Article

Combinatorial Bounds of the Regularity of Elimination Ideals

Muhammad Junaid Ali Junjua ${ }^{1, *}$ Khurram Shabbir ${ }^{1}$ and Asim Naseem ${ }^{1}$
${ }^{1}$ Govt. College University, Lahore, Pakistan.

* Correspondence: buraqking517@gmail.com

Abstract

Elimination ideals are monomial ideals associated to simple graphs, not necessarily square-free, was introduced by Anwar and Khalid. These ideals are Borel type. In this paper, we obtain sharp combinatorial upper bounds of the Castelnuovo-Mumford regularity of elimination ideals corresponding to certain family of graphs.

Keywords: primary decomposition, Castelnuovo-Mumford regularity, stable ideal, strongly stable ideals
Mathematics Subject Classification: 13P10, 13H10, 13F20, 13C14.

1. Introduction

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in n-variables over an infinite field k. We say that a monomial ideal $I \subset S$ is of Borel type, see [1], if it satisfies the following condition: $\left(I: x_{j}^{\infty}\right)=(I:$ $\left.\left(x_{1}, \ldots, x_{j}\right)^{\infty}\right)$ for all $1 \leq j \leq n$. The Castelnuovo-Mumford regularity of I is the number $\operatorname{reg}(I)=$ $\max \left\{j-i \mid \beta_{i j}(I) \neq 0\right\}$, where $\beta_{i j}(I)$ are the graded Betti numbers of I. The regularity of monomial ideals of Borel type is extensively studied, see for instance [2-5].

Let G be a simple connected graph on the vertex-set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge-set $E(G)$. There are a number of ways to study the algebraic properties of the graph by associating a monomial ideal to it, well known among all are edge-ideals. Recently, Anwar and Khalid in [3] introduced a new class of monomial ideals, namely; elimination ideals $I_{D}(G)$, associated to G. They showed that the elimination ideals are monomial ideals of Borel type. They gave the description of Graphical Degree Stability of graph G denoted by $\operatorname{Stab}_{d}(G)$; a combinatorial measure associated to G. They gave a systematic procedure to compute the graphical degree stability, namely Dominating Vertex Elimination Method (DVE method). They computed the upper bound of the Castelnuovo-Mumford regularity of elimination ideals for complete graph, star graph, line graph, cyclic graph, fan graph, friendship graph and wheel graph.

Motivated from [3], we further extended this study to other family of graphs. We succeeded to obtain a sharp combinatorial bound for the Castelnuovo-Mumford regularity of elimination ideals associated to regular Harary graphs $H_{n-2, n}$ (see theorem 2). We obtain similar result for the join of complete graph and Path Graph; $K_{n} \vee P_{m}$ (see theorem 3) and for complete bipartite graph; $K_{m, n}$ (see theorem 4)

2. Background

Throughout in this paper, we consider G as a finite simple connected graph with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the associated polynomial ring over an infinite field k, also the edge set of G will be denoted by $E(G)$. As $|V(G)|$ is finite, we may use the set $[n]=\{1,2, \ldots, n\}$ instead of $V(G)$ and we shall always use $[n]$ to label the vertices in figures.

Let $x_{i} \in V(G)$, then the number of edges incident to x_{i} is called the degree of x_{i} and is denoted by $\operatorname{deg}\left(x_{i}\right)$, if $\operatorname{deg}\left(x_{i}\right) \geq \operatorname{deg}\left(x_{j}\right)$ for all $x_{j} \in V(G)$, then x_{i} is called dominating vertex of G, and the set of all dominating vertices of G is called the dominating set of G, denoted as $D(G)$. A vertex $x_{i} \in V(G)$ with $\operatorname{deg}\left(x_{i}\right)=0$ is called an isolated vertex of G. We call G a scattered graph, if it has at least one isolated vertex, otherwise, non-scattered graph. A finite sequence of nonnegative integers is called graphical degree sequence if it is a degree sequence of some graph. Throughout in this paper, we assume that $\operatorname{deg}\left(x_{1}\right) \geq \operatorname{deg}\left(x_{2}\right) \geq \cdots \geq \operatorname{deg}\left(x_{n}\right)$ in G. Now, we recall important definitions from [3].

Definition 1. Let G_{i} be a graph and pick a vertex x in $D\left(G_{i}\right)$ such that $G_{i+1}:=G_{i}-\{x\}$ is an induced, non-scattered subgraph of G_{i}. This method of obtaining an induced, non-scattered subgraph G_{i+1} from G_{i} by eliminating a vertex from the dominating set $D\left(G_{i}\right)$ is called the dominating vertex elimination method, the method is known as DVE method. See [3] for more details.

Let $G:=G_{0}$ be a graph with vertex set [n], then the length of the maximum chain of induced, non scattered subgraphs of G obtained by successively using DVE method is called the graphical degree stability of G, and it is formally denoted by $\operatorname{Stab}_{d}(G)$. In other words, if $G:=G_{0} \supset G_{1} \supset \cdots \supset G_{k}$ is the maximum chain of induced, non scattered subgraphs of G then $\operatorname{Stab}_{d}(G)=k$. Note that G_{k} is a subgraph of G with vertex set $[n-k]$.

Definition 2. Let G_{i} be a graph with vertex set $V\left(G_{i}\right)=\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$ and having the degree sequence $\left(d_{1}, d_{2}, \ldots, d_{i}\right)$, then the ideal $Q_{i}:=\left\langle x_{1}^{d_{1}}, x_{2}^{d_{2}}, \ldots, x_{i}^{d_{i}}\right\rangle$ is called the sequential ideal of G_{i}. Let $G:=$ $G_{0} \supset G_{1} \supset \cdots \supset G_{k}$ be the maximum chain of induced, non scattered subgraphs of G obtained by DVE method with $\operatorname{Stab}_{d}(G)=k$, then $I_{D}(G):=\bigcap_{j=0}^{k} Q_{j}$ is called the elimination ideal of G.

Now, we recall some definitions from graph theory.
Definition 3. Let G and H be two graphs with mutually disjoint vertex sets $V(G)=\left\{u_{1}, u_{2} \ldots, u_{n}\right\}$ and $V(H)=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} . A$ graph, denoted by $G \vee H$, is called the join of G and H if $V(G \vee H)=$ $V(G) \cup V(H)$ and $E(G \vee H)=E(G) \cup E(H) \cup\left\{u_{i} w_{j} \mid u_{i} \in V(G), w_{j} \in V(H)\right\}$.

Definition 4. Let G be a graph with vertex set $V(G)$. A subset X of $V(G)$ is called an independent set if no two vertices of X are adjacent. A k-partite graph is a graph whose vertex set $V(G)$ can be partitioned into k distinct independent sets. A complete k-partite graph is a k-partite graph with every two vertices from distinct independent sets are adjacent. If $k=2$, then graph is bipartite.

We conclude this section by recalling some important definitions and results regarding stable properties of ideals.

Let $I \subset S=k\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal. For any monomial $u \in S$ set $m(u):=\max \left\{j\left|x_{j}\right| u\right\}$ and $m(I)=\max \{m(u) \mid u \in G(I)\}$, where $G(I)$ denotes the set of minimal monomial generators of I. The highest degree of monomial in $G(I)$ is denoted by $\operatorname{deg}(I)$. Also, $I_{\geq t}$ is the monomial ideal generated by monomials of I of degree $\geq \mathrm{t}$. A monomial ideal I is stable if for each monomial $u \in I$ we have $x_{j} \cdot \frac{u}{x_{m(u)}} \in I$ for all $1 \leq j<m(u)$. We set $q(I)=m(I)(\operatorname{deg}(I)-1)+1$.

Eisenbud, Reeves and Totaro proved the following result in [6].

Theorem 1. Let I be a monomial ideal with $\operatorname{deg}(I)=d$ and $e \geq d$ be an integer such that $I_{\geq e}$ is stable, then $\operatorname{reg}(I) \leq e$.

In [2], the authors gave the following bound for the regularity of Borel type ideals.
Proposition 1. Let I be a Borel type ideal, then $\operatorname{reg}(I) \leq q(I)$.
Remark 1. As $\operatorname{Ass}\left(S / I_{D}(G)\right)$ is totally ordered under inclusion, therefore $I_{D}(G)$ is a Borel type ideal by [2, Theorem 2.2].

In [2], the authors proved the following:
Proposition 2. If I and J are two monomial ideals with $s \geq \operatorname{deg}(I)$ and $t \geq \operatorname{deg}(J)$ be two integers such that $I_{\geq s}$ and $J_{\geq t}$ are stable ideals, then $(I \cap J)_{\geq \max \{s, t\}}$ is stable ideal.

3. Main Results

In this section, we give our main results regarding the Castelnuovo-Mumford regularity of elimination ideals for different classes of graphs.

3.1. Regularity of Regular Harary Graph $H_{n-2, n}$

First, we recall the definition of Harary graph.
Definition 5. Harary graph $H_{k, n}$ is the smallest k-connected graph with n vertices. Let us have a set $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n vertices, then the construction of Harary graphs are as follows:
Case I: If $k=2 m<n$ (n may be even or odd), then place all n vertices in a circle and join each vertex x_{i} to its m consecutive left vertices and to its m consecutive right vertices by drawing edges.
Case II: Let n is even. If $k=2 m+1<n$, then first construct $H_{2 m, n}$ and then join each vertex $x_{i}, 1 \leq i \leq \frac{n}{2}$, to its diametrically opposite vertex.
Case III: If both k and n are odd then first construct $H_{k-1, n}$, then join each vertex $x_{i}, 1 \leq i \leq \frac{n-1}{2}+1$, with vertex $x_{i+\frac{n-1}{2}}$.

Note that the graphs in Case I and Case II are regular. Also note that if $k=n-1$ then Case I and Case II suggest that $H_{k, n}$ is a complete graph K_{n}. When n is even, the diametrically opposite vertex of x_{i} is given by:

$$
\begin{cases}x_{i} \leftrightarrow x_{i+\frac{n}{2}} & \text { if } 1 \leq i \leq \frac{n}{2} \\ x_{i} \leftrightarrow x_{i-\frac{n}{2}} & \text { if } \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

We are interested in computing the regularity of elimination ideal associated to $H_{n-2, n}$ when n is even and degree $k=n-2$. We begin by computing the graphical degree stability of $H_{n-2, n}$.

Lemma 1. Let $H_{n-2, n}$ be a regular Harary graph with even vertices $n=2 r \geq 4$ and degree of each vertex is $n-2$, then $\operatorname{Stab}_{d}\left(H_{n-2, n}\right)=n-3$.

Proof. We prove it by induction on r for $n=2 r \geq 4$. For $r=2, G_{0}:=H_{2,4}$ is a regular graph with degree sequence ($2,2,2,2$), so its dominating set will be $D\left(G_{0}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Now, pick vertex $x_{1} \in D\left(G_{0}\right)$, after removing x_{1} we get G_{1} with degree sequence $(2,1,1)$. The process will stop at G_{1} and $\operatorname{Stab}_{d}\left(H_{2,4}\right)=1$.

Consider the result is true for $r=p$, i.e. $\operatorname{Stab}_{d}\left(H_{2 p-2,2 p}\right)=2 p-3$.
Now take $r=p+1$, and let $G_{0}:=H_{2 p, 2 p+2}$. The degree sequence of G_{0} is $\underbrace{(2 p, \ldots, 2 p)}_{(2 p+2) \text {-tuple }}$ with dominating set is $D\left(G_{0}\right)=\left\{x_{1}, x_{2}, \ldots, x_{2 p+2}\right\}$. Choose vertex x_{1} from $D\left(G_{0}\right)$ and apply DVE method, we get G_{1} with $D\left(G_{1}\right)$ solely consists of diametrically opposite vertex (see definition 5) of x_{1} of degree
$2 p$. All other vertices are of degree $p-1$. The degree sequence of G_{1} will be $\underbrace{(2 p, 2 p-1, \ldots, 2 p-1)}_{(2 \mathrm{p}+1) \text {-tuple }}$.
On removing x_{1} (after relabeling of the vertices) we get $G_{2}:=H_{2 p-2,2 p}$. Now

$$
\begin{gathered}
\operatorname{Stab}_{d}\left(H_{2 p-2,2 p}\right)=2 p-3 \\
\Rightarrow \operatorname{Stab}_{d}\left(H_{2 p, 2 p+2}\right)=2+\operatorname{Stab}_{d}\left(H_{2 p-2,2 p}\right)=(2 p+2)-3
\end{gathered}
$$

which is required.
Example 1. Consider $H_{4,6}$, here $n=6$ and $k=4$, see Figure 1.

Figure 1. $G_{0}, G_{1}, G_{2}, G_{3}$

Corollary 1. Let $H_{n-2, n}$ be a regular Harary graph with even vertices $n \geq 4$ and degree of each vertex is $n-2$, then its sequential ideal is given as follows:

$$
Q_{i}= \begin{cases}\left\langle x_{1}^{n-i-2}, x_{2}^{n-i-2}, \ldots, x_{n-i}^{n-i-2}\right\rangle & \text { if } i \text { is even } \\ \left\langle x_{1}^{n-i-1}, x_{2}^{n-i-2}, \ldots, x_{n-i}^{n-i-2}\right\rangle & \text { if is odd }\end{cases}
$$

where $0 \leq i \leq n-3$.
Proof. The proof follows from the definition of elimination ideal and lemma 1.
Theorem 2. Let $H_{n-2, n}$ be a regular Harary graph with even vertices $n \geq 4$ and degree of each vertex is $n-2$, then $\operatorname{reg}\left(I_{D}\left(H_{n-2, n}\right)\right) \leq(n-1)(n-2)-1$.

Proof. We shall discuss the two cases of corollary 1 separately.
Case 1. When $i \in\{0,2,4, \ldots, n-4\}$, the sequential ideal is given as $Q_{i}=\left\langle x_{1}^{a_{1}}, \ldots, x_{n-i}^{a_{n-i}}\right\rangle$ where $a_{j}=n-i-2$ for all $1 \leq j \leq n-i$. Let $\gamma(i)=a_{i}\left(a_{i}+1\right)-1$ for all $i \in\{0,2,4, \ldots, n-4\}$. We shall show that $Q_{i_{2 \gamma(i)}}$ is a stable ideal. Take $u \in Q_{i_{2 \gamma(i)}}$, then $u=v x_{k}^{a_{k}}$ for some $1 \leq k \leq n-i$ where $v \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma(i)-a_{k}}$.

If $m(u)>k$, then $\frac{x_{i u}}{x_{m(u)}}=\frac{x_{1 v}}{x_{m(u)}} x_{k}^{a_{k}} \in Q_{i_{2 \gamma(i)}}$ for all $l<m(u)$. So, $Q_{i_{2 \gamma(i)}}$ is stable.
If $m(u)=k$, then clearly $u \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma(i)}$ which is a stable ideal and $Q_{i_{2 r(i)}} \subseteq\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma(i)}$. It remains to show that $\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma(i)} \subseteq Q_{i_{2} \gamma(i)}$. Let $w \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{(i)}}$ then $w=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n-i}^{\beta_{n-i}}$ with
$\overline{\beta_{s} \geq 0 \text { for all } 1 \leq s \leq n-i \text { and } \sum_{s=1}^{n-i} \beta_{s} \geq \gamma(i) \text {. Therefore, there exist at least one } r \in\{1, \ldots, n-i\} \text { such }}$ that $\beta_{r} \geq a_{r}$ and $w=\left(x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}-a_{r}} \cdots x_{n-i}^{\beta_{n-i}}\right) x_{r}^{a_{r}} \in Q_{i_{2 \gamma(i)}}$, hence the result follows.

Case 2. When $i \in\{1,3,5, \ldots, n-3\}$, the sequential ideal then is given as $Q_{i}=\left\langle x_{1}^{a_{1}}, \ldots, x_{n-i}^{a_{n-i}}\right\rangle$ where

$$
a_{j}= \begin{cases}n-i-1 & \text { if } j=1 \\ n-i-2 & \text { if } 2 \leq j \leq n-i\end{cases}
$$

Let $\gamma^{\prime}(i)=a_{i}\left(a_{i}+1\right)$ for all $i \in\{1,3,5, \ldots, n-3\}$, then we shall show that $Q_{i \geq \gamma^{\prime}(i)}$ is a stable ideal. Take $u \in Q_{i_{\imath \gamma^{\prime}(i)}}$, then $u=v x_{k}^{a_{k}}$ for some $1 \leq k \leq n-i$ where $v \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{\prime}(i)-a_{k}}$.

If $m(u)>k$, then $\frac{x_{l u}}{x_{m(u)}}=\frac{x_{1 \nu}}{x_{m(u)}} x_{k}^{a_{k}} \in Q_{i_{-\gamma^{\prime}(i)}}$ for all $l<m(u)$. So, $Q_{i_{2 \gamma^{\prime}(i)}}$ is stable.
If $m(u)=k$, then clearly $u \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{\prime}(i)}$ which is stable ideal and $Q_{i_{2} \gamma^{\prime}(i)} \subseteq\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{\prime}(i)}$. We are to show that $\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{\prime}(i)} \subseteq Q_{i \geq r^{\prime}(i)}$. Let $w \in\left\langle x_{1}, \ldots, x_{n-i}\right\rangle^{\gamma^{\prime}(i)}$ then $w=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n-i}^{\beta_{n-i}}$ with $\beta_{s} \geq 0$ for all $1 \leq s \leq n-i$ and $\sum_{s=1}^{n-i} \beta_{s} \geq \gamma^{\prime}(i)$. Therefore, there exist at least one $r \in\{1, \ldots, n-i\}$ such that $\beta_{r} \geq a_{r}$ and $w=\left(x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}-a_{r}} \cdots x_{n-i}^{\beta_{n-i}}\right) x_{r}^{a_{r}} \in Q_{i_{z^{\prime}(i)}}$ and the result follows.

By lemma 1, $\operatorname{Stab}_{d}\left(H_{n-2, n}\right)=n-3$, so the corresponding elimination ideal is given as $I_{D}\left(H_{n-2, n}\right)=$ $\bigcap_{i=0}^{n-3} Q_{i}$. By proposition 2, $I_{D}\left(H_{n-2, n}\right)$ is stable for γ_{0}, where

$$
\gamma_{0}=\max \left\{\gamma(i), \gamma^{\prime}(j) \mid i \in\{0,2, \ldots, n-4\}, j \in\{1,3, \ldots, n-3\}\right\}=(n-1)(n-2)-1
$$

and by theorem $1 \operatorname{reg}\left(I_{D}\left(H_{n-2, n}\right)\right) \leq(n-1)(n-2)-1$.
Remark 2. In example 1 ,
$D\left(G_{0}\right)=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ with $Q_{0}=\left\langle x_{1}^{4}, x_{2}^{4}, \ldots, x_{6}^{4}\right\rangle$ and $\operatorname{reg}\left(Q_{0}\right)=19$.
$D\left(G_{1}\right)=\left\{x_{1}\right\}$ with $Q_{1}=\left\langle x_{1}^{4}, x_{2}^{3}, \ldots, x_{5}^{3}\right\rangle$ and $\operatorname{reg}\left(Q_{1}\right)=12$
$D\left(G_{2}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $Q_{2}=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}\right\rangle$ and $\operatorname{reg}\left(Q_{2}\right)=5$
$D\left(G_{3}\right)=\left\{x_{1}\right\}$ with $Q_{3}=\left\langle x_{1}^{2}, x_{2}, x_{3}\right\rangle$ and $\operatorname{reg}\left(Q_{3}\right)=2$

3.2. Regularity of $K_{n} \vee P_{m}$

In [3], following formula is given to compute the graphical degree stability of path graph:
Proposition 3. Let $P_{m}, m \geq 3$, be a path graph then:

$$
\operatorname{Stab}_{d}\left(P_{m}\right)= \begin{cases}\frac{m-3}{3} & \text { if } m \equiv 0(\bmod 3) \\ \frac{m-4}{3} & \text { if } m \equiv 1(\bmod 3) \\ \frac{m-2}{3} & \text { if } m \equiv 2(\bmod 3)\end{cases}
$$

Lemma 2. Let $K_{n}, n \geq 2$ be a complete graph and $P_{m}, m \geq 4$ be a path graph then:

$$
\operatorname{Stab}_{d}\left(K_{n} \vee P_{m}\right)=n+\operatorname{Stab}_{d}\left(P_{m}\right)
$$

Proof. We shall prove it by induction on n. Let $n=2$ and $m=4$, then $G_{0}:=K_{2} \vee P_{4}$ with degree sequence $(5,5,4,4,3,3)$ and $D\left(G_{0}\right)=\left\{x_{1}, x_{2}\right\}$. Without loss of generality, remove $x_{1} \in D\left(G_{0}\right)$ to get G_{1} with the degree sequence $(4,3,3,2,2)$. So, $D\left(G_{1}\right)=\left\{x_{1}\right\}$ and on removing $x_{1} \in D\left(G_{1}\right)$, we get $G_{2}=P_{4}$.

$$
\Longrightarrow \quad \operatorname{Stab}_{d}\left(K_{2} \vee P_{4}\right)=2+\operatorname{Stab}_{d}\left(P_{4}\right)
$$

Suppose that result is true for $n=q$ and $m=r$, then $\operatorname{Stab}_{d}\left(K_{q} \vee P_{r}\right)=q+\operatorname{Stab}_{d}\left(P_{r}\right)$.
Consider $n=q+1$ and $m=r$ then $G_{0}:=K_{q+1} \vee P_{r}$ with degree sequence $(\underbrace{q+r, \ldots, q+r}_{\text {(q+1)-tuple }}, \underbrace{q+3, \ldots, q+3}_{(\text {r-2)-tuple }}, q+2, q+2)$ and $\mid V\left(G_{0} \mid=q+r+1\right.$. Since $r \geq 4, D\left(G_{0}\right)=\left\{x_{1}, \ldots, x_{q+1}\right\}$
which are precisely the vertices that were initially belonged to K_{q+1}. As removing any vertex from K_{q+1} gives K_{q}, So without loss of generality pick $x_{1} \in D\left(G_{0}\right)$ and on removing it, we get $G_{1}=K_{q} \vee P_{r}$.

$$
\Longrightarrow \quad \operatorname{Stab}_{d}\left(K_{q+1} \vee P_{r}\right)=1+\operatorname{Stab}_{d}\left(K_{q} \vee P_{r}\right)=1+q+\operatorname{Stab}_{d}\left(P_{r}\right)
$$

which completes the proof.
Corollary 2. Let $K_{n}, n \geq 2$ be a complete graph and $P_{m}, m \geq 4$ be a path graph, then the sequential ideal of $K_{n} \vee P_{m}$ is given as follows:

$$
Q_{i}= \begin{cases}\left\langle x_{1}^{m+n-i-1}, \ldots, x_{n-i}^{m+n-i-1}, x_{n-i+1}^{n-i+2}, \ldots, x_{m+n-i-2}^{n-i+2}, x_{m+n-i-1}^{n-i+1}, x_{m+n-i}^{n-i+1}\right\rangle & \text { if } 0 \leq i \leq n-1 \\ \left\langle x_{1}^{2}, x_{2}^{2}, \ldots, x_{m-3(i-n)-2}^{2}, x_{m-3(i-n)-1}^{2}, \ldots, x_{m+n-i}\right\rangle & \text { if } n \leq i \leq n+p\end{cases}
$$

where $p=\operatorname{Stab}_{d}\left(P_{m}\right)$
Proof. The proof follows immediately from lemma 2 and [3, Proposition 3.10].
Theorem 3. Let $K_{n}, n \geq 2$ be a complete graph and $P_{m}, m \geq 4$ be a path graph then $\operatorname{reg}\left(I_{D}\left(K_{n} \vee P_{m}\right)\right) \leq$ $n^{2}+2 n(m-1)+m-1$.
Proof. We shall discuss the two cases of corollary 2 separately.
Case 1. When $0 \leq i \leq n-1$, the sequential ideal is given as $Q_{i}=\left\langle x_{1}^{a_{1}}, \ldots, x_{m+n-i}^{a_{m+n-i}}\right\rangle$ where

$$
a_{j}= \begin{cases}m+n-i+1 & \text { if } 1 \leq j \leq n-i \\ n-i+2 & \text { if } n-i+1 \leq j \leq m+n-i-2 \\ n-i+1 & \text { if } n-i+1 \leq j \leq m+n-i .\end{cases}
$$

Let $\gamma(i)=(n-i)^{2}+2(m-1)(n-i)+m-1$ for all $0 \leq i \leq n-1$. We shall show that $Q_{i_{2 \gamma(i)}}$ is a stable ideal. Take $u \in Q_{i \geq 2(i)}$, then $u=v x_{k}^{a_{k}}$ for some $1 \leq k \leq m+n-i$ where $v \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)-a_{k}}$.

If $m(u)>k$, then $\frac{x_{1 u}}{x_{m(u)}}=\frac{x_{i v}}{x_{m(u)}} x_{k}^{a_{k}} \in Q_{i_{2 \gamma(i)}}$ for all $l<m(u)$. So, $Q_{i_{2 \gamma(i)}}$ is stable.
If $m(u)=k$, then clearly $u \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)}$ and $Q_{i_{2 \gamma(i)}} \subseteq\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)}$. We are to show that $\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)} \subseteq Q_{i_{\geq 2(i)}}$. Let $w \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{(i)}}$ then $w=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{m+n-i}^{\beta_{m+n-i}}$ with $\beta_{s} \geq 0$ for all $1 \leq s \leq m+n-i$ and $\sum_{s=1}^{m+n-i} \beta_{s} \geq \gamma(i)$. Therefore, there exist at least one $r \in\{1, \ldots, m+n-i\}$ such that $\beta_{r} \geq a_{r}$ and $w=\left(x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}-a_{r}} \cdots x_{m+n-i}^{\beta_{m+n-i}}\right) x_{r}^{a_{r}} \in Q_{i_{2(i)}}$ and the result follows.

Case 2. When $n \leq i \leq n+p$, the sequential ideal is given as $Q_{i}=\left\langle x_{1}^{a_{1}}, \ldots, x_{m+n-i}^{a_{m+n}}\right\rangle$ where

$$
a_{j}= \begin{cases}2 & \text { if } 1 \leq j \leq m-3(i-n)-2 \\ 1 & \text { if } m-3(i-n)-1 \leq j \leq m+n-i\end{cases}
$$

Let $\gamma^{\prime}(i)=m-3(i-n)-1$ for all $n \leq i \leq n+p$, then we shall show that $Q_{i_{2} \gamma^{\prime}(i)}$ is a stable ideal. Take $u \in Q_{i \geq \gamma^{\prime}(i)}$, then $u=v x_{k}^{a_{k}}$ for some $1 \leq k \leq m+n-i$ where $v \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\prime}(i)-a_{k}$.

If $m(u)>k$, then $\frac{x_{l} u}{x_{m(u)}}=\frac{x_{i v}}{x_{m(u)}} x_{k}^{a_{k}} \in Q_{i_{2 \gamma^{\prime}(i)}}$ for all $l<m(u)$. So, $Q_{i_{2 \gamma^{\prime}(i)}}$ is stable.
If $m(u)=k$, then clearly $u \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{\prime}(i)}$ and $Q_{i_{z \gamma^{\prime}(i)}} \subseteq\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{\prime}(i)}$. We are to show that $\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{\prime}(i)} \subseteq Q_{i z^{\prime}(i)}$. Let $w \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{\prime}(i)}$ then $w=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{m+n-i}^{\beta_{m+n-i}}$ with $\beta_{s} \geq 0$ for all $1 \leq s \leq m+n-i$ and $\sum_{s=1}^{m+n-i} \beta_{s} \geq \gamma^{\prime}(i)$. Therefore, there exist at least one $r \in\{1, \ldots, m+n-i\}$ such that $\beta_{r} \geq a_{r}$ and $w=\left(x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}-a_{r}} \cdots x_{m+n-i}^{\beta_{m+n-i}}\right) x_{r}^{a_{r}} \in Q_{i_{2 r^{\prime}(i)}}$ and the result follows.

By lemma 2, $\operatorname{Stab}_{d}\left(K_{n} \vee P_{m}\right)=n+p$, so the corresponding elimination ideal is given as $I_{D}\left(K_{n} \vee\right.$ $\left.P_{m}\right)=\bigcap_{i=0}^{n+p} Q_{i}$, by proposition $2, I_{D}\left(K_{n} \vee P_{m}\right)$ is stable for γ_{0}, where

$$
\gamma_{0}=\max \left\{\gamma(i), \gamma^{\prime}(j) \mid 0 \leq i \leq n-1 \text { and } n \leq j \leq n+p\right\}=n^{2}+2 n(m-1)+m-1
$$

and by theorem $1, \operatorname{reg}\left(I_{D}\left(K_{n} \vee P_{m}\right)\right) \leq n^{2}+2 n(m-1)+m-1$.

Example 2. Consider $K_{3} \vee P_{4}$, here $n=3$ and $m=4$.
$D\left(G_{0}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}, Q_{0}=\left\langle x_{1}^{6}, x_{2}^{6}, x_{3}^{6}, x_{4}^{5}, x_{5}^{5}, x_{6}^{4}, x_{7}^{4}\right\rangle$ and $\operatorname{reg}\left(Q_{0}\right)=30$, see Figure 2.

Figure 2. $G_{0}=K_{3} \vee P_{4}$
$D\left(G_{1}\right)=\left\{x_{1}, x_{2}\right\}, Q_{1}=\left\langle x_{1}^{5}, x_{2}^{5}, x_{3}^{4}, x_{4}^{4}, x_{5}^{3}, x_{6}^{3}\right\rangle$ and $\operatorname{reg}\left(Q_{1}\right)=19$, see Figure 3.

Figure 3. G_{1}
$D\left(G_{2}\right)=\left\{x_{1}\right\}, Q_{2}=\left\langle x_{1}^{4}, x_{2}^{3}, x_{3}^{3}, x_{4}^{2}, x_{5}^{2}\right\rangle$ and $\operatorname{reg}\left(Q_{2}\right)=10$, see Figure 4.

Figure 4. G_{2}
$D\left(G_{3}\right)=\left\{x_{1}, x_{2}\right\}, Q_{3}=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}, x_{4}\right\rangle$ and $\operatorname{reg}\left(Q_{3}\right)=3$, see Figure 5.

Figure 5. G_{3}

3.3. Regularity of complete bipartite graph $K_{m, n}$

We recall the result about graphical degree stability of complete bipartite graph from [3]:
Proposition 4. Let $K_{m, n}$ be a complete bipartite graph with $m \geq n$ then:

$$
\operatorname{Stab}_{d}\left(K_{m, n}\right)=n-1
$$

We generalize this result for complete n-partite graphs.
Lemma 3. Let $K_{m_{1}, \ldots, m_{n}}$ be a complete n-partite graph with $m_{i} \geq m_{j}$ for $1 \leq i<j \leq n$, then

$$
\operatorname{Stab}_{d}\left(K_{m_{1}, \ldots, m_{n}}\right)=m_{n}+m_{n-1}+\cdots+m_{2}-1
$$

Proof. We prove it by induction. For $n=2$, we have $K_{m_{1}, m_{2}}$ with $m_{1} \geq m_{2}$ then by proposition 4:

$$
\operatorname{Stab}_{d}\left(K_{m_{1}, m_{2}}\right)=m_{2}-1
$$

Let the result is true for $n=k-1$, i.e.

$$
\operatorname{Stab}_{d}\left(K_{m_{1}, \ldots, m_{k-1}}\right)=m_{k-1}+m_{k-2}+\cdots+m_{2}-1
$$

with $m_{i} \geq m_{j}$ if $1 \leq i<j \leq k-1$.
Consider $G_{0}:=K_{m_{1}, \ldots, m_{k}}$, be the complete k-partite graph and $V\left(G_{0}\right)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$, where each $X_{r}=\left\{x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{m_{r}}}\right\}$ is an independent set with $\left|X_{r}\right|=m_{r}, 1 \leq r \leq k$. Further $m_{i} \geq m_{j}$ if $1 \leq i<j \leq k$.

If $x \in X_{r}, 1 \leq r \leq k$ then degree of x would be $m_{1}+\cdots+m_{r-1}+m_{r+1}+\cdots+m_{k}$. As $m_{k} \leq m_{j}$ for all $1 \leq j \leq k-1$, hence $X_{k} \subseteq D\left(G_{0}\right)$. So, without loss of generality we pick the vertex $x_{k_{m_{k}}} \in X_{k}$, removing it will give us a new graph G_{1} with dominating set $D\left(G_{1}\right)=X_{k}-\left\{x_{k_{m_{k}}}\right\}$ with degree of each vertex of $D\left(G_{1}\right)$ is still $m_{1}+\cdots+m_{k-1}$. If $x \in X_{r}, 1 \leq r \leq k-1$ then degree of x in G_{1} would be $m_{1}+\cdots+m_{r-1}+m_{r+1}+\cdots+m_{k}-1$. Now pick $x_{k_{m_{k-1}}}$ from $D\left(G_{1}\right)$ and remove it so that we get new graph G_{2} with dominating set $D\left(G_{2}\right)=X_{k}-\left\{x_{k_{m_{k}}}, x_{k_{m_{k-1}}}\right\}$ with degree of each vertex of $D\left(G_{2}\right)$ is still $m_{1}+\cdots+m_{k-1}$. If $x \in X_{r}, 1 \leq r \leq k-1$ then degree of x in G_{2} would be $m_{1}+\cdots+m_{r-1}+m_{r+1}+\cdots+m_{k}-2$. Continue in this way we get $G_{m_{k}}:=K_{m_{1}, \ldots, m_{k-1}}$. So,

$$
\operatorname{Stab}_{d}\left(K_{m_{1}, \ldots, m_{k}}\right)=m_{k}+\operatorname{Stab}_{d}\left(K_{m_{1}, \ldots, m_{k-1}}\right)=m_{k}+m_{k-1}+\cdots+m_{2}-1
$$

which completes the proof.
Corollary 3. Let $K_{m, n}$ be a complete bipartite graph with $m \geq n$, then the sequential ideal is given as follows:

$$
Q_{i}=\left\langle x_{1}^{m}, \ldots, x_{n-i}^{m}, x_{n-i+1}^{n-i}, \ldots, x_{m+n-i}^{n-i}\right\rangle
$$

where $0 \leq i \leq n-1$.

Proof. The proof follows immediately from lemma 4.
Theorem 4. Let $K_{m, n}$ be a complete bipartite graph with $m \geq n$, then

$$
\operatorname{reg}\left(I_{D}\left(K_{m, n}\right)\right) \leq m+(2 m-1)(n-1) .
$$

Proof. By proposition 4, $\operatorname{Stab}_{d}\left(K_{m, n}\right)=n-1$. The sequential ideal is given as $Q_{i}=\left\langle x_{1}^{a_{1}}, \ldots, x_{m+n-i}^{a_{m+n-i}}\right\rangle$ for all $0 \leq i \leq n-1$ where

$$
a_{j}= \begin{cases}m & \text { if } 1 \leq j \leq n-i \\ n-i & \text { if } n-i+1 \leq j \leq m+n-i\end{cases}
$$

Let $\gamma(i)=m+(2 m-1)(n-i-1)$ for all $0 \leq i \leq n-1$, then we shall show that $Q_{i_{2 r(i)}}$ is a stable ideal. Take $u \in Q_{i_{2 \gamma(i)}}$, then $u=v x_{k}^{a_{k}}$ for some $1 \leq k \leq m+n-i$ where $v \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)-a_{k}}$.

If $m(u)>k$, then $\frac{x u}{x_{m(u)}}=\frac{x_{1 v}}{x_{m(u)}} x_{k}^{a_{k}} \in Q_{i_{2 \gamma(i)}}$ for all $l<m(u)$. So, $Q_{i_{2 \gamma(i)}}$ is stable.
If $m(u)=k$, then clearly $u \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)}$ and $Q_{i_{2 \gamma(i)}} \subseteq\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)}$. We are to show that $\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma(i)} \subseteq Q_{i_{2 \gamma(i)}}$. Let $w \in\left\langle x_{1}, \ldots, x_{m+n-i}\right\rangle^{\gamma^{(i)}}$ then $w=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{m+n-i}^{\beta_{m+n-i}}$ with $\beta_{s} \geq 0$ for all $1 \leq s \leq m+n-i$ and $\Sigma_{s=1}^{m+n-i} \beta_{s} \geq \gamma(i)$. Therefore, there exist at least one $r \in\{1, \ldots, m+n-i\}$ such that $\beta_{r} \geq a_{r}$ and $w=\left(x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}-a_{r}} \cdots x_{m+n-i}^{\beta_{m+n-i}}\right) x_{r}^{a_{r}} \in Q_{i_{2}(i)}$ and the result follows.

By proposition 2, $I_{D}\left(K_{m, n}\right)=\bigcap_{i=0}^{n-1} Q_{i}$ is stable for γ_{0}, where

$$
\gamma_{0}=\max \{\gamma(i) \mid 0 \leq i \leq n-1\}=m+(2 m-1)(n-1)
$$

and by theorem $1, \operatorname{reg}\left(I_{D}\left(K_{m, n}\right)\right) \leq m+(2 m-1)(n-1)$.
Example 3. Consider $K_{4,3}$, here $m=4$ and $n=3$.
$D\left(G_{0}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}, Q_{0}=\left\langle x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}, x_{5}^{3}, x_{6}^{3}, x_{7}^{3}\right\rangle$ and $\operatorname{reg}\left(Q_{0}\right)=18$, see Figure 6.

Figure 6. $G_{0}=K_{4,3}$
$D\left(G_{1}\right)=\left\{x_{1}, x_{2}\right\}, Q_{1}=\left\langle x_{1}^{4}, x_{2}^{4}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}, x_{6}^{2}\right\rangle$ and $\operatorname{reg}\left(Q_{1}\right)=11$,see Figure 7.

Figure 7. $G_{1}=K_{4,2}$
$D\left(G_{2}\right)=\left\{x_{1}\right\}, Q_{2}=\left\langle x_{1}^{4}, x_{2}, x_{3}, x_{4}, x_{5}\right\rangle$ and $\operatorname{reg}\left(Q_{2}\right)=4$, see Figure 8.

Figure 8. $G_{2}=K_{4,1}$

Remark 3. As elimination ideals are of Borel type ideals and an upper bound for Borel type ideal were discussed in [2] and [5]. It is worthy to note that our given bounds are sharper than the one given in [2] and [5].

Acknowledgement

The first and second authors were supported by the Higher Education Commission (Islamabad) through the National Research Program for Universities, Grant No.7359/Punjab/NRPU/R\&D/HEC/ 2017.

Conflict of Interest

The author declares no conflict of interests.

References

1. Herzog, J., Popescu, D. and Vladoiu, M., 2003. On the Ext-modules of ideals of Borel type. Contemporary Mathematics, 331, pp.171-186.
2. Ahmad, S. and Anwar, I., 2008. An upper bound for the regularity of ideals of Borel type. Communications in Algebra, 36(2), pp.670-673.
3. Anwar, I. and Khalid, A., 2019. Algebraic characterization of graphical degree stability. Communications of the Korean Mathematical Society, 34(1), pp.113-125.
4. Bayer, D. and Mumford, D., 1993. What can be computed in Algebraic Geometry? in Computational Algebraic Geometry and Commutative Algebra, Symposia Mathematica XXXIV, 1-48.
5. Cimpoeaş, M., 2008. A stable property of Borel type ideals. Communications in Algebra, 36(2), pp.674-677.
6. Eisenbud, D., Reeves, A. and Totaro, B., 1994. Initial ideals, Veronese subrings, and rates of algebras. Advances in Mathematics, 109(2), pp.168-187.
7. Cimpoeaş, M., 2007. Contributions in combinatorics in commutative algebra, Ph.D. Thesis, University of Bucharest.
