n−i+1, . . . , x

n−i+2
m+n−i−2, x

n−i+1
m+n−i−1, x

n−i+1
m+n−i⟩ i f 0 ≤ i ≤ n − 1

⟨x2
1, x

2
2, . . . , x

2
m−3(i−n)−2, xm−3(i−n)−1, . . . , xm+n−i⟩ i f n ≤ i ≤ n + p

where p = Stabd(Pm)

Proof. The proof follows immediately from lemma 2 and [3, Proposition 3.10]. □

Theorem 3. Let Kn, n ≥ 2 be a complete graph and Pm,m ≥ 4 be a path graph then reg(ID(Kn∨Pm)) ≤
n2 + 2n(m − 1) + m − 1.

Proof. We shall discuss the two cases of corollary 2 separately.
Case 1. When 0 ≤ i ≤ n − 1, the sequential ideal is given as Qi = ⟨x

a1
1 , . . . , x

am+n−i
m+n−i⟩ where

a j =


m + n − i + 1 i f 1 ≤ j ≤ n − i

n − i + 2 i f n − i + 1 ≤ j ≤ m + n − i − 2
n − i + 1 i f n − i + 1 ≤ j ≤ m + n − i.

Let γ(i) = (n − i)2 + 2(m − 1)(n − i) + m − 1 for all 0 ≤ i ≤ n − 1. We shall show that Qi≥γ(i) is a
stable ideal. Take u ∈ Qi≥γ(i) , then u = vxak

k for some 1 ≤ k ≤ m+ n− i where v ∈ ⟨x1, . . . , xm+n−i⟩
γ(i)−ak .

If m(u) > k, then xlu
xm(u)
= xlv

xm(u)
xak

k ∈ Qi≥γ(i) for all l < m(u). So, Qi≥γ(i) is stable.
If m(u) = k, then clearly u ∈ ⟨x1, . . . , xm+n−i⟩

γ(i) and Qi≥γ(i) ⊆ ⟨x1, . . . , xm+n−i⟩
γ(i). We are to show

that ⟨x1, . . . , xm+n−i⟩
γ(i) ⊆ Qi≥γ(i) . Let w ∈ ⟨x1, . . . , xm+n−i⟩

γ(i) then w = xβ1
1 xβ2

2 · · · x
βm+n−i
m+n−i with βs ≥ 0 for

all 1 ≤ s ≤ m+ n− i and Σm+n−i
s=1 βs ≥ γ(i). Therefore, there exist at least one r ∈ {1, . . . ,m+ n− i} such

that βr ≥ ar and w = (xβ1
1 · · · x

βr−ar
r · · · xβm+n−i

m+n−i)xar
r ∈ Qi≥γ(i) and the result follows.

Case 2. When n ≤ i ≤ n + p, the sequential ideal is given as Qi = ⟨x
a1
1 , . . . , x

am+n−i
m+n−i⟩ where

a j =

2 i f 1 ≤ j ≤ m − 3(i − n) − 2
1 i f m − 3(i − n) − 1 ≤ j ≤ m + n − i.

Let γ′(i) = m − 3(i − n) − 1 for all n ≤ i ≤ n + p, then we shall show that Qi≥γ′(i) is a stable ideal.
Take u ∈ Qi≥γ′(i) , then u = vxak

k for some 1 ≤ k ≤ m + n − i where v ∈ ⟨x1, . . . , xm+n−i⟩
γ′(i)−ak .

If m(u) > k, then xlu
xm(u)
= xlv

xm(u)
xak

k ∈ Qi≥γ′(i) for all l < m(u). So, Qi≥γ′(i) is stable.
If m(u) = k, then clearly u ∈ ⟨x1, . . . , xm+n−i⟩

γ′(i) and Qi≥γ′(i) ⊆ ⟨x1, . . . , xm+n−i⟩
γ′(i). We are to show

that ⟨x1, . . . , xm+n−i⟩
γ′(i) ⊆ Qi≥γ′(i) . Let w ∈ ⟨x1, . . . , xm+n−i⟩

γ′(i) then w = xβ1
1 xβ2

2 · · · x
βm+n−i
m+n−i with βs ≥ 0 for

all 1 ≤ s ≤ m + n − i and Σm+n−i
s=1 βs ≥ γ

′(i). Therefore, there exist at least one r ∈ {1, . . . ,m + n − i}
such that βr ≥ ar and w = (xβ1

1 · · · x
βr−ar
r · · · xβm+n−i

m+n−i)xar
r ∈ Qi≥γ′(i) and the result follows.

By lemma 2, Stabd(Kn ∨ Pm) = n + p, so the corresponding elimination ideal is given as ID(Kn ∨

Pm) =
n+p⋂
i=0

Qi, by proposition 2, ID(Kn ∨ Pm) is stable for γ0, where

γ0 = max{γ(i), γ′( j)|0 ≤ i ≤ n − 1 and n ≤ j ≤ n + p} = n2 + 2n(m − 1) + m − 1

and by theorem 1, reg(ID(Kn ∨ Pm)) ≤ n2 + 2n(m − 1) + m − 1. □
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Example 2. Consider K3 ∨ P4, here n = 3 and m = 4.
D(G0) = {x1, x2, x3}, Q0 = ⟨x6

1, x
6
2, x

6
3, x

5
4, x

5
5, x

4
6, x

4
7⟩ and reg(Q0) = 30, see Figure 2.

Figure 2. G0 = K3 ∨ P4

D(G1) = {x1, x2}, Q1 = ⟨x5
1, x

5
2, x

4
3, x

4
4, x

3
5, x

3
6⟩ and reg(Q1) = 19, see Figure 3.

Figure 3. G1

D(G2) = {x1}, Q2 = ⟨x4
1, x

3
2, x

3
3, x

2
4, x

2
5⟩ and reg(Q2) = 10, see Figure 4.

Figure 4. G2

D(G3) = {x1, x2}, Q3 = ⟨x2
1, x

2
2, x3, x4⟩ and reg(Q3) = 3, see Figure 5.
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Figure 5. G3

3.3. Regularity of complete bipartite graph Km,n

We recall the result about graphical degree stability of complete bipartite graph from [3]:

Proposition 4. Let Km,n be a complete bipartite graph with m ≥ n then:

Stabd(Km,n) = n − 1

We generalize this result for complete n-partite graphs.

Lemma 3. Let Km1,...,mn be a complete n-partite graph with mi ≥ m j for 1 ≤ i < j ≤ n, then

Stabd(Km1,...,mn) = mn + mn−1 + · · · + m2 − 1

Proof. We prove it by induction. For n = 2, we have Km1,m2 with m1 ≥ m2 then by proposition 4:

Stabd(Km1,m2) = m2 − 1

Let the result is true for n = k − 1, i.e.

Stabd(Km1,...,mk−1) = mk−1 + mk−2 + · · · + m2 − 1

with mi ≥ m j if 1 ≤ i < j ≤ k − 1.
Consider G0 := Km1,...,mk , be the complete k−partite graph and V(G0) = X1 ∪ X2 ∪ · · · ∪ Xk, where

each Xr = {xr1 , xr2 , . . . , xrmr
} is an independent set with |Xr| = mr, 1 ≤ r ≤ k. Further mi ≥ m j if

1 ≤ i < j ≤ k.
If x ∈ Xr, 1 ≤ r ≤ k then degree of x would be m1 + · · · + mr−1 + mr+1 + · · · + mk. As mk ≤ m j

for all 1 ≤ j ≤ k − 1, hence Xk ⊆ D(G0). So, without loss of generality we pick the vertex xkmk
∈ Xk,

removing it will give us a new graph G1 with dominating set D(G1) = Xk − {xkmk
} with degree of each

vertex of D(G1) is still m1 + · · · + mk−1. If x ∈ Xr, 1 ≤ r ≤ k − 1 then degree of x in G1 would be
m1 + · · · + mr−1 + mr+1 + · · · + mk − 1. Now pick xkmk−1

from D(G1) and remove it so that we get new
graph G2 with dominating set D(G2) = Xk − {xkmk

, xkmk−1
} with degree of each vertex of D(G2) is still

m1+· · ·+mk−1. If x ∈ Xr, 1 ≤ r ≤ k−1 then degree of x in G2 would be m1+· · ·+mr−1+mr+1+· · ·+mk−2.
Continue in this way we get Gmk := Km1,...,mk−1 . So,

Stabd(Km1,...,mk) = mk + Stabd(Km1,...,mk−1) = mk + mk−1 + · · · + m2 − 1

which completes the proof. □

Corollary 3. Let Km,n be a complete bipartite graph with m ≥ n, then the sequential ideal is given as
follows:

Qi = ⟨xm
1 , . . . , x

m
n−i, x

n−i
n−i+1, . . . , x

n−i
m+n−i⟩

where 0 ≤ i ≤ n − 1.
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Proof. The proof follows immediately from lemma 4. □

Theorem 4. Let Km,n be a complete bipartite graph with m ≥ n, then

reg(ID(Km,n)) ≤ m + (2m − 1)(n − 1).

Proof. By proposition 4, Stabd(Km,n) = n − 1. The sequential ideal is given as Qi = ⟨x
a1
1 , . . . , x

am+n−i
m+n−i⟩

for all 0 ≤ i ≤ n − 1 where

a j =

m i f 1 ≤ j ≤ n − i

n − i i f n − i + 1 ≤ j ≤ m + n − i.

Let γ(i) = m + (2m − 1)(n − i − 1) for all 0 ≤ i ≤ n − 1, then we shall show that Qi≥γ(i) is a stable
ideal. Take u ∈ Qi≥γ(i) , then u = vxak

k for some 1 ≤ k ≤ m + n − i where v ∈ ⟨x1, . . . , xm+n−i⟩
γ(i)−ak .

If m(u) > k, then xlu
xm(u)
= xlv

xm(u)
xak

k ∈ Qi≥γ(i) for all l < m(u). So, Qi≥γ(i) is stable.
If m(u) = k, then clearly u ∈ ⟨x1, . . . , xm+n−i⟩

γ(i) and Qi≥γ(i) ⊆ ⟨x1, . . . , xm+n−i⟩
γ(i). We are to show

that ⟨x1, . . . , xm+n−i⟩
γ(i) ⊆ Qi≥γ(i) . Let w ∈ ⟨x1, . . . , xm+n−i⟩

γ(i) then w = xβ1
1 xβ2

2 · · · x
βm+n−i
m+n−i with βs ≥ 0 for

all 1 ≤ s ≤ m+ n− i and Σm+n−i
s=1 βs ≥ γ(i). Therefore, there exist at least one r ∈ {1, . . . ,m+ n− i} such

that βr ≥ ar and w = (xβ1
1 · · · x

βr−ar
r · · · xβm+n−i

m+n−i)xar
r ∈ Qi≥γ(i) and the result follows.

By proposition 2, ID(Km,n) =
n−1⋂
i=0

Qi is stable for γ0, where

γ0 = max{γ(i)|0 ≤ i ≤ n − 1} = m + (2m − 1)(n − 1)

and by theorem 1, reg(ID(Km,n)) ≤ m + (2m − 1)(n − 1). □

Example 3. Consider K4,3, here m = 4 and n = 3.
D(G0) = {x1, x2, x3}, Q0 = ⟨x4

1, x
4
2, x

4
3, x

3
4, x

3
5, x

3
6, x

3
7⟩ and reg(Q0) = 18, see Figure 6.

Figure 6. G0 = K4,3

D(G1) = {x1, x2}, Q1 = ⟨x4
1, x

4
2, x

2
3, x

2
4, x

2
5, x

2
6⟩ and reg(Q1) = 11,see Figure 7.

Figure 7. G1 = K4,2

D(G2) = {x1}, Q2 = ⟨x4
1, x2, x3, x4, x5⟩ and reg(Q2) = 4, see Figure 8.
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Figure 8. G2 = K4,1

Remark 3. As elimination ideals are of Borel type ideals and an upper bound for Borel type ideal
were discussed in [2] and [5]. It is worthy to note that our given bounds are sharper than the one given
in [2] and [5].
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