

Article

Description of the (\leq 3)-hypomorphic Posets and Bichains. Application to the (\leq 3)-reconstruction

Hamza Ben Brahim¹ and Mohamed Y. Sayar^{1,*}

- ¹ Faculty of Science of Sfax, Department of Mathematics Soukra Road km 4, PO Box 802, 3018 Sfax, Tunisia
- * Correspondence: sayar_mohamed@yahoo.fr

Abstract: Two binary structures \Re and \Re' on the same vertex set *V* are $(\leq k)$ -hypomorphic for a positive integer *k* if, for every set *K* of at most *k* vertices, the two binary structures induced by \Re and \Re' on *K* are isomorphic. A binary structure \Re is $(\leq k)$ -reconstructible if every binary structure \Re' that is $(\leq k)$ -hypomorphic to \Re is isomorphic to \Re . In this paper, we describe the pairs of (≤ 3) -hypomorphic bichains. As a consequence, we characterize the (≤ 3) -reconstructible posets and the (≤ 3) -reconstructible bichains. This answers a question suggested by Y. Boudabbous and C. Delhommé during a personal communication.

Keywords: Binary structure, Binary relation, Posets, Chain-modules, Hypomorphy, Reconstruction, Bichain, Linear-modules

Mathematics Subject Classification: 05C60, 05C20, 05C63

1. Introduction

All binary relations considered in this paper are irreflexive binary relations. Two binary relations \mathcal{R}_1 and \mathcal{R}_2 on the same vertex set V are $(\leq k)$ -hypomorphic for a positive integer k if, for every set K of at most k vertices, the two binary relations induced by \mathcal{R}_1 and \mathcal{R}_2 on K are isomorphic. A binary relation \mathcal{R} is $(\leq k)$ -reconstructible if every binary relation \mathcal{R}' that is $(\leq k)$ -hypomorphic to \mathcal{R} is isomorphic to \mathcal{R} . G. Lopez showed in [1–3] that finite binary relations are (≤ 6)-reconstructible. This work was extended to the infinite case by J.G. Hagendorf in [4]. These works make essential use of difference classes introduced by Lopez [2, 3]. Based on the description by Lopez and C. Rauzy [5] of the difference classes of finite (≤ 4)-hypomorphic binary relations, Y. Boudabbous [6] provided a characterization of the (\leq 5)-reconstructible finite binary relations, that generalizes to (≤ 4) -reconstructibility. On the other hand, in [7] Boudabbous and C. Delhommé characterized the $(\leq k)$ -reconstructible binary relations (finite or not), for each $k \geq 4$. For the (≤ 3) -reconstruction, Boudabbous and Lopez [8] characterized the finite binary relations that are (≤ 3)-reconstructible. Hagendorf [4] proved that every finite poset with at least 4 vertices is (≤ 3)-reconstructible. In [9] Boudabbous and Delhommé suggested the question about the characterization of the (\leq 3)-reconstruction of posets and bichains. In this paper, we give an answer to this question as follows. We first describe the pairs of (\leq 3)-hypomorphic posets and the pairs of (\leq 3)-hypomorphic bichains. As a consequence of these descriptions, we give a characterization of the (≤ 3)-reconstructible posets and bichains:

Theorem 1. Two posets are (\leq 3)-hypomorphic if and only if they have the same maximal chainmodules, and they have the same corresponding quotient relation.

Theorem 2. Two bichains are (≤ 3) -hypomorphic if and only if they have the same partition into maximal linear-modules, the two corresponding quotients are equal, and each maximal linear-module has the same kind in both.

We deduce the following (≤ 3)-reconstruction results.

Corollary 1. A poset is (≤ 3) -reconstructible if and only if its chain-modules are finite.

Corollary 2. A bichain is (≤ 3) -reconstructible if and only if its linear-modules are finite.

2. Preliminaries

Binary Structures

A binary structure is a pair $\Re := (V, (\mathcal{R}_i)_{i \in I})$ made of a set *V* and a family $(\mathcal{R}_i)_{i \in I}$ of binary relations on *V*. When |I| = 1, the binary structure is a binary relation. A binary relation (V, \mathcal{R}) is a *partially ordered set* (*order* or *poset*) if the relation \mathcal{R} is an irreflexive, antisymmetric and transitive binary relation on *V*. The binary structure is a bichain when |I| = 2 and \mathcal{R}_1 and \mathcal{R}_2 are linear orderings (or simply chains). The substructure induced by \Re on a subset *A* of *V*, simply called the restriction of \Re to *A*, is the binary structure $\Re \upharpoonright A := (A, (\mathcal{R}_i \upharpoonright A)_{i \in I})$, where $\mathcal{R}_i \upharpoonright A := \mathcal{R}_i \cap A^2$ for all $i \in I$. Finally, a set *M* of vertices is a *module* [10, 11] (is an *interval* [12], is an *autonomous* set [13] or a clan [14]) of \Re , if for each $i \in I$,

 $((b, a) \in \mathcal{R}_i \iff (b, a') \in \mathcal{R}_i)$ and $((a, b) \in \mathcal{R}_i \iff (a', b) \in \mathcal{R}_i)$ for any vertices a, a', b with $a, a' \in M$ and $b \notin M$.

The empty set, the singletons of *V* and the set *V* are modules of \Re and said to be *trivial*. Notice for instance that if the two linear orderings of a bichain have a common *extremum x* (that may be a *minimum* for one and a *maximum* for the other one), then $V \setminus \{x\}$ is a module of the bichain.

The following is easy to check;

Lemma 1. The collection \mathcal{M} of modules of a binary structure \Re with vertex set V satisfies the following properties;

- 1. It contains the empty set, the singletons and the vertex set (trivial modules).
- 2. It is closed under arbitrary intersection, i.e. $\forall N \subseteq M$: $\cap N \in M$ (with the convention that $\cap \emptyset = V$).
- 3. It contains the union of any subcollection with a non-empty intersection, i.e. $\forall N \subseteq \mathcal{M}(\cap N \neq \emptyset \Rightarrow \cup N \in \mathcal{M})$.
- 4. It is closed under balanced difference, i.e. $\forall M, N \in \mathcal{M}(M \setminus N \neq \emptyset \Rightarrow N \setminus M \in \mathcal{M})$.

A modular partition of a binary structure \Re is a partition \mathcal{P} of its vertex set V into modules of \Re . Notice that the elements of such a partition are non-empty. The elements of \mathcal{P} may be considered as the vertices of a new binary structure, the *quotient* \Re/\mathcal{P} of \Re by \mathcal{P} , defined as follows: $\Re/\mathcal{P} := (\mathcal{P}, (\mathcal{R}_i/\mathcal{P})_{i \in I})$, where for all $i \in I, \mathcal{R}_i/\mathcal{P}$ is a binary relation defined on \mathcal{P} by:

For all $A \neq B \in \mathcal{P}$, $(A, B) \in \mathcal{R}_i / \mathcal{P} \Leftrightarrow (a, b) \in \mathcal{R}_i$, for any vertices a, b with $a \in A$ and $b \in B$.

Let $\mathfrak{R} := (V, (\mathcal{R}_i)_{i \in I})$ and $\mathfrak{R}' := (V', (\mathcal{R}'_i)_{i \in I})$ be two binary structures. A map $f : V \longrightarrow V'$ is an isomorphism from \mathfrak{R} onto \mathfrak{R}' if f is bijective and satisfies: $(x, y) \in \mathcal{R}_i$ if and only if $(f(x), f(y)) \in \mathcal{R}'_i$,

for any $(x, y) \in V^2$, $i \in I$. The binary structure \Re is isomorphic to \Re' if there is some isomorphism from \Re onto \Re' , which is denoted $\Re \simeq \Re'$. The binary structure \Re is embeddable into \Re' , which is denoted $\Re \leq \Re'$, if \Re is isomorphic to some restriction of \Re' .

We recall the basic notions of the *reconstruction* problems in the theory of relations that we apply to the case of binary structures. Let \Re and \Re' be two binary structures on the same set V and let k be a positive integer. The binary structure \Re' is $(\leq k)$ -hypomorphic to \Re if for each subset A of V with at most k elements, the induced binary structures $\Re' \upharpoonright A$ and $\Re \upharpoonright A$ are isomorphic. The binary structure \Re is $(\leq k)$ -hypomorphic to \Re is isomorphic to \Re .

Lemma 2. Consider two binary structures \Re and \Re' with the same vertex set and a common modular partition \mathcal{M} such that $\Re/\mathcal{M} = \Re'/\mathcal{M}$. Then the following assertions hold.

- 1. If the restrictions $\mathfrak{R} \upharpoonright M$ and $\mathfrak{R}' \upharpoonright M$ are isomorphic for each member M of \mathcal{M} , then \mathfrak{R} and \mathfrak{R}' are isomorphic.
- 2. For $k \ge 1$, if $\Re \upharpoonright M$ and $\Re' \upharpoonright M$ are $(\le k)$ -hypomorphic for each $M \in M$, then \Re and \Re' are $(\le k)$ -hypomorphic.

Proof. Clearly, the first assertion is easy to check. Now, consider an integer $k \ge 1$ and let us prove the second assertion. Consider two binary structures \Re and \Re' with the same vertex set V and a common modular partition \mathcal{M} such that $\Re/\mathcal{M} = \Re'/\mathcal{M}$, and $\Re \upharpoonright \mathcal{M}$ and $\Re' \upharpoonright \mathcal{M}$ are $(\le k)$ -hypomorphic for each $\mathcal{M} \in \mathcal{M}$. Given a subset X of V with $|X| \le k$, we will show that $\Re \upharpoonright X \simeq \Re' \upharpoonright X$. Let $X_{\mathcal{M}}$ denote the set $\{Y \cap X : Y \in \mathcal{M} \text{ and } Y \cap X \neq \emptyset\}$. Since \mathcal{M} is a common modular partition of \Re and $\Re/\mathcal{M} = \Re'/\mathcal{M}$, $X_{\mathcal{M}}$ is a common modular partition of $\Re \upharpoonright \Lambda$ and $\Re' \upharpoonright X$ and $\Re' \upharpoonright X$, and $(\Re \upharpoonright X)/X_{\mathcal{M}} = (\Re' \upharpoonright X)/X_{\mathcal{M}}$. Since $\Re \upharpoonright M$ and $\Re' \upharpoonright M$ are $(\le k)$ -hypomorphic for each $M \in \mathcal{M}$, $(\Re \upharpoonright X) \upharpoonright Y \simeq (\Re' \upharpoonright X) \upharpoonright Y$, for each element Y of $X_{\mathcal{M}}$. If $X_{\mathcal{M}}$ is a singleton $\{Y\}$, then $\Re \upharpoonright X \simeq \Re' \upharpoonright X$ because $\Re \upharpoonright X \simeq \Re' \upharpoonright X$ and $\Re' \upharpoonright X = (\Re' \upharpoonright X) \upharpoonright Y$. Otherwise, by the first assertion applied to $\Re \upharpoonright X$ and $\Re' \upharpoonright X \simeq \Re' \upharpoonright X$. Thus, \Re and \Re' are $(\le k)$ -hypomorphic.

3. (≤ 3) -hypomorphic Posets

Let $P := (V, \mathcal{R})$ be a poset. By $x <_P y$, we denote the fact that $(x, y) \in \mathcal{R}$. By $x \parallel_P y$, we denote the fact that $(x, y) \notin \mathcal{R}$ and $(y, x) \notin \mathcal{R}$. The *dual* of *P* is the poset denoted by P^* and defined on the set *V* as follows: $x <_{P^*} y$ if and only if $y <_P x$. Finally, remark that *P* and *P*^{*} have the same modules.

Notation 1. Given a poset P on a vertex set V, let A and B be two disjoint subsets of V, and x be an element of $V \setminus A$. Write,

- $A <_P B$, if $a <_P b$ for all $a \in A$ and for all $b \in B$.
- A ||_P B, if a ||_P b for all a ∈ A and for all b ∈ B.
 For A = {a}, A <_P B (respectively A ||_P B) will be denoted simply by a <_P B (respectively a ||_P B).
 For B = {b}, A <_P B (respectively A ||_P B) will be denoted simply by A <_P b (respectively A ||_P b).
- $x \sim_P A$ (or simply $x \sim A$), if A is a module of $P \upharpoonright A \cup \{x\}$, i.e. $x <_P A$ or $A <_P x$ or $x \parallel_P A$.
- $x \nleftrightarrow_P A$ (or simply $x \nleftrightarrow A$), if A is not a module of $P \upharpoonright A \cup \{x\}$.

3.1. Particular Posets

In this subsection, we present some useful particular posets. \mathcal{V} -order

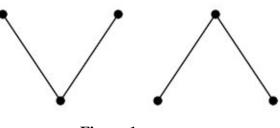


Figure 1. V-orders

A 3-element order is called \mathcal{V} -order if it is isomorphic to one of the two orders illustrated in Figure 1.

Lozenge

A 4-element order is called a *lozenge* if it is isomorphic to the order illustrated in Figure 2.

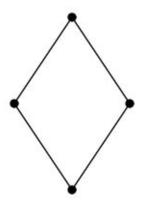


Figure 2. Lozenge

3.2. Posets and Maximal Chain-modules

Chain-modules

A *chain-module* M of a poset P is a module of P which is a chain.

In [7], the authors showed that the maximal chain-modules form a partition of the vertex set of a given binary relation and they showed the following lemma.

Lemma 3. [7] Given a binary relation \mathcal{R} , the union of any collection of chain-modules containing a given vertex is a chain-module. Every non-empty chain-module of \mathcal{R} is included in a unique maximal one. In particular, the maximal chain-modules form a partition of its vertex set, and in the corresponding quotient relation the chain-modules have at most one element.

Notation 2. *Given a poset P on a vertex set V, and a proper module M of P, we consider the following useful subsets of V* \setminus *M;*

- $M_0 = \{a \in V \setminus M \text{ such that } a \parallel_P M\}.$
- $M^- = \{a \in V \setminus M \text{ such that } a <_P M\}.$
- $M^+ = \{a \in V \setminus M \text{ such that } M \leq_P a\}.$

Remark 1. The set of non-empty elements of $\{M_0, M^+, M^-\}$ is a partition of $V \setminus M$.

Proposition 1. Given a poset P on a vertex set V such that P is not a chain, consider a maximal chain-module M of P and an element a of M^- (respectively M^+). Then at least one of the assertions below holds;

1. There is $x \in M_0$ such that $P \upharpoonright \{a, x, y\}$ is a \mathcal{V} -order, for all $y \in M$ (see Figure 3).

- 2. There is $x \in M^- \setminus \{a\}$ (respectively $M^+ \setminus \{a\}$) such that $P \upharpoonright \{a, x, y\}$ is a \mathcal{V} -order, for all $y \in M$ (see Figure 4).
- 3. There are $x \neq y \in M^- \setminus \{a\}$ (respectively $M^+ \setminus \{a\}$) such that $P \upharpoonright \{a, x, y, z\}$ is a lozenge, for all $z \in M$ (see Figure 5).

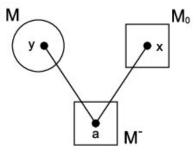


Figure 3. The First Assertion

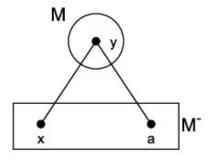


Figure 4. The Second Assertion

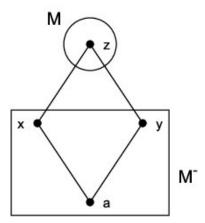


Figure 5. The Last Assertion

Proof. By Interchanging *P* and *P*^{*}, we may assume that $a \in M^-$. We distinguish the following two cases according to the comparability of *a* and the elements of M_0 .

Case 1: There is $x \in M_0$ such that *a* and *x* are comparable. Since $a <_P M$ and $M \parallel_P x$, $a <_P x$. Therefore, $P \upharpoonright \{a, x, y\}$ is a V-order, for all $y \in M$, and thus assertion (1) holds.

Case 2: For all $z \in M_0$, $a \parallel_P z$; i.e. $a \parallel_P M_0$. Recall that $M \cup \{x\}$ is a chain by the definition of M^- . Using the maximality of the chain-module M in P, we conclude that $|M^-| \ge 2$. Now, according to the

comparability between *a* and the elements of $M^- \setminus \{a\}$, we will discuss the following two subcases. **Case 2.1:** There is $x \in M^- \setminus \{a\}$ such that $x \parallel_P a$. In this case, $P \upharpoonright \{a, x, y\}$ is a \mathcal{V} -order, for all $y \in M$, and thus assertion (2) holds.

Case 2.2: For all $t \in M^- \setminus \{a\}$, *a* and *t* are comparable. Remark that $M \cup \{a\} \cup (\{a\}^+ \cap M^-) <_P M^+$ (because $M \cup M^- <_P M^+$) and $(\{a\}^- \cap M^-) <_P M \cup \{a\} \cup (\{a\}^+ \cap M^-)$. In addition, since $a <_P (\{a\}^+ \cap M^-)$, $a \parallel_P M_0$ and $M \parallel_P M_0$, $(\{a\}^+ \cap M^-) \parallel_P M_0$. Thus, $M \cup \{a\} \cup (\{a\}^+ \cap M^-) \parallel_P M_0$. It follows that, $M \cup \{a\} \cup (\{a\}^+ \cap M^-)$ is a module of *P*. Using the maximality of *M* in *P*, it follows that, $(\{a\}^+ \cap M^-) \cup \{a\}$ is not a chain of *P*. Therefore, $|(\{a\}^+ \cap M^-)| \ge 2$, and there are $x \ne y \in (\{a\}^+ \cap M^-)$ such that $x \parallel_P y$. Consequently, $P \upharpoonright \{a, x, y, z\}$ is a lozenge for all $z \in M$. Thus, assertion (3) holds.

Remark 2. By Proposition 1, each element of $M^+ \cup M^-$ belongs to a \mathcal{V} -order or a lozenge of P.

The following useful remark is easily verified;

Remark 3. Consider two (\leq 3)-hypomorphic posets *P* and *P'* on the same vertex set *V* and a subset *X* of *V*. If $P \upharpoonright X$ is a *V*-order or a lozenge, then $P' \upharpoonright X = P \upharpoonright X$.

Corollary 3. Given two (\leq 3)-hypomorphic posets P and P' on the same vertex set V, consider a maximal chain-module M of P. Then P' \upharpoonright {a, x} = P \upharpoonright {a, x}, for all $x \in V \setminus M$ and $a \in M$.

Proof. Since the result is clear if *P* is a chain, assume that $M \neq V$, and consider an element *x* of $V \setminus M$ and an element *a* of *M*. By Remark 1, $x \in M_0 \cup M^- \cup M^+$. Without loss of generality, by interchanging *P* and *P*^{*}, we may assume that *x* is an element of $M_0 \cup M^-$. First, assume that $x \in M_0$. Then, $P' \upharpoonright \{a, x\} = P \upharpoonright \{a, x\}$ because *P* and *P'* are (≤ 2)-hypomorphic. Second, assume that $x \in M^-$. By Remark 2, the vertex *x* belongs to a *V*-order or a lozenge. In the first case, by Proposition 1, there is $b \in M_0 \cup M^-$ such that $P \upharpoonright \{a, b, x\}$ is a *V*-order of *P*. Since the posets *P* and *P'* are (≤ 3)-hypomorphic and $P \upharpoonright \{a, b, x\}$ is a *V*-order, $P' \upharpoonright \{a, b, x\} = P \upharpoonright \{a, b, x\}$ by Remark 3. In particular, $P' \upharpoonright \{a, x\} = P \upharpoonright \{a, x\}$. In the second case, by Proposition 1, there are $b \neq c \in (M^- \setminus \{x\})$ such that $P \upharpoonright \{a, b, c, x\}$ is a lozenge of *P*. Since *P* and *P'* $\upharpoonright \{a, x\} = P \upharpoonright \{a, x, c, x\}$ is a lozenge of *P*. Since *P* and *P'* $\upharpoonright \{a, x\} = P \upharpoonright \{a, x, c, x\}$ is a lozenge of *P*. Since *P* and *P'* $\upharpoonright \{a, x\} = P \upharpoonright \{a, x, c, x\}$ is a lozenge of *P*. Since *P* and *P'* are (≤ 3)-hypomorphic and $P \upharpoonright \{a, b, c, x\}$ is a lozenge of *P*. Since *P* and *P'* are (≤ 3)-hypomorphic and *P* $\upharpoonright \{a, b, c, x\}$ is a lozenge, by Remark 3, *P'* $\upharpoonright \{a, b, c, x\} = P \upharpoonright \{a, b, c, x\}$. Consequently, *P'* $\upharpoonright \{a, x\} = P \upharpoonright \{a, x\}$.

3.3. Proof of Theorem 1

Consider two (\leq 3)-hypomorphic posets *P* and *P'* with the same vertex set *V*. By Lemma 3, the maximal chain-modules of *P* and those of *P'* form two partitions of *V*. Denote by *Q* and *Q'* the partition of *V* in maximal chain-modules of *P* and *P'* respectively. Consider an element *M* of *Q*. Since *P* and *P'* are (\leq 3)-hypomorphic, *M* is a chain of *P'*. Now, consider an element *x* of *V* \ *M*. By Corollary 3, *P'* \upharpoonright {*a*, *x*} = *P* \upharpoonright {*a*, *x*}, for all *a* \in *M*. Moreover, *x* ~ *M* in *P* because *M* is a module of *P*. It follows that, *x* ~ *M* in *P'*, and hence *M* is a chain-module of *P'*. Let *M'* be the element of *Q'* including *M*. By what precedes, *M'* is a chain-module of *P*. Thus, there is an element *M''* of *Q* including *M'*. Consequently, *M''* = *M'* = *M*, and hence *Q'* = *Q*. Finally, Corollary 3 implies that the quotient relations *P/Q* and *P'/Q* are equal.

Conversely, consider two posets *P* and *P'* on the same vertex set *V* having the same modular partition *Q* on maximal chain-modules such that P/Q = P'/Q. We have to prove that *P* and *P'* are (\leq 3)-hypomorphic. Let $M \in Q$. Since *M* is a chain of *P* and *P'*, $P \upharpoonright M$ and $P' \upharpoonright M$ are (\leq 3)-hypomorphic. By Lemma 2, it follows that *P* and *P'* are (\leq 3)-hypomorphic.

Remark 4. Theorem 1 can be obtained by the use of the difference classes introduced by G. Lopez [1-3], but our proof is self-contained.

4. Bichains

4.1. Linear-vertex Subsets and Linear-modules

Given a bichain $\mathfrak{B} := (V, L_1, L_2)$, a vertex subset W is called *linear* if $L_2 \upharpoonright W = L_1 \upharpoonright W$ or $L_2 \upharpoonright W = L_1^* \upharpoonright W$. In the first case, W is *positive linear* and in the second it is *negative linear*. If in addition W is a module of \mathfrak{B} , speak of *linear-module*, positive linear-module and negative linear-module. If $L_2 = L_1$ or $L_2 = L_1^*$, speak of linear-bichain, positive linear-bichain and negative linear-bichain. Finally, we say that two linear-bichains have the same *kind* if they are both positive or both negative.

4.2. Maximal Linear-modules

We prove the following useful result by considering the linear-modules of a given bichain.

Lemma 4. Given a bichain \mathfrak{B} , the union of any collection of linear-modules containing a given vertex is a linear-module. Every non-empty linear-module of \mathfrak{B} is included in a unique maximal one. In particular, the maximal linear-modules of \mathfrak{B} form a modular partition of \mathfrak{B} .

Proof. Consider a bichain $\mathfrak{B} := (V, L_1, L_2)$. We start by the following two facts;

Fact 1: If *M* and *N* are two linear-modules such that $M \cap N \neq \emptyset$, then they are with the same kind.

Indeed, the result is immediate when $M \subseteq N$ or $N \subseteq M$. Now, assume that M and N overlap. In this case, $|M| \ge 2$ and $|N| \ge 2$. By Lemma 1, $N \setminus M$ and $M \setminus N$ are modules of \mathfrak{B} and hence they are modules of both L_1 and L_2 . To the contrary, suppose that M is positive and N is negative. It follows that, $|M \cap N| = 1$. Let denote by x the unique element of $M \cap N$. Observe that, x must be the smallest element or the largest one of the linear ordering $L_1 \upharpoonright N$ because $N \setminus M$ is a module of L_1 . First, assume that x is the smallest element of the linear ordering $L_1 \upharpoonright N$, i.e. $x <_{L_1} N \setminus M$. Since N is negative, it follows that x is also the smallest element of the linear ordering $L_2 \upharpoonright N$, i.e. $x <_{L_2} N \setminus M$. Recall that a linear ordering and its dual have the same modules. Since M and N are modules of both L_1 and L_2 , M and N are also modules of L_1 and L_2^* . Therefore, the fact that $x <_{L_1} N \setminus M$ and $x <_{L_2^*} N \setminus M$, and M is a module of L_1 and L_2^* implies that $M \setminus N <_{L_1} N \setminus M$ and $M \setminus N <_{L_2^*} N \setminus M$. Since N is a module of L_1 and L_2^* implies that $M \setminus N <_{L_1} N \setminus M$ and $M \setminus N <_{L_2^*} N \setminus M$. Since N is a module of L_1 and L_2^* modules of L_1 and L_2^* implies that $M \setminus N <_{L_1} N \setminus M$ and $M \setminus N <_{L_2^*} N \setminus M$. Since N is a module of L_1 and L_2^* module $N <_{L_1} x$ and $M \setminus N <_{L_2^*} x$. Consequently, $M \setminus N <_{L_1} x$ and $x <_{L_2} M \setminus N$, which contradicts the fact that M is positive. Second, assume that x is the largest element of the linear ordering $L_1^* \cap N$. By considering the linear orderings L_1^* and L_2 instead of L_1 and L_2^* in what precedes, we obtain a similar contradiction.

Fact 2: If *M* and *N* are two linear-modules with the same kind such that $M \cap N \neq \emptyset$, then $M \cup N$ is a linear-module with the same kind as *M* and *N*.

Indeed, we may assume that M and N overlap. Lemma 1 implies that $M \cup N$, $M \cap N$, $M \setminus N$ and $N \setminus M$ are modules of \mathfrak{B} and hence they are modules of L_1 . Thus, $N \setminus M <_{L_1} M \cap N$ or $M \cap N <_{L_1} N \setminus M$. First, assume that $N \setminus M <_{L_1} M \cap N$. Since M is a module of L_1 , $N \setminus M <_{L_1} M \setminus N$. Moreover, the fact that N is a module of L_1 implies that $M \cap N <_{L_1} M \setminus N$. In other words, $N \setminus M <_{L_1} M \cap N <_{L_1} M \setminus N$. If M and N are both negative (respectively positive), then $M \setminus N <_{L_2} M \cap N <_{L_2} N \setminus M$ (respectively $N \setminus M <_{L_2} M \cap N <_{L_2} M \setminus N$). By transitivity of the linear ordering L_2 , $M \setminus N <_{L_2} N \setminus N$ (respectively $N \setminus M <_{L_2} M \setminus N$). Thus, $M \cup N$ is a negative linear-module (respectively positive linear-module) of \mathfrak{B} . Second, assume that $M \cap N <_{L_1} M \cap N$. In other words, $M \setminus N <_{L_1} M \cap N <_{L_1} N \setminus M$. If M and N are both negative (respectively positive), then $N \setminus M <_{L_2} M \cap N <_{L_2} N \setminus N$ (respectively of \mathfrak{B} . Second, assume that $M \cap N <_{L_1} N \setminus M$. In other words, $M \setminus N <_{L_1} M \cap N <_{L_1} N \setminus M$. If M and N are both negative (respectively positive), then $N \setminus M <_{L_2} M \cap N <_{L_1} N \setminus M$. If $M \cap N <_{L_1} N \setminus M$ and $M \setminus N <_{L_1} M \cap N$. In other words, $M \setminus N <_{L_1} M \cap N <_{L_1} N \setminus M$. If M and N are both negative (respectively positive), then $N \setminus M <_{L_2} M \cap N <_{L_1} N \setminus M$. (respectively $M \setminus N <_{L_2} M \cap N <_{L_2} N \setminus M$). By transitivity of the linear ordering L_2 , $N \setminus M <_{L_2} M \setminus N$ (respectively $M \setminus N <_{L_2} M \cap N <_{L_2} N \setminus M$). By transitivity of the linear ordering L_2 , $N \setminus M <_{L_2} M \setminus N$ (respectively $M \setminus N <_{L_2} N \setminus M$). Thus, $M \cup N$ is a negative linear-module (respectively positive linear-module) of \mathfrak{B} .

Now, let us prove the first assertion. Let denote by \mathcal{U} the union of some collection C_x of linear-modules containing a given vertex x. We will prove that \mathcal{U} is also a linear-module. Clearly, by

Lemma 1, \mathcal{U} is a module of \mathfrak{B} . By Fact 1, all the members of C_x are with the same kind. First, assume that all the members of C_x are positive. We will prove that \mathcal{U} is positive. Let $a \neq b \in \mathcal{U}$. There exist two members A and B of C_x such that $a \in A$ and $b \in B$. By Fact 2, $A \cup B$ is positive and hence $L_2 \upharpoonright \{a, b\} = L_1 \upharpoonright \{a, b\}$. It follows that, $L_2 \upharpoonright \mathcal{U} = L_1 \upharpoonright \mathcal{U}$. Second, assume that all the members of C_x are negative. We will prove that \mathcal{U} is negative. Let $a \neq b \in \mathcal{U}$. There exist two members A and B of C_x such that $a \in A$ and $b \in B$. Fact 2 implies that $A \cup B$ is negative, and hence $L_2 \upharpoonright \{a, b\} = L_1^* \upharpoonright \{a, b\}$. It follows that, $L_2 \upharpoonright \mathcal{U} = L_1^* \upharpoonright \mathcal{U}$.

Since each singleton of the vertex set of \mathfrak{B} is a non-empty linear-module of \mathfrak{B} , the last assertion is an immediate consequence of the second one. Finally, let us prove the second assertion. Consider a non-empty linear-module M of \mathfrak{B} . By the first assertion, the collection of all linear-modules including M is a linear-module with the same kind of M and thus it is the unique maximal one containing it. \Box

Notation 3.

- 1. A finite bichain $\mathfrak{B} := (\{x_1, \dots, x_n\}, L_1, L_2)$ will be denoted by $\begin{pmatrix} x_{\sigma_1(1)} & x_{\sigma_1(2)} & \dots & x_{\sigma_1(n)} \\ x_{\sigma_2(1)} & x_{\sigma_2(2)} & \dots & x_{\sigma_2(n)} \end{pmatrix}$, where σ_1 and σ_2 are the permutations of the set $\{1, \dots, n\}$ such that $L_1 := x_{\sigma_1(1)} < x_{\sigma_1(2)} < \dots < x_{\sigma_1(n)}$ and $L_2 := x_{\sigma_2(1)} < x_{\sigma_2(2)} < \dots < x_{\sigma_2(n)}$.
- 2. Given a bichain $\mathfrak{B} := (V, L_1, L_2)$, let M be a vertex subset of \mathfrak{B} and x be an element of $V \setminus M$.
 - Write $x \sim M$, if M is a module of $\mathfrak{B} \upharpoonright M \cup \{x\}$ and $x \neq M$ otherwise.
 - The set $\{\{a, b\}, a \neq b \in V \text{ such that } L_2 \upharpoonright \{a, b\} = L_1^* \upharpoonright \{a, b\}\}$ will be denoted simply by $I(\mathfrak{B})$.

The lemma below is easily checked;

Lemma 5. Let \mathfrak{B} be a bichain with three vertices x, y and z. Then \mathfrak{B} is isomorphic to one of the nonisomorphic following bichains, $\begin{pmatrix} x & y & z \\ x & y & z \end{pmatrix}$, $\begin{pmatrix} x & y & z \\ z & y & x \end{pmatrix}$, $\begin{pmatrix} x & y & z \\ z & x & y \end{pmatrix}$, $\begin{pmatrix} x & y & z \\ x & z & y \end{pmatrix}$, $\begin{pmatrix} x & y & z \\ y & z & z \end{pmatrix}$ and $\begin{pmatrix} x & y & z \\ y & z & x \end{pmatrix}$.

Remark 5.

- 1. Given a bichain \mathfrak{B} on a set V, \mathfrak{B} is positive linear (respectively negative linear) if and only if $I(\mathfrak{B}) = \emptyset$ (respectively $I(\mathfrak{B})$ is the set of all the 2-element subsets of V).
- 2. Given a positive integer n, up to isomorphism, there are a unique positive linear-bichain and a unique negative linear-bichain, with n vertices. These two linear-bichains are non isomorphic when $n \ge 2$.
- 3. Let \mathfrak{B} and \mathfrak{B}' be two bichains on a set V. \mathfrak{B} and \mathfrak{B}' are (≤ 2) -hypomorphic if and only if $I(\mathfrak{B}) = I(\mathfrak{B}')$.
- 4. A non linear-bichain on a 3-element set has a unique non trivial module.
- 5. Given a non linear-bichain \mathfrak{B} on a set $\{a, b, c\}$, consider its unique non trivial module M. For each 2-element vertex subset $X \neq M$, there is a unique $i \in \{1, 2\}$ such that $y \neq_{L_i} X$ where $\{y\} = \{a, b, c\} \setminus X$.

Proof. The first assertion is easily checked by definitions of positive and negative linear-bichain. The second assertion is an immediate consequence of the first one. The third assertion follows from the definition of the (≤ 2)-hypomorphic bichains. The fourth and fifth assertions are easily checked by examining the four cases of non linear-bichains introduced in Lemma 5.

The following useful corollary is immediately deduced from Remark 5;

Corollary 4. Let \mathfrak{B} be a linear-bichain on a set V, and \mathfrak{B}' be a bichain on V. If \mathfrak{B}' is (≤ 2) -hypomorphic to \mathfrak{B} , then \mathfrak{B}' is linear with the same kind as \mathfrak{B} , and $\mathfrak{B}' \upharpoonright X \simeq \mathfrak{B} \upharpoonright X$ for each finite vertex subset X.

Corollary 5. Let $\mathfrak{B} := (\{x, y, z\}, L_1, L_2)$ be a bichain with three vertices. If $x \sim_{L_i} \{y, z\}$ and $x \not\sim_{L_j} \{y, z\}$ where $\{i, j\} = \{1, 2\}$, then \mathfrak{B} is not linear.

Proof. This result follows from the fact that if \mathfrak{B} is a linear-bichain, then L_1 and L_2 have the same modules.

Lemma 6. Let \mathfrak{B} and \mathfrak{B}' be (≤ 3) -hypomorphic bichains with three vertices x, y and z. Then the following assertions hold.

1. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ x & y & z \end{pmatrix}$, then \mathfrak{B}' is one of the six positive linear-bichains on $\{x, y, z\}$. 2. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ z & y & x \end{pmatrix}$, then \mathfrak{B}' is one of the six negative linear-bichains on $\{x, y, z\}$. 3. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ z & x & y \end{pmatrix}$, then $\mathfrak{B}' = \mathfrak{B}$ or $\mathfrak{B}' := \begin{pmatrix} y & x & z \\ z & y & x \end{pmatrix}$. 4. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ x & z & y \end{pmatrix}$, then $\mathfrak{B}' = \mathfrak{B}$ or $\mathfrak{B}' := \begin{pmatrix} x & z & y \\ x & y & z \end{pmatrix}$. 5. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ y & x & z \end{pmatrix}$, then $\mathfrak{B}' = \mathfrak{B}$ or $\mathfrak{B}' := \begin{pmatrix} y & x & z \\ x & y & z \end{pmatrix}$. 6. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ y & z & x \end{pmatrix}$, then $\mathfrak{B}' = \mathfrak{B}$ or $\mathfrak{B}' := \begin{pmatrix} x & z & y \\ x & y & z \end{pmatrix}$.

Proof. First, let us prove the first and the second assertions. In that cases, observe that \mathfrak{B} is a linearbichain on $\{x, y, z\}$. Since \mathfrak{B}' is (≤ 3) -hypomorphic to \mathfrak{B} , \mathfrak{B}' is a linear-bichain with the same kind as \mathfrak{B} by Corollary 4. Consequently, if $\mathfrak{B} := \begin{pmatrix} x & y & z \\ x & y & z \end{pmatrix}$, i.e. \mathfrak{B} is a positive linear-bichain, then \mathfrak{B}' is one of the six positive linear-bichains on $\{x, y, z\}$. If $\mathfrak{B} := \begin{pmatrix} x & y & z \\ z & y & x \end{pmatrix}$, i.e. \mathfrak{B} is a negative linear-bichain, then \mathfrak{B}' is one of the six negative linear-bichains on $\{x, y, z\}$.

Second, for the other assertions the proof follows immediately from Lemma 5 and the first assertion of Remark 5. For instance, let us prove the third assertion. Let $\mathfrak{B} := \begin{pmatrix} x & y & z \\ z & x & y \end{pmatrix}$. Since \mathfrak{B}' is (≤ 3) -hypomorphic to $\mathfrak{B}, \mathfrak{B}' \simeq \mathfrak{B}$. Consequently, by Lemma 5, \mathfrak{B}' is one of the following isomorphic bichains: $\begin{pmatrix} x & y & z \\ z & x & y \end{pmatrix}, \begin{pmatrix} x & z & y \\ y & x & z \end{pmatrix}, \begin{pmatrix} y & x & z \\ z & y & x \end{pmatrix}, \begin{pmatrix} y & x & z \\ z & y & x \end{pmatrix}, \begin{pmatrix} y & z & x \\ x & y & z \end{pmatrix}, \begin{pmatrix} z & x & y \\ y & z & x \end{pmatrix}$ or $\begin{pmatrix} z & y & x \\ x & z & y \end{pmatrix}$. Moreover, Remark 5 implies that $I(\mathfrak{B}) = I(\mathfrak{B}')$. It follows that, $\mathfrak{B}' = \mathfrak{B}$ or $\mathfrak{B}' := \begin{pmatrix} y & x & z \\ z & y & x \end{pmatrix}$.

The following useful corollary is immediately deduced from Lemma 6;

Corollary 6. Let $\mathfrak{B} := (\{x, y, z\}, L_1, L_2)$ and $\mathfrak{B}' := (\{x, y, z\}, L'_1, L'_2)$ be (≤ 3) -hypomorphic bichains with three vertices such that \mathfrak{B} is not linear where $\{x, y\}$ is its unique non trivial module. Then $\mathfrak{B} \upharpoonright \{t, z\} = \mathfrak{B}' \upharpoonright \{t, z\}$, for all $t \in \{x, y\}$.

Notation 4. Given a bichain $\mathfrak{B} := (V, L_1, L_2)$ on a set V, let M be a proper vertex subset and x be an element of $V \setminus M$. Write

• $S_1^x = \{y \in V \setminus (M \cup \{x\}) \text{ such that } y \not\sim_{L_1} M \cup \{x\}\}.$

• $S_2^x = \{y \in V \setminus (M \cup \{x\}) \text{ such that } y \not\sim_{L_2} M \cup \{x\}\}.$

Lemma 7. Given a bichain $\mathfrak{B} := (V, L_1, L_2)$, a maximal linear-module M of \mathfrak{B} , and $x \in V \setminus M$ such that $M \cup \{x\}$ is linear, one of the following assertions holds.

- *1.* $S_1^x \setminus S_2^x \neq \emptyset$, the bichain $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear, and $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$, for any vertices a and y where $a \in M$ and $y \in S_1^x \setminus S_2^x$.
- 2. $S_2^x \setminus S_1^x \neq \emptyset$, the bichain $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear, and $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$, for any vertices a and y where $a \in M$ and $y \in S_2^x \setminus S_1^x$.
- 3. $S_1^x = S_2^x \neq \emptyset$ and there are $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that, for all $a \in M$, the bichain $\mathfrak{B} \upharpoonright \{a, x, y, z\}$ is one of the following bichains: $\begin{pmatrix} a & y & z & x \\ a & z & y & x \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & z & y & a \end{pmatrix}$, $\begin{pmatrix} a & y & z & x \\ x & y & z & a \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & y & z & a \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & y & z & a \end{pmatrix}$.

Proof. Consider a bichain $\mathfrak{B} := (V, L_1, L_2)$, and a maximal linear-module M of \mathfrak{B} . Let $x \in V \setminus M$ such that $M \cup \{x\}$ is linear, and $a \in M$. Since M is a maximal linear-module and $M \cup \{x\}$ is linear, $M \cup \{x\}$ is not a module of \mathfrak{B} . Thus, $S_1^x \cup S_2^x \neq \emptyset$. It follows that, $S_1^x \setminus S_2^x \neq \emptyset$ or $S_2^x \setminus S_1^x \neq \emptyset$ or $S_1^x = S_2^x \neq \emptyset$. For the first assertion, assume that $S_1^x \setminus S_2^x \neq \emptyset$. Let $y \in S_1^x \setminus S_2^x$. Clearly, $y \neq_{L_1} \{a, x\}$ and $y \sim_{L_2} \{a, x\}$. Thus, $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$. By Corollary 5, $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear.

For the second assertion, assume that $S_2^x \setminus S_1^x \neq \emptyset$. Let $y \in S_2^x \setminus S_1^x$. Clearly, $y \sim_{L_1} \{a, x\}$ and $y \not\sim_{L_2} \{a, x\}$. Thus, $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$. By Corollary 5, $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear.

For the third assertion, assume that $S_1^x = S_2^x \neq \emptyset$. Let $t \in V \setminus (M \cup S_1^x \cup \{x\})$. Let $i \in \{1, 2\}$. Since $(M <_{L_i} S_1^x <_{L_i} x \text{ or } x <_{L_i} S_1^x <_{L_i} M)$ and $t \sim_{L_i} M \cup \{x\}$ because $t \notin S_1^x$, $t \sim_{L_i} M \cup S_1^x$ and $x \sim_{L_i} M \cup S_1^x$. It follows that, $M \cup S_1^x$ is a module of \mathfrak{B} . Since M is a maximal linear-module of \mathfrak{B} , $M \cup S_1^x$ is not linear. First, assume that $M \cup \{x\}$ is positive. We claim that there are $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that $\{y, z\} \in I(\mathfrak{B} \upharpoonright S_1^x)$. Indeed, otherwise, $M \cup S_1^x$ is positive, and then it is a positive linear-module of \mathfrak{B} ; witch contradicts the maximality of M. Thus, the bichain $\mathfrak{B} \upharpoonright \{a, x, y, z\}$ is one of the following bichains: $\begin{pmatrix} a & y & z & x \\ a & z & y & x \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & z & y & a \end{pmatrix}$. Second, assume that $M \cup \{x\}$ is negative. We claim that there are $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that $\{y, z\} \notin I(\mathfrak{B} \upharpoonright S_1^x)$. Indeed, otherwise, $M \cup S_1^x$ is negative. We claim that there are $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that $\{y, z\} \notin I(\mathfrak{B} \upharpoonright S_1^x)$. Indeed, otherwise, $M \cup S_1^x$ is negative. We claim that there are $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that $\{y, z\} \notin I(\mathfrak{B} \upharpoonright S_1^x)$. Indeed, otherwise, $M \cup S_1^x$ is negative, and then it is a negative linear-module of \mathfrak{B} ; witch contradicts the maximality of M. Thus, the bichain $\mathfrak{B} \upharpoonright \{a, x, y, z\}$ is one of the following bichains: $\begin{pmatrix} a & y & z & x \\ x & y & z & a \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & y & z & a \end{pmatrix}$.

Lemma 8. Let \mathfrak{B} and \mathfrak{B}' be (≤ 3) -hypomorphic bichains on the same vertex set V, and M be a maximal linear-module of \mathfrak{B} . Then $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$, for any vertices a, x with $a \in M$ and $x \in V \setminus M$.

Proof. Consider two (\leq 3)-hypomorphic bichains $\mathfrak{B} := (V, L_1, L_2)$ and $\mathfrak{B}' := (V, L'_1, L'_2)$. Let $x \in V \setminus M$ and $a \in M$. According to the linearity of $M \cup \{x\}$ in \mathfrak{B} , we distinguish the following two cases. **Case 1:** Assume that $M \cup \{x\}$ is not linear.

In this case, $|M| \ge 2$. If *M* is positive, then $x <_{L_1} M \Leftrightarrow M <_{L_2} x$. If *M* is negative, then $x <_{L_1} M \Leftrightarrow x <_{L_2} M$. It follows that, for all $b \in M \setminus \{a\} \mathfrak{B} \upharpoonright \{a, b, x\}$ is not linear and $\{a, b\}$ is the unique non trivial linear-module of $\mathfrak{B} \upharpoonright \{a, b, x\}$. Thus, Corollary 6 implies that $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$. **Case 2:** Assume that $M \cup \{x\}$ is linear.

Since $M \cup \{x\}$ is linear, Lemma 7 implies that one of its assertions holds. First, assume that assertion (1) holds. Let $y \in S_1^x \setminus S_2^x$. The bichain $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear and $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$. Thus, Corollary6 implies that $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$. Second, assume that assertion (2) holds. Let $y \in S_2^x \setminus S_1^x$. The bichain $\mathfrak{B} \upharpoonright \{a, x, y\}$ is not linear and $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$. Thus, Corollary6 implies that $\mathfrak{B}' \upharpoonright \{a, x, y\}$ is not linear and $\{a, x\}$ is not a module of $\mathfrak{B} \upharpoonright \{a, x, y\}$. Thus, Corollary6 implies that $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$. Finally, assume that assertion

(3) holds. Let $y \neq z \in S_1^x$ with $y <_{L_1} z$ such that the bichain $\mathfrak{B} \upharpoonright \{a, x, y, z\}$ is one of the following bichains: $\begin{pmatrix} a & y & z & x \\ a & z & y & x \end{pmatrix}$, $\begin{pmatrix} x & y & z & a \\ x & z & y & a \end{pmatrix}$, $\begin{pmatrix} a & y & z & x \\ x & y & z & a \end{pmatrix}$ or $\begin{pmatrix} x & y & z & a \\ a & y & z & x \end{pmatrix}$. Observe that, $\mathfrak{B} \upharpoonright \{a, y, z\}$ and $\mathfrak{B} \upharpoonright \{x, y, z\}$ are not linear-bichains and $\{y, z\}$ is the unique non trivial linear-module of $\mathfrak{B} \upharpoonright \{a, y, z\}$ and $\mathfrak{B} \upharpoonright \{x, y, z\}$. By Corollary 6, it follows that $\mathfrak{B}' \upharpoonright \{a, t\} = \mathfrak{B} \upharpoonright \{a, t\}$ and $\mathfrak{B}' \upharpoonright \{t, x\} = \mathfrak{B} \upharpoonright \{t, x\}$, for all $t \in \{y, z\}$. Now, let $t \in \{y, z\}$. Assume for instance that $\{a, x\}$ is positive and let $i \in \{1, 2\}$. If $a <_{L_1} t <_{L_1} x$ (respectively $x <_{L_1} t <_{L_1} a$), then $a <_{L'_i} t$ and $t <_{L'_i} x$ (respectively $x <_{L'_i} t$ and $\mathfrak{B}' \upharpoonright \{t, x\} = \mathfrak{B} \upharpoonright \{t, x\}$ modes the same reasoning in what precedes we obtain that $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$, when $\{a, x\}$ is negative.

4.3. Proof of Theorem 2

Consider two (≤ 3)-hypomorphic bichains \mathfrak{B} and \mathfrak{B}' on the same vertex set *V*. By Lemma 4, the maximal linear-modules of \mathfrak{B} (respectively \mathfrak{B}') form a partition of *V*. Denote by *Q* and *Q'* the partition of *V* into maximal linear-modules of \mathfrak{B} and \mathfrak{B}' respectively. Consider an element *M* of *Q*. First, we will prove that *M* is a linear-module of \mathfrak{B}' . Clearly, if |M| = 1, the result is obvious. Now, assume that $|M| \geq 2$. Since \mathfrak{B} and \mathfrak{B}' are (≤ 3)-hypomorphic and $\mathfrak{B} \upharpoonright M$ is linear, by Corollary 4 $\mathfrak{B}' \upharpoonright M$ is linear with the same kind as $\mathfrak{B} \upharpoonright M$. Now, consider an element *x* of $V \setminus M$. By Lemma 8, $\mathfrak{B}' \upharpoonright \{a, x\} = \mathfrak{B} \upharpoonright \{a, x\}$, for all $a \in M$. Moreover, $x \sim M$ in \mathfrak{B} because *M* is a module of \mathfrak{B} . It follows that, $x \sim M$ in \mathfrak{B}' and hence *M* is a linear-module of \mathfrak{B}' . In conclusion, each element of *Q* is a linear-module of \mathfrak{B} . Second, we will prove that *M* is also a maximal linear-module of \mathfrak{B}' . Let *M'* be an element of *Q'* including *M*. Since *M'* is a linear-module of \mathfrak{B} , there is an element *M''* of *Q* including *M'*. Consequently, M'' = M' = M, and hence $M \in Q'$ which permits to conclude. Therefore, Q' = Q. Finally, by Lemma 8 the quotient bichains \mathfrak{B}/Q and \mathfrak{B}'/Q are equal.

Conversely, consider two bichains \mathfrak{B} and \mathfrak{B}' on the same vertex set *V*, having the same modular partition *Q* on maximal linear-modules such that $\mathfrak{B}/Q = \mathfrak{B}'/Q$, and each maximal linear-module has the same kind in both. We have to prove that \mathfrak{B} and \mathfrak{B}' are (\leq 3)-hypomorphic. Let $M \in Q$. Since $\mathfrak{B} \upharpoonright M$ and $\mathfrak{B}' \upharpoonright M$ are linear with the same kind, $\mathfrak{B} \upharpoonright M$ and $\mathfrak{B}' \upharpoonright M$ are (\leq 3)-hypomorphic. Thus, Lemma 2 implies that the bichains \mathfrak{B} and \mathfrak{B}' are (\leq 3)-hypomorphic.

5. (≤ 3) -reconstructibility of Posets and Bichains

5.1. (≤ 3) -reconstructibility of Posets

In this subsection we give a characterization of the (\leq 3)-reconstructible posets based on a description of the maximal chain-modules. We use essentially the following lemma which is an immediate consequence of Lemma 2 of [15] deduced from the study of Boudabbous and Delhommé [7].

Lemma 9. [15]

- 1. The family of maximal chain-modules of a poset P is a modular partition of P.
- 2. If X is an infinite set, then there are at least two nonisomorphic chains on X.

Corollary 7. A poset is (≤ 3) -reconstructible if and only if its chain-modules are finite.

Proof. Assume that a poset *P* has an infinite chain-module. By the first assertion of Lemma 9, the family \mathcal{M} of maximal chain-modules of *P* forms a modular partition of *P*. Consider the family \mathcal{F} of such maximal chain-modules having a same infinite cardinality \mathcal{K} . By the second assertion of Lemma 9 there are two nonisomorphic chains \mathbf{c}_0 and \mathbf{c}_1 with cardinality \mathcal{K} . Consider the following poset P_0 (respectively P_1) obtained from *P* by replacing $P \upharpoonright A$ by a chain isomorphic to \mathbf{c}_0 (respectively \mathbf{c}_1), for

each $A \in \mathcal{F}$. Now, let us prove that P_0 and P_1 are (≤ 3) -hypomorphic to P. Clearly, \mathcal{M} is a common modular partition of P, P_0 and P_1 with $P/\mathcal{M} = P_0/\mathcal{M} = P_1/\mathcal{M}$. Moreover, for each $M \in \mathcal{M}$, $P \upharpoonright M$, $P_0 \upharpoonright M$ and $P_1 \upharpoonright M$ are chains, and hence they are (≤ 3) -hypomorphic. Thus, Lemma 2 implies that P, P_0 and P_1 are (≤ 3) -hypomorphic. Consequently, by Theorem 1, \mathcal{M} is a common partition into maximal chain-modules of P, P_0 and P_1 . Since \mathbf{c}_0 and \mathbf{c}_1 are not isomorphic, P_0 and P_1 are not isomorphic. Therefore, at least one of the posets P_0 and P_1 is not isomorphic to P, and hence P is not (≤ 3) -reconstructible.

Conversely, let *P* be a poset with a vertex set *V*, and assume that its maximal chain-modules are finite. Let *P'* be a poset (\leq 3)-hypomorphic to *P*. We shall prove that *P* and *P'* are isomorphic. By Theorem 1, *P* and *P'* share the same maximal chain-modules, and they have the same corresponding quotient relation. Since the maximal chain-modules are finite, *P* \upharpoonright *M* and *P'* \upharpoonright *M* are isomorphic for each maximal chain-module *M* of *P*. Finally, by Lemma 2, *P* and *P'* are isomorphic.

5.2. (≤ 3) -reconstructibility of Bichains

In this subsection we give a characterization of the (≤ 3)-reconstructible bichains based on a description of the maximal linear-modules.

Corollary 8. A bichain is (≤ 3) -reconstructible if and only if its linear-modules are finite.

Proof. Assume that a bichain \mathfrak{B} has an infinite linear-module. By Lemma 4, the family \mathcal{M} of maximal linear-modules of \mathfrak{B} forms a modular partition of \mathfrak{B} . Consider the family \mathcal{F} of such maximal linear-modules having a same infinite cardinality \mathcal{K} . By the second assertion of Lemma 9 there are two nonisomorphic linear orderings \mathbf{c}_0 and \mathbf{c}_1 with cardinality \mathcal{K} . Consider the following bichain \mathfrak{B} (

respectively \mathfrak{B}_g) obtained from \mathfrak{B} by replacing $\mathfrak{B} \upharpoonright A$ by a bichain isomorphic to $\begin{pmatrix} \mathbf{c}_0 \\ \mathbf{c}_0 \end{pmatrix} \begin{pmatrix} \text{respectively} \\ \mathbf{c}_1 \end{pmatrix} Bigg$) for each A in \mathcal{F} such that A is positive, and by a bichain isomorphic to $\begin{pmatrix} \mathbf{c}_0 \\ \mathbf{c}^*_0 \end{pmatrix} \begin{pmatrix} \text{respectively} \\ \mathbf{c}^*_0 \end{pmatrix} \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix} = \mathbf{c}_1 \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix} \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix} \begin{pmatrix} \mathbf{c}_2 \\ \mathbf{c}_2 \end{pmatrix} \begin{pmatrix} \mathbf{c}_2$

 $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_1^* \end{pmatrix}$ for each A in \mathcal{F} such that A is negative. Now, let us prove that \mathfrak{B}_0 and \mathfrak{B}_1 are (≤ 3)-hypomorphic to \mathfrak{B} . \mathcal{M} is a common modular partition of \mathfrak{B} , \mathfrak{B}_0 and \mathfrak{B}_1 with $\mathfrak{B}/\mathcal{M} = \mathfrak{B}_0/\mathcal{M} = \mathfrak{B}_1/\mathcal{M}$. Moreover, for each $M \in \mathcal{M}$, the bichains $\mathfrak{B} \upharpoonright M$, $\mathfrak{B}_0 \upharpoonright M$ and $\mathfrak{B}_1 \upharpoonright M$ are linear with the same kind, and

hence they are (\leq 3)-hypomorphic. Thus, Lemma 2 implies that the bichains \mathfrak{B} , \mathfrak{B}_0 and \mathfrak{B}_1 are (\leq 3)-hypomorphic. Consequently, by Theorem 2, \mathcal{M} is a common partition into maximal linearmodules of \mathfrak{B} , \mathfrak{B}_0 and \mathfrak{B}_1 . Since the linear orderings \mathbf{c}_0 and \mathbf{c}_1 are not isomorphic, \mathfrak{B}_0 and \mathfrak{B}_1 are not isomorphic. Therefore, at least one of the bichains \mathfrak{B}_0 and \mathfrak{B}_1 is not isomorphic to \mathfrak{B} , and hence \mathfrak{B} is not (\leq 3)-reconstructible.

Conversely, let \mathfrak{B} be a bichain with a vertex set V, and assume that its maximal linear-modules are finite. Consider a bichain $\mathfrak{B}' (\leq 3)$ -hypomorphic to \mathfrak{B} on the same vertex set V. We shall prove that \mathfrak{B} and \mathfrak{B}' are isomorphic. By Theorem 2, \mathfrak{B} and \mathfrak{B}' share the same maximal linear-modules, and they have the same corresponding quotient bichain and each maximal linear-module has the same kind in both. Since the maximal linear-modules of \mathfrak{B} are finite, $\mathfrak{B} \upharpoonright M \simeq \mathfrak{B}' \upharpoonright M$ for each maximal linear-module M of \mathfrak{B} . Finally, by Lemma 2, \mathfrak{B} and \mathfrak{B}' are isomorphic.

Acknowledgments

The authors are indebted to the referee for his/her useful suggestions critical comments.

Conflict of Interest

All authors declare that they have no conflicts of interest.

References

- 1. Lopez, G., 1972. Deux résultats concernant la détermination d'une relation par les types d'isomorphie de ses restrictions. *CR Acad. Sci. Paris, 274*, pp.1525-1528.
- 2. Lopez, G., 1972. Sur la détermination d'une relation par les types d'isomorphie de ses restrictions. *C. R. Acad. Sci., Paris, Ser. A 275*, pp.951-953.
- 3. Lopez, G., 1978. L'indéformabilité des relations et multirelations binaires. *Mathematical Logic Quarterly*, 24(19-24), pp.303-317.
- 4. Hagendorf, J.G. and Hagendorf, J.G., 1992. Restriction respectueuse et reconstruction Des chaines et Des relations infinites. *Mathematical Logic Quarterly*, 38(1), pp.457-490.
- 5. Lopez, G. and Rauzy, C., 1992. Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n-1) I. *Mathematical Logic Quarterly*, *38*(1), pp.27-37.
- 6. Boudabbous, Y., 2002. La 5-reconstructibilité et l'indécomposabilité des relations binaires. *European Journal of Combinatorics*, 23(5), pp.507-522.
- 7. Boudabbous, Y. and Delhommé, C., 2014. (≤ k)-reconstructible binary relations. *European Journal of Combinatorics*, *37*, pp.43-67.
- 8. Boudabbous, Y. and Lopez, G., 2005. The minimal non-(≤ k)-reconstructible relations. *Discrete Mathematics*, 291(1-3), pp.19-40.
- 9. Boudabbous, Y. and Delhommé, C., 2016. Personal communication.
- 10. Courcelle, B. and Delhommé, C., 2008. The modular decomposition of countable graphs. Definition and construction in monadic second-order logic. *Theoretical Computer Science*, *394*(1-2), pp.1-38.
- 11. Spinrad, J., 1992. P4-trees and substitution decomposition. *Discrete Applied Mathematics*, 39(3), pp.263-291.
- Fraîssé, R., 1984. L'Intervalle En Theorie Des Relations; Ses Generalisations Filtre Intervallaire Et Cloture D'Une Relation. *In North-Holland Mathematics Studies* (Vol. 99, pp. 313-341). North-Holland.
- Gallai, T., 1967. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-2), pp.25-66.
- 14. Ehrenfeucht, A. and Rozenberg, G., 1990. Primitivity is hereditary for 2-structures. *Theoretical Computer Science*, 70(3), pp.343-358.
- 15. Alzohairi, M., Bouaziz, M. and Boudabbous, Y., 2013. Orders and (≤ 4)-Hemimorphy. *Journal* of Mult-Valued Logic & Soft Computing, 21, pp.355-371.

 \bigcirc 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)