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1. Introduction

All binary relations considered in this paper are irreflexive binary relations. Two binary relations
R1 and R2 on the same vertex set V are (≤ k)-hypomorphic for a positive integer k if, for every set
K of at most k vertices, the two binary relations induced by R1 and R2 on K are isomorphic. A bi-
nary relation R is (≤ k)-reconstructible if every binary relation R′ that is (≤ k)-hypomorphic to R
is isomorphic to R. G. Lopez showed in [1–3] that finite binary relations are (≤ 6)-reconstructible.
This work was extended to the infinite case by J.G. Hagendorf in [4]. These works make essen-
tial use of difference classes introduced by Lopez [2, 3]. Based on the description by Lopez and C.
Rauzy [5] of the difference classes of finite (≤ 4)-hypomorphic binary relations, Y. Boudabbous [6]
provided a characterization of the (≤ 5)-reconstructible finite binary relations, that generalizes to
(≤ 4)-reconstructibility. On the other hand, in [7] Boudabbous and C. Delhommé characterized the
(≤ k)-reconstructible binary relations (finite or not), for each k ≥ 4. For the (≤ 3)-reconstruction,
Boudabbous and Lopez [8] characterized the finite binary relations that are (≤ 3)-reconstructible. Ha-
gendorf [4] proved that every finite poset with at least 4 vertices is (≤ 3)-reconstructible. In [9] Boud-
abbous and Delhommé suggested the question about the characterization of the (≤ 3)-reconstruction
of posets and bichains. In this paper, we give an answer to this question as follows. We first de-
scribe the pairs of (≤ 3)-hypomorphic posets and the pairs of (≤ 3)-hypomorphic bichains. As a
consequence of these descriptions, we give a characterization of the (≤ 3)-reconstructible posets and
bichains:
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Theorem 1. Two posets are (≤ 3)-hypomorphic if and only if they have the same maximal chain-
modules, and they have the same corresponding quotient relation.

Theorem 2. Two bichains are (≤ 3)-hypomorphic if and only if they have the same partition into
maximal linear-modules, the two corresponding quotients are equal, and each maximal linear-module
has the same kind in both.

We deduce the following (≤ 3)-reconstruction results.

Corollary 1. A poset is (≤ 3)-reconstructible if and only if its chain-modules are finite.

Corollary 2. A bichain is (≤ 3)-reconstructible if and only if its linear-modules are finite.

2. Preliminaries

Binary Structures

A binary structure is a pair R := (V, (Ri)i∈I) made of a set V and a family (Ri)i∈I of binary relations
on V . When |I| = 1, the binary structure is a binary relation. A binary relation (V,R) is a partially
ordered set (order or poset) if the relation R is an irreflexive, antisymmetric and transitive binary
relation on V . The binary structure is a bichain when |I| = 2 and R1 and R2 are linear orderings (or
simply chains). The substructure induced by R on a subset A of V , simply called the restriction of R
to A, is the binary structure R ↾ A := (A, (Ri ↾ A)i∈I), where Ri ↾ A := Ri ∩ A2 for all i ∈ I. Finally, a
set M of vertices is a module [10, 11] (is an interval [12], is an autonomous set [13] or a clan [14] )
of R, if for each i ∈ I,

((b, a) ∈ Ri ⇐⇒ (b, a′) ∈ Ri) and ((a, b) ∈ Ri ⇐⇒ (a′, b) ∈ Ri) for any vertices a, a′, b with a, a′ ∈ M
and b < M.

The empty set, the singletons of V and the set V are modules of R and said to be trivial. Notice
for instance that if the two linear orderings of a bichain have a common extremum x (that may be a
minimum for one and a maximum for the other one), then V \ {x} is a module of the bichain.

The following is easy to check;

Lemma 1. The collectionM of modules of a binary structure R with vertex set V satisfies the follow-
ing properties;

1. It contains the empty set, the singletons and the vertex set (trivial modules).

2. It is closed under arbitrary intersection, i.e. ∀N ⊆ M: ∩N ∈ M(with the convention that
∩∅ = V).

3. It contains the union of any subcollection with a non-empty intersection, i.e. ∀N ⊆ M(∩N ,
∅⇒ ∪N ∈ M).

4. It is closed under balanced difference, i.e. ∀M,N ∈ M(M \ N , ∅⇒ N \ M ∈ M).

A modular partition of a binary structure R is a partition P of its vertex set V into modules of R.
Notice that the elements of such a partition are non-empty. The elements of P may be considered as
the vertices of a new binary structure, the quotient R/P of R by P, defined as follows:
R/P := (P, (Ri/P)i∈I), where for all i ∈ I, Ri/P is a binary relation defined on P by:

For all A , B ∈ P, (A, B) ∈ Ri/P ⇔ (a, b) ∈ Ri, f or any vertices a, b with a ∈ A and b ∈ B.

Let R := (V, (Ri)i∈I) and R′ := (V ′, (R′i)i∈I) be two binary structures. A map f : V −→ V ′ is an
isomorphism from R onto R′ if f is bijective and satisfies: (x, y) ∈ Ri if and only if ( f (x), f (y)) ∈ R′i ,
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for any (x, y) ∈ V2, i ∈ I. The binary structure R is isomorphic to R′ if there is some isomorphism
from R onto R′, which is denoted R ≃ R′. The binary structure R is embeddable into R′, which is
denoted R ≤ R′, if R is isomorphic to some restriction of R′.

We recall the basic notions of the reconstruction problems in the theory of relations that we apply
to the case of binary structures. Let R and R′ be two binary structures on the same set V and let k be
a positive integer. The binary structure R′ is (≤ k)-hypomorphic to R if for each subset A of V with at
most k elements, the induced binary structures R′ ↾ A and R ↾ A are isomorphic. The binary structure
R is (≤ k)-reconstructible, if each binary structure (≤ k)-hypomorphic to R is isomorphic to R.

Lemma 2. Consider two binary structures R and R′ with the same vertex set and a common modular
partitionM such that R/M = R′/M. Then the following assertions hold.

1. If the restrictions R ↾ M and R′ ↾ M are isomorphic for each member M ofM, then R and R′

are isomorphic.

2. For k ≥ 1, if R ↾ M and R′ ↾ M are (≤ k)-hypomorphic for each M ∈ M, then R and R′ are
(≤ k)-hypomorphic.

Proof. Clearly, the first assertion is easy to check. Now, consider an integer k ≥ 1 and let us prove the
second assertion. Consider two binary structures R and R′ with the same vertex set V and a common
modular partition M such that R/M = R′/M, and R ↾ M and R′ ↾ M are (≤ k)-hypomorphic
for each M ∈ M. Given a subset X of V with |X| ≤ k, we will show that R ↾ X ≃ R′ ↾ X. Let
XM denote the set {Y ∩ X : Y ∈ M and Y ∩ X , ∅}. Since M is a common modular partition
of R and R′ and R/M = R′/M, XM is a common modular partition of R ↾ X and R′ ↾ X, and
(R ↾ X)/XM = (R′ ↾ X)/XM. Since R ↾ M and R′ ↾ M are (≤ k)-hypomorphic for each M ∈ M,
(R ↾ X) ↾ Y ≃ (R′ ↾ X) ↾ Y , for each element Y of XM. If XM is a singleton {Y}, then R ↾ X ≃ R′ ↾ X
because R ↾ X = (R ↾ X) ↾ Y and R′ ↾ X = (R′ ↾ X) ↾ Y . Otherwise, by the first assertion applied to
R ↾ X and R′ ↾ X, R ↾ X ≃ R′ ↾ X. Thus, R and R′ are (≤ k)-hypomorphic. □

3. (≤ 3)-hypomorphic Posets

Let P := (V,R) be a poset. By x <P y, we denote the fact that (x, y) ∈ R. By x ∥P y, we denote
the fact that (x, y) < R and (y, x) < R. The dual of P is the poset denoted by P∗ and defined on the set
V as follows: x <P∗ y if and only if y <P x. Finally, remark that P and P∗ have the same modules.

Notation 1. Given a poset P on a vertex set V, let A and B be two disjoint subsets of V, and x be an
element of V \ A. Write,

• A <P B, if a <P b for all a ∈ A and for all b ∈ B.

• A ∥P B, if a ∥P b for all a ∈ A and for all b ∈ B.
For A = {a}, A <P B (respectively A ∥P B) will be denoted simply by a <P B (respectively
a ∥P B).
For B = {b}, A <P B (respectively A ∥P B) will be denoted simply by A <P b (respectively
A ∥P b).

• x ∼P A (or simply x ∼ A), if A is a module of P ↾ A ∪ {x}, i.e. x <P A or A <P x or x ∥P A.

• x /P A (or simply x / A), if A is not a module of P ↾ A ∪ {x}.

3.1. Particular Posets

In this subsection, we present some useful particular posets.
V-order
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Figure 1. V-orders

A 3-element order is calledV-order if it is isomorphic to one of the two orders illustrated in Figure
1.
Lozenge

A 4-element order is called a lozenge if it is isomorphic to the order illustrated in Figure 2.

Figure 2. Lozenge

3.2. Posets and Maximal Chain-modules

Chain-modules
A chain-module M of a poset P is a module of P which is a chain.
In [7], the authors showed that the maximal chain-modules form a partition of the vertex set of a

given binary relation and they showed the following lemma.

Lemma 3. [7] Given a binary relation R, the union of any collection of chain-modules contain-
ing a given vertex is a chain-module. Every non-empty chain-module of R is included in a unique
maximal one. In particular, the maximal chain-modules form a partition of its vertex set, and in the
corresponding quotient relation the chain-modules have at most one element.

Notation 2. Given a poset P on a vertex set V, and a proper module M of P, we consider the following
useful subsets of V \ M;

• M0 = {a ∈ V \ M such that a ∥P M}.
• M− = {a ∈ V \ M such that a <P M}.
• M+ = {a ∈ V \ M such that M <P a}.

Remark 1. The set of non-empty elements of {M0,M+,M−} is a partition of V \ M.

Proposition 1. Given a poset P on a vertex set V such that P is not a chain, consider a maximal
chain-module M of P and an element a of M− (respectively M+). Then at least one of the assertions
below holds;

1. There is x ∈ M0 such that P ↾ {a, x, y} is aV-order, for all y ∈ M (see Figure 3).
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2. There is x ∈ M− \ {a} (respectively M+ \ {a}) such that P ↾ {a, x, y} is a V-order, for all y ∈ M
(see Figure 4).

3. There are x , y ∈ M− \ {a} (respectively M+ \ {a}) such that P ↾ {a, x, y, z} is a lozenge, for all
z ∈ M (see Figure 5).

Figure 3. The First Assertion

Figure 4. The Second Assertion

Figure 5. The Last Assertion

Proof. By Interchanging P and P∗, we may assume that a ∈ M−. We distinguish the following two
cases according to the comparability of a and the elements of M0.
Case 1: There is x ∈ M0 such that a and x are comparable. Since a <P M and M ∥P x, a <P x.
Therefore, P ↾ {a, x, y} is aV-order, for all y ∈ M, and thus assertion (1) holds.
Case 2: For all z ∈ M0, a ∥P z; i.e. a ∥P M0. Recall that M ∪ {x} is a chain by the definition of M−.
Using the maximality of the chain-module M in P, we conclude that |M−| ≥ 2. Now, according to the
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comparability between a and the elements of M− \ {a}, we will discuss the following two subcases.
Case 2.1: There is x ∈ M− \ {a} such that x ∥P a. In this case, P ↾ {a, x, y} is aV-order, for all y ∈ M,
and thus assertion (2) holds.
Case 2.2: For all t ∈ M− \ {a}, a and t are comparable. Remark that M ∪ {a} ∪ ({a}+ ∩ M−) <P M+

(because M∪M− <P M+) and ({a}−∩M−) <P M∪{a}∪({a}+∩M−). In addition, since a <P ({a}+∩M−),
a ∥P M0 and M ∥P M0, ({a}+ ∩ M−) ∥P M0. Thus, M ∪ {a} ∪ ({a}+ ∩ M−) ∥P M0. It follows that,
M∪{a}∪({a}+∩M−) is a module of P. Using the maximality of M in P, it follows that, ({a}+∩M−)∪{a}
is not a chain of P. Therefore, |({a}+ ∩ M−)| ≥ 2, and there are x , y ∈ ({a}+ ∩ M−) such that x ∥P y.
Consequently, P ↾ {a, x, y, z} is a lozenge for all z ∈ M. Thus, assertion (3) holds. □

Remark 2. By Proposition 1, each element of M+ ∪ M− belongs to aV-order or a lozenge of P.

The following useful remark is easily verified;

Remark 3. Consider two (≤ 3)-hypomorphic posets P and P′ on the same vertex set V and a subset
X of V. If P ↾ X is aV-order or a lozenge, then P′ ↾ X = P ↾ X.

Corollary 3. Given two (≤ 3)-hypomorphic posets P and P′ on the same vertex set V, consider a
maximal chain-module M of P. Then P′ ↾ {a, x} = P ↾ {a, x}, for all x ∈ V \ M and a ∈ M.

Proof. Since the result is clear if P is a chain, assume that M , V , and consider an element x of
V \ M and an element a of M. By Remark 1, x ∈ M0 ∪ M− ∪ M+. Without loss of generality, by
interchanging P and P∗, we may assume that x is an element of M0 ∪ M−. First, assume that x ∈ M0.
Then, P′ ↾ {a, x} = P ↾ {a, x} because P and P′ are (≤ 2)-hypomorphic. Second, assume that x ∈ M−.
By Remark 2, the vertex x belongs to a V-order or a lozenge. In the first case, by Proposition 1,
there is b ∈ M0 ∪ M− such that P ↾ {a, b, x} is a V-order of P. Since the posets P and P′ are (≤ 3)-
hypomorphic and P ↾ {a, b, x} is a V-order, P′ ↾ {a, b, x} = P ↾ {a, b, x} by Remark 3. In particular,
P′ ↾ {a, x} = P ↾ {a, x}. In the second case, by Proposition 1, there are b , c ∈ (M− \ {x}) such
that P ↾ {a, b, c, x} is a lozenge of P. Since P and P′ are (≤ 3)-hypomorphic and P ↾ {a, b, c, x} is a
lozenge, by Remark 3, P′ ↾ {a, b, c, x} = P ↾ {a, b, c, x}. Consequently, P′ ↾ {a, x} = P ↾ {a, x}. □

3.3. Proof of Theorem 1

Consider two (≤ 3)-hypomorphic posets P and P
′

with the same vertex set V . By Lemma 3, the
maximal chain-modules of P and those of P′ form two partitions of V . Denote by Q and Q′ the
partition of V in maximal chain-modules of P and P′ respectively. Consider an element M of Q.
Since P and P′ are (≤ 3)-hypomorphic, M is a chain of P′. Now, consider an element x of V \ M. By
Corollary 3, P′ ↾ {a, x} = P ↾ {a, x}, for all a ∈ M. Moreover, x ∼ M in P because M is a module
of P. It follows that, x ∼ M in P′, and hence M is a chain-module of P′. Let M′ be the element of
Q′ including M. By what precedes, M′ is a chain-module of P. Thus, there is an element M′′ of Q
including M′. Consequently, M′′ = M′ = M, and hence Q′ = Q. Finally, Corollary 3 implies that the
quotient relations P/Q and P′/Q are equal.

Conversely, consider two posets P and P′ on the same vertex set V having the same modular
partition Q on maximal chain-modules such that P/Q = P′/Q. We have to prove that P and P′ are
(≤ 3)-hypomorphic. Let M ∈ Q. Since M is a chain of P and P′, P ↾ M and P′ ↾ M are (≤ 3)-
hypomorphic. By Lemma 2, it follows that P and P′ are (≤ 3)-hypomorphic.

Remark 4. Theorem 1 can be obtained by the use of the difference classes introduced by G. Lopez
[1–3], but our proof is self-contained.
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4. Bichains

4.1. Linear-vertex Subsets and Linear-modules

Given a bichain B := (V, L1, L2), a vertex subset W is called linear if L2 ↾ W = L1 ↾ W or
L2 ↾ W = L∗1 ↾ W. In the first case, W is positive linear and in the second it is negative linear. If
in addition W is a module of B, speak of linear-module, positive linear-module and negative linear-
module. If L2 = L1 or L2 = L∗1, speak of linear-bichain, positive linear-bichain and negative linear-
bichain. Finally, we say that two linear-bichains have the same kind if they are both positive or both
negative.

4.2. Maximal Linear-modules

We prove the following useful result by considering the linear-modules of a given bichain.

Lemma 4. Given a bichain B, the union of any collection of linear-modules containing a given
vertex is a linear-module. Every non-empty linear-module of B is included in a unique maximal one.
In particular, the maximal linear-modules of B form a modular partition of B.

Proof. Consider a bichain B := (V, L1, L2). We start by the following two facts;
Fact 1: If M and N are two linear-modules such that M ∩ N , ∅, then they are with the same kind.

Indeed, the result is immediate when M ⊆ N or N ⊆ M. Now, assume that M and N overlap. In
this case, |M| ≥ 2 and |N| ≥ 2. By Lemma 1, N \ M and M \ N are modules of B and hence they are
modules of both L1 and L2. To the contrary, suppose that M is positive and N is negative. It follows
that, |M ∩ N | = 1. Let denote by x the unique element of M ∩ N. Observe that, x must be the smallest
element or the largest one of the linear ordering L1 ↾ N because N \M is a module of L1. First, assume
that x is the smallest element of the linear ordering L1 ↾ N, i.e x <L1 N \ M. Since N is negative,
it follows that x is also the smallest element of the linear ordering L∗2 ↾ N, i.e x <L∗2

N \ M. Recall
that a linear ordering and its dual have the same modules. Since M and N are modules of both L1 and
L2, M and N are also modules of L1 and L∗2. Therefore, the fact that x <L1 N \ M and x <L∗2

N \ M,
and M is a module of L1 and L∗2 implies that M \ N <L1 N \ M and M \ N <L∗2

N \ M. Since N is a
module of L1 and L∗2, M \ N <L1 x and M \ N <L∗2

x. Consequently, M \ N <L1 x and x <L2 M \ N,
which contradicts the fact that M is positive. Second, assume that x is the largest element of the linear
ordering L1 ↾ N. By considering the linear orderings L∗1 and L2 instead of L1 and L∗2 in what precedes,
we obtain a similar contradiction.
Fact 2: If M and N are two linear-modules with the same kind such that M ∩ N , ∅, then M ∪ N is
a linear-module with the same kind as M and N.

Indeed, we may assume that M and N overlap. Lemma 1 implies that M ∪ N, M ∩ N, M \ N and
N\M are modules ofB and hence they are modules of L1. Thus, N\M <L1 M∩N or M∩N <L1 N\M.
First, assume that N \M <L1 M∩N. Since M is a module of L1, N \M <L1 M \N. Moreover, the fact
that N is a module of L1 implies that M ∩N <L1 M \N. In other words, N \M <L1 M ∩N <L1 M \N.
If M and N are both negative (respectively positive), then M \ N <L2 M ∩ N <L2 N \ M (respectively
N \M <L2 M ∩N <L2 M \N). By transitivity of the linear ordering L2, M \N <L2 N \N (respectively
N \ M <L2 M \ N). Thus, M ∪ N is a negative linear-module (respectively positive linear-module)
of B. Second, assume that M ∩ N <L1 N \ M. The fact that M and N are modules of L1 implies
that M \ N <L1 N \ M and M \ N <L1 M ∩ N. In other words, M \ N <L1 M ∩ N <L1 N \ M. If
M and N are both negative (respectively positive), then N \ M <L2 M ∩ N <L2 M \ N (respectively
M \N <L2 M∩N <L2 N \M). By transitivity of the linear ordering L2, N \M <L2 M \N (respectively
M \ N <L2 N \ M). Thus, M ∪ N is a negative linear-module (respectively positive linear-module) of
B.

Now, let us prove the first assertion. Let denote by U the union of some collection Cx of linear-
modules containing a given vertex x. We will prove that U is also a linear-module. Clearly, by
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Lemma 1, U is a module of B. By Fact 1, all the members of Cx are with the same kind. First,
assume that all the members of Cx are positive. We will prove that U is positive. Let a , b ∈ U.
There exist two members A and B of Cx such that a ∈ A and b ∈ B. By Fact 2, A ∪ B is positive
and hence L2 ↾ {a, b} = L1 ↾ {a, b}. It follows that, L2 ↾ U = L1 ↾ U. Second, assume that all
the members of Cx are negative. We will prove that U is negative. Let a , b ∈ U. There exist two
members A and B of Cx such that a ∈ A and b ∈ B. Fact 2 implies that A ∪ B is negative, and hence
L2 ↾ {a, b} = L∗1 ↾ {a, b}. It follows that, L2 ↾ U = L∗1 ↾ U.

Since each singleton of the vertex set of B is a non-empty linear-module of B, the last assertion is
an immediate consequence of the second one. Finally, let us prove the second assertion. Consider a
non-empty linear-module M ofB. By the first assertion, the collection of all linear-modules including
M is a linear-module with the same kind of M and thus it is the unique maximal one containing it. □

Notation 3.

1. A finite bichain B := ({x1, . . . , xn}, L1, L2) will be denoted by
(
xσ1(1) xσ1(2) . . . xσ1(n)

xσ2(1) xσ2(2) . . . xσ2(n)

)
, where

σ1 and σ2 are the permutations of the set {1, . . . , n} such that L1 := xσ1(1) < xσ1(2) < · · · < xσ1(n)

and L2 := xσ2(1) < xσ2(2) < · · · < xσ2(n).

2. Given a bichain B := (V, L1, L2), let M be a vertex subset of B and x be an element of V \ M.

• Write x ∼ M, if M is a module of B ↾ M ∪ {x} and x / M otherwise.
• The set {{a, b}, a , b ∈ V such that L2 ↾ {a, b} = L∗1 ↾ {a, b}} will be denoted simply by I(B).

The lemma below is easily checked;

Lemma 5. Let B be a bichain with three vertices x, y and z. Then B is isomorphic to one of the non-

isomorphic following bichains,
(
x y z
x y z

)
,
(
x y z
z y x

)
,
(
x y z
z x y

)
,
(
x y z
x z y

)
,
(
x y z
y x z

)
and

(
x y z
y z x

)
.

Remark 5.

1. Given a bichain B on a set V, B is positive linear ( respectively negative linear) if and only if
I(B) = ∅ ( respectively I(B) is the set of all the 2-element subsets of V).

2. Given a positive integer n, up to isomorphism, there are a unique positive linear-bichain and a
unique negative linear-bichain, with n vertices. These two linear-bichains are non isomorphic
when n ≥ 2.

3. Let B and B′ be two bichains on a set V. B and B′ are (≤ 2)-hypomorphic if and only if
I(B) = I(B′).

4. A non linear-bichain on a 3-element set has a unique non trivial module.

5. Given a non linear-bichain B on a set {a, b, c}, consider its unique non trivial module M. For
each 2-element vertex subset X , M, there is a unique i ∈ {1, 2} such that y /Li X where
{y} = {a, b, c} \ X.

Proof. The first assertion is easily checked by definitions of positive and negative linear-bichain. The
second assertion is an immediate consequence of the first one. The third assertion follows from the
definition of the (≤ 2)-hypomorphic bichains. The fourth and fifth assertions are easily checked by
examining the four cases of non linear-bichains introduced in Lemma 5. □

The following useful corollary is immediately deduced from Remark 5;
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Corollary 4. Let B be a linear-bichain on a set V, and B′ be a bichain on V. If B′ is (≤ 2)-
hypomorphic to B, then B′ is linear with the same kind as B, and B′ ↾ X ≃ B ↾ X for each finite
vertex subset X.

Corollary 5. Let B := ({x, y, z}, L1, L2) be a bichain with three vertices. If x ∼Li {y, z} and x /L j {y, z}
where {i, j} = {1, 2}, then B is not linear.

Proof. This result follows from the fact that if B is a linear-bichain, then L1 and L2 have the same
modules. □

Lemma 6. Let B and B′ be (≤ 3)-hypomorphic bichains with three vertices x, y and z. Then the
following assertions hold.

1. If B :=
(
x y z
x y z

)
, then B′ is one of the six positive linear-bichains on {x, y, z}.

2. If B :=
(
x y z
z y x

)
, then B′ is one of the six negative linear-bichains on {x, y, z}.

3. If B :=
(
x y z
z x y

)
, then B′ = B or B′ :=

(
y x z
z y x

)
.

4. If B :=
(
x y z
x z y

)
, then B′ = B or B′ :=

(
x z y
x y z

)
.

5. If B :=
(
x y z
y x z

)
, then B′ = B or B′ :=

(
y x z
x y z

)
.

6. If B :=
(
x y z
y z x

)
, then B′ = B or B′ :=

(
x z y
z y x

)
.

Proof. First, let us prove the first and the second assertions. In that cases, observe that B is a linear-
bichain on {x, y, z}. Since B′ is (≤ 3)-hypomorphic to B, B′ is a linear-bichain with the same kind as

B by Corollary 4. Consequently, if B :=
(
x y z
x y z

)
, i.e. B is a positive linear-bichain, then B′ is one

of the six positive linear-bichains on {x, y, z}. If B :=
(
x y z
z y x

)
, i.e. B is a negative linear-bichain,

then B′ is one of the six negative linear-bichains on {x, y, z}.
Second, for the other assertions the proof follows immediately from Lemma 5 and the first asser-

tion of Remark 5. For instance, let us prove the third assertion. Let B :=
(
x y z
z x y

)
. Since B′ is

(≤ 3)-hypomorphic to B, B′ ≃ B. Consequently, by Lemma 5, B′ is one of the following isomorphic

bichains:
(
x y z
z x y

)
,
(
x z y
y x z

)
,
(
y x z
z y x

)
,
(
y z x
x y z

)
,
(
z x y
y z x

)
or

(
z y x
x z y

)
. Moreover, Remark 5

implies that I(B) = I(B′). It follows that, B′ = B or B′ :=
(
y x z
z y x

)
. □

The following useful corollary is immediately deduced from Lemma 6;

Corollary 6. Let B := ({x, y, z}, L1, L2) and B′ := ({x, y, z}, L′1, L
′
2) be (≤ 3)-hypomorphic bichains

with three vertices such that B is not linear where {x, y} is its unique non trivial module. Then
B ↾ {t, z} = B′ ↾ {t, z}, for all t ∈ {x, y}.

Notation 4. Given a bichain B := (V, L1, L2) on a set V, let M be a proper vertex subset and x be an
element of V \ M. Write

• S x
1 = {y ∈ V \ (M ∪ {x}) such that y /L1 M ∪ {x} }.

Ars Combinatoria Volume 158, 67–79



Hamza Ben Brahim and Mohamed Y. Sayar 76

• S x
2 = {y ∈ V \ (M ∪ {x}) such that y /L2 M ∪ {x}}.

Lemma 7. Given a bichain B := (V, L1, L2), a maximal linear-module M of B, and x ∈ V \ M such
that M ∪ {x} is linear, one of the following assertions holds.

1. S x
1 \ S x

2 , ∅, the bichain B ↾ {a, x, y} is not linear, and {a, x} is not a module of B ↾ {a, x, y}, for
any vertices a and y where a ∈ M and y ∈ S x

1 \ S x
2.

2. S x
2 \ S x

1 , ∅, the bichain B ↾ {a, x, y} is not linear, and {a, x} is not a module of B ↾ {a, x, y}, for
any vertices a and y where a ∈ M and y ∈ S x

2 \ S x
1.

3. S x
1 = S x

2 , ∅ and there are y , z ∈ S x
1 with y <L1 z such that, for all a ∈ M, the bichain

B ↾ {a, x, y, z} is one of the following bichains:
(
a y z x
a z y x

)
,
(
x y z a
x z y a

)
,
(
a y z x
x y z a

)
or(

x y z a
a y z x

)
.

Proof. Consider a bichain B := (V, L1, L2), and a maximal linear-module M of B. Let x ∈ V \M such
that M ∪ {x} is linear, and a ∈ M. Since M is a maximal linear-module and M ∪ {x} is linear, M ∪ {x}
is not a module of B. Thus, S x

1 ∪ S x
2 , ∅. It follows that, S x

1 \ S x
2 , ∅ or S x

2 \ S x
1 , ∅ or S x

1 = S x
2 , ∅.

For the first assertion, assume that S x
1 \ S x

2 , ∅. Let y ∈ S x
1 \ S x

2. Clearly, y /L1 {a, x} and y ∼L2 {a, x}.
Thus, {a, x} is not a module of B ↾ {a, x, y}. By Corollary 5, B ↾ {a, x, y} is not linear.

For the second assertion, assume that S x
2 \ S x

1 , ∅. Let y ∈ S x
2 \ S x

1. Clearly, y ∼L1 {a, x} and
y /L2 {a, x}. Thus, {a, x} is not a module of B ↾ {a, x, y}. By Corollary 5, B ↾ {a, x, y} is not linear.

For the third assertion, assume that S x
1 = S x

2 , ∅. Let t ∈ V \ (M ∪ S x
1 ∪ {x}). Let i ∈ {1, 2}. Since (

M <Li S x
1 <Li x or x <Li S x

1 <Li M) and t ∼Li M ∪ {x} because t < S x
1, t ∼Li M ∪ S x

1 and x ∼Li M ∪ S x
1.

It follows that, M ∪ S x
1 is a module of B. Since M is a maximal linear-module of B, M ∪ S x

1 is not
linear. First, assume that M ∪ {x} is positive. We claim that there are y , z ∈ S x

1 with y <L1 z such
that {y, z} ∈ I(B ↾ S x

1). Indeed, otherwise, M ∪ S x
1 is positive, and then it is a positive linear-module

of B; witch contradicts the maximality of M. Thus, the bichain B ↾ {a, x, y, z} is one of the following

bichains:
(
a y z x
a z y x

)
,
(
x y z a
x z y a

)
. Second, assume that M ∪ {x} is negative. We claim that there

are y , z ∈ S x
1 with y <L1 z such that {y, z} < I(B ↾ S x

1). Indeed, otherwise, M ∪ S x
1 is negative, and

then it is a negative linear-module of B; witch contradicts the maximality of M. Thus, the bichain

B ↾ {a, x, y, z} is one of the following bichains:
(
a y z x
x y z a

)
,
(
x y z a
a y z x

)
. □

Lemma 8. Let B and B′ be (≤ 3)-hypomorphic bichains on the same vertex set V, and M be a
maximal linear-module of B. Then B′ ↾ {a, x} = B ↾ {a, x}, for any vertices a, x with a ∈ M and
x ∈ V \ M.

Proof. Consider two (≤ 3)-hypomorphic bichainsB := (V, L1, L2) andB′ := (V, L′1, L
′
2). Let x ∈ V \M

and a ∈ M. According to the linearity of M ∪ {x} in B, we distinguish the following two cases.
Case 1: Assume that M ∪ {x} is not linear.

In this case, |M| ≥ 2. If M is positive, then x <L1 M ⇔ M <L2 x. If M is negative, then
x <L1 M ⇔ x <L2 M. It follows that, for all b ∈ M\{a}B ↾ {a, b, x} is not linear and {a, b} is the unique
non trivial linear-module of B ↾ {a, b, x}. Thus, Corollary 6 implies that B′ ↾ {a, x} = B ↾ {a, x}.
Case 2: Assume that M ∪ {x} is linear.

Since M ∪ {x} is linear, Lemma 7 implies that one of its assertions holds. First, assume that
assertion (1) holds. Let y ∈ S x

1 \ S x
2. The bichain B ↾ {a, x, y} is not linear and {a, x} is not a module

of B ↾ {a, x, y}. Thus, Corollary6 implies that B′ ↾ {a, x} = B ↾ {a, x}. Second, assume that assertion
(2) holds. Let y ∈ S x

2 \ S x
1. The bichain B ↾ {a, x, y} is not linear and {a, x} is not a module of

B ↾ {a, x, y}. Thus, Corollary6 implies that B′ ↾ {a, x} = B ↾ {a, x}. Finally, assume that assertion
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(3) holds. Let y , z ∈ S x
1 with y <L1 z such that the bichain B ↾ {a, x, y, z} is one of the following

bichains:
(
a y z x
a z y x

)
,
(
x y z a
x z y a

)
,
(
a y z x
x y z a

)
or

(
x y z a
a y z x

)
. Observe that, B ↾ {a, y, z} and

B ↾ {x, y, z} are not linear-bichains and {y, z} is the unique non trivial linear-module of B ↾ {a, y, z}
and B ↾ {x, y, z}. By Corollary 6, it follows that B′ ↾ {a, t} = B ↾ {a, t} and B′ ↾ {t, x} = B ↾ {t, x},
for all t ∈ {y, z}. Now, let t ∈ {y, z}. Assume for instance that {a, x} is positive and let i ∈ {1, 2}. If
a <L1 t <L1 x (respectively x <L1 t <L1 a), then a <L′i t and t <L′i x (respectively x <L′i t and t <L′i a)
because B′ ↾ {a, t} = B ↾ {a, t} and B′ ↾ {t, x} = B ↾ {t, x}. Thus, by transitivity of the linear
orderings L′1 and L′2 we deduce that B′ ↾ {a, x} = B ↾ {a, x}. By the same reasoning in what precedes
we obtain that B′ ↾ {a, x} = B ↾ {a, x}, when {a, x} is negative. □

4.3. Proof of Theorem 2

Consider two (≤ 3)-hypomorphic bichains B and B′ on the same vertex set V . By Lemma 4,
the maximal linear-modules of B ( respectively B′) form a partition of V . Denote by Q and Q′ the
partition of V into maximal linear-modules of B and B′ respectively. Consider an element M of Q.
First, we will prove that M is a linear-module of B′. Clearly, if |M| = 1, the result is obvious. Now,
assume that |M| ≥ 2. Since B and B′ are (≤ 3)-hypomorphic and B ↾ M is linear, by Corollary 4
B′ ↾ M is linear with the same kind as B ↾ M. Now, consider an element x of V \ M. By Lemma
8, B′ ↾ {a, x} = B ↾ {a, x}, for all a ∈ M. Moreover, x ∼ M in B because M is a module of B. It
follows that, x ∼ M inB′ and hence M is a linear-module ofB′. In conclusion, each element of Q is a
linear-module ofB′. By interchangingB andB′, it follows that each element of Q′ is a linear-module
of B. Second, we will prove that M is also a maximal linear-module of B′. Let M′ be an element
of Q′ including M. Since M′ is a linear-module of B, there is an element M′′ of Q including M′.
Consequently, M′′ = M′ = M, and hence M ∈ Q′ which permits to conclude. Therefore, Q′ = Q.
Finally, by Lemma 8 the quotient bichains B/Q and B′/Q are equal.

Conversely, consider two bichains B and B′ on the same vertex set V , having the same modular
partition Q on maximal linear-modules such that B/Q = B′/Q, and each maximal linear-module has
the same kind in both. We have to prove that B and B′ are (≤ 3)-hypomorphic. Let M ∈ Q. Since
B ↾ M and B′ ↾ M are linear with the same kind, B ↾ M and B′ ↾ M are (≤ 3)-hypomorphic. Thus,
Lemma 2 implies that the bichains B and B′ are (≤ 3)-hypomorphic.

5. (≤ 3)-reconstructibility of Posets and Bichains

5.1. (≤ 3)-reconstructibility of Posets

In this subsection we give a characterization of the (≤ 3)-reconstructible posets based on a descrip-
tion of the maximal chain-modules. We use essentially the following lemma which is an immediate
consequence of Lemma 2 of [15] deduced from the study of Boudabbous and Delhommé [7].

Lemma 9. [15]

1. The family of maximal chain-modules of a poset P is a modular partition of P.

2. If X is an infinite set, then there are at least two nonisomorphic chains on X.

Corollary 7. A poset is (≤ 3)-reconstructible if and only if its chain-modules are finite.

Proof. Assume that a poset P has an infinite chain-module. By the first assertion of Lemma 9, the
familyM of maximal chain-modules of P forms a modular partition of P. Consider the family F of
such maximal chain-modules having a same infinite cardinalityK . By the second assertion of Lemma
9 there are two nonisomorphic chains c0 and c1 with cardinalityK . Consider the following poset P0 (
respectively P1) obtained from P by replacing P ↾ A by a chain isomorphic to c0 ( respectively c1), for
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each A ∈ F . Now, let us prove that P0 and P1 are (≤ 3)-hypomorphic to P. Clearly,M is a common
modular partition of P, P0 and P1 with P/M = P0/M = P1/M. Moreover, for each M ∈ M, P ↾ M,
P0 ↾ M and P1 ↾ M are chains, and hence they are (≤ 3)-hypomorphic. Thus, Lemma 2 implies
that P, P0 and P1 are (≤ 3)-hypomorphic. Consequently, by Theorem 1, M is a common partition
into maximal chain-modules of P, P0 and P1. Since c0 and c1 are not isomorphic, P0 and P1 are not
isomorphic. Therefore, at least one of the posets P0 and P1 is not isomorphic to P, and hence P is not
(≤ 3)-reconstructible.

Conversely, let P be a poset with a vertex set V , and assume that its maximal chain-modules are
finite. Let P′ be a poset (≤ 3)-hypomorphic to P. We shall prove that P and P′ are isomorphic. By
Theorem 1, P and P′ share the same maximal chain-modules, and they have the same corresponding
quotient relation. Since the maximal chain-modules are finite, P ↾ M and P′ ↾ M are isomorphic for
each maximal chain-module M of P. Finally, by Lemma 2, P and P′ are isomorphic. □

5.2. (≤ 3)-reconstructibility of Bichains

In this subsection we give a characterization of the (≤ 3)-reconstructible bichains based on a
description of the maximal linear-modules.

Corollary 8. A bichain is (≤ 3)-reconstructible if and only if its linear-modules are finite.

Proof. Assume that a bichainB has an infinite linear-module. By Lemma 4, the familyM of maximal
linear-modules of B forms a modular partition of B. Consider the family F of such maximal linear-
modules having a same infinite cardinality K . By the second assertion of Lemma 9 there are two
nonisomorphic linear orderings c0 and c1 with cardinality K . Consider the following bichain B (

respectively B1) obtained from B by replacing B ↾ A by a bichain isomorphic to
(
c0

c0

) (
respectively(

c1

c1

)
Bigg) for each A in F such that A is positive, and by a bichain isomorphic to

(
c0

c∗0

) (
respectively(

c1

c∗1

))
for each A inF such that A is negative. Now, let us prove thatB0 andB1 are (≤ 3)-hypomorphic

to B. M is a common modular partition of B, B0 and B1 with B/M = B0/M = B1/M. Moreover,
for each M ∈ M, the bichains B ↾ M, B0 ↾ M and B1 ↾ M are linear with the same kind, and
hence they are (≤ 3)-hypomorphic. Thus, Lemma 2 implies that the bichains B, B0 and B1 are
(≤ 3)-hypomorphic. Consequently, by Theorem 2, M is a common partition into maximal linear-
modules of B, B0 and B1. Since the linear orderings c0 and c1 are not isomorphic, B0 and B1 are not
isomorphic. Therefore, at least one of the bichains B0 and B1 is not isomorphic to B, and hence B is
not (≤ 3)-reconstructible.

Conversely, let B be a bichain with a vertex set V , and assume that its maximal linear-modules
are finite. Consider a bichain B′ (≤ 3)-hypomorphic to B on the same vertex set V . We shall prove
that B and B′ are isomorphic. By Theorem 2, B and B′ share the same maximal linear-modules,
and they have the same corresponding quotient bichain and each maximal linear-module has the same
kind in both. Since the maximal linear-modules of B are finite, B ↾ M ≃ B′ ↾ M for each maximal
linear-module M of B. Finally, by Lemma 2, B and B′ are isomorphic. □

Acknowledgments

The authors are indebted to the referee for his/her useful suggestions critical comments.

Conflict of Interest

All authors declare that they have no conflicts of interest.

Ars Combinatoria Volume 158, 67–79



Description of the (≤ 3)-hypomorphic Posets and Bichains 79

References

1. Lopez, G., 1972. Deux résultats concernant la détermination d’une relation par les types
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