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1. Introduction

An r-regular graph is a simple finite graph such that each of its vertices has degree r. Regular
graphs are one of the most studied classes of graphs; especially those with symmetries such as Cayley
graphs. Let Γ be a finite group and let X = {x1, x2, . . . , xt} a generating set for Γ such that X = X−1 with
1Γ < X; a Cayley graph Cay(Γ, X) has vertex set consisting of the elements of Γ and two vertices g
and h are adjacent if gxi = h for some 1 ≤ i ≤ t. Cayley graphs are regular but there exist non-Cayley
vertex-transitive graphs. The Petersen graph is a classic example of this fact.

The girth of a graph is the size of its shortest cycle. An (r, g)-graph is an r-regular graph of girth
g. An (r, g)-cage is an (r, g)-graph of smallest possible order. The diameter of a graph is the largest
length between shortest paths of any two vertices. An (r; D)-graph is an r-regular graph of diameter
D.

While the cage problem asks for the constructions of cages, the degree-diameter problem asks
for the construction of (r; D)-graphs of maximum order. Both of them are open and active problems
(see [1, 2]) in which, frequently, it is considered the restriction to Cayley graphs, see [3, 4].

In this paper, we study a similar problem using a well-known parameter of coloration instead of
girth or diameter. A k-coloring of a graph G is a partition of its vertices into k independent sets. The
chromatic number χ(G) of G is the smallest number k for which there exists a k-coloring of G.

We define an (r|χ)-graph as an r-regular graph of chromatic number χ. In this work, we investigate
the (r|χ)-graphs of minimum order. We also consider the case of Cayley (r|χ)-graphs.

The remainder of this paper is organized as follows: In Section 2 we show the existence of (r|χ)-
graphs, we define n(r|χ) as the order of the smallest (r|χ)-graph, and similarly, we define c(r|χ) as
the order of the smallest Cayley (r|χ)-graph. We also exhibit lower and upper bounds on the orders
of the extremal graphs. We show that the Turán graphs Tak,k, antihole graphs (the complements of
cycles) and Kk × K2 are Cayley (r|χ)-graphs of order n(r|χ) for some r and χ. To prove that Kk × K2
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are extremal we use instances of the Reed’s Conjecture for which it is true. In Section 3 we only
consider non-Cayley graphs. We give another upper bound for n(r|χ) and we exhibit two families of
(r|χ)-graphs with a few number of vertices which are extremal for some values of r and χ. Finally, in
Section 4 we study the small values 2 ≤ r ≤ 10 and 2 ≤ χ ≤ 6. We obtain a full table of extremal
(r|χ)-graphs except for the pair (6|6).

2. Cayley (r|χ)-graphs

It is known that for any graph G, 1 ≤ χ(G) ≤ ∆ + 1 where ∆ is the maximum degree of G.
Therefore, for any (r|χ)-graph we have that

1 ≤ χ ≤ r + 1.

Suppose that G is a (r|1)-graph. Hence G is the empty graph, then r = 0. Therefore, the extremal
graph is the trivial graph. We can assume that 2 ≤ χ ≤ r + 1.

Next, we prove that for any r and χ such that 2 ≤ χ ≤ r + 1, there exists a Cayley (r|χ)-graph G.
We recall that the (n, k)-Turán graph Tn,k is the complete k-partite graph on n vertices whose partite

sets are as nearly equal in cardinality as possible, i.e., it is formed by partitioning a set of n = ak + b
vertices (with 0 ≤ b < k) into the partition of independent sets (V1,V2, . . . ,Vb,Vb+1, . . . ,Vk) with order
|Vi| = a+ 1 if 1 ≤ i ≤ b and |Vi| = a if b+ 1 ≤ i ≤ k. Every vertex in Vi has degree a(k − 1)+ b− 1 for
1 ≤ i ≤ b and every vertex in Vi has degree a(k − 1) + b for b + 1 ≤ i ≤ k. The (n, k)-Turán graph has
chromatic number k, and size (see [5]) ⌊

(k − 1)n2

2k

⌋
.

Lemma 1. The (ak, k)-Turán graph Tak,k is a Cayley graph.

Proof. Let Γ be the group Za × Zk and X = {(i, j) : 0 ≤ i < a, 0 < j < k}. Then, the graph Cay(Γ, X) is
isomorphic to Tak,k. □

Before to continue, we recall some definitions. Given two graphs H1 and H2, the cartesian product
H1□H2 is defined as the graph with vertex set V(H1) × V(H2) and two vertices (u, u′) and (v, v′) are
adjacent if either u = v and u′ is adjacent with v′ in H2, or u′ = v′ and u is adjacent with v in H1. The
following proposition appears in [6].

Proposition 1. The cartesian product of two Cayley graphs is a Cayley graph.

On the other hand, the chromatic number of H1□H2 is the maximum between χ(H1) and χ(H2),
see [7]. Now we can prove the following theorem.

Theorem 1. For any r and χ such that 2 ≤ χ ≤ r + 1, there exists a Cayley (r|χ)-graph.

Proof. Let r = a(χ − 1) + b where a ≥ 1 and 0 ≤ b < χ − 1. Consider the Cayley graph H1 = Taχ,χ.
The graph H1 has chromatic number χ and it is an a(χ − 1)-regular graph of order aχ.

Additionally, consider the graph H2 = Tb+1,b+1 = Kb+1. The graph H2 has chromatic number
b + 1 < χ and it is a b-regular graph of order b + 1.

Therefore, the graph G = H1□H2 is a Cayley graph by Proposition 1 such that it has chromatic
number

max{χ(H1), χ(H2)} = χ,

regularity r and order aχ(b + 1). □

Now, we define n(r|χ) as the order of the smallest (r|χ)-graph and c(r|χ) as the order of the smallest
Cayley (r|χ)-graph. Hence,

r + 1 ≤ n(r|χ) ≤ c(r|χ) ≤ aχ(b + 1)
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where r = a(χ − 1) + b with a ≥ 1 and 0 ≤ b < χ − 1.
To improve the lower bound we consider the (n, χ)-Turán graph Tn,χ. Suppose G is an (r|χ)-graph.

Let ς be a χ-coloring of G resulting in the partition (V1,V2, . . . ,Vχ) with |Vi| = ai for 1 ≤ i ≤ χ.
Then the largest possible size of G occurs when G is a complete χ-partite graph with partite sets
(V1,V2, . . . ,Vχ) and the cardinalities of these partite sets are as equal as possible. This implies that

nr
2
≤

⌊
(χ − 1)n2

2χ

⌋
≤

(χ − 1)n2

2χ
,

since G has size rn/2. After some calculations we get that

rχ
χ − 1

≤ n.

Theorem 2. For any 2 ≤ χ ≤ r + 1,⌈
rχ
χ − 1

⌉
≤ n(r|χ) ≤ c(r|χ) ≤

r − b
χ − 1

χ(b + 1)

where χ − 1|r − b with 0 ≤ b < χ − 1.

An (r|χ)-graph G of n(r|χ) vertices is called extremal (r|χ)-graph. Similarly, a Cayley (r|χ)-graph
G of c(r|χ) vertices is called extremal Cayley (r|χ)-graph. When χ−1|r the lower bound and the upper
bound of Theorem 2 are equal. We have the following corollary.

Corollary 1. The Cayley graph Taχ,χ is an extremal (a(χ − 1)|χ)-graph.

In the remainder of this paper we exclusively work with b , 0, that is, when χ − 1 is not a divisor
of r.

2.1. Antihole graphs

A hole graph is a cycle of length at least four. An antihole graph is the complement Gc of a hole
graph G. Note that a hole graph and its antihole graph are both connected if and only if their orders
are at least five. In this subsection we prove that antihole graphs of order n are extremal (r|χ)-graphs
for any n at least six. There are two cases depending of the number of vertices.

1. G = Cc
n for n = 2k and k ≥ 3.

The graph G has regularity r = 2k − 3 and chromatic number χ = k. Any (2k − 3|k)-graph has
an even number of vertices and at least rχ

χ−1 =
(2k−3)k

k−1 = 2k − k
k−1 vertices.

If k > 2, then k
k−1 < 2. Therefore we have the following result:

n(2k − 3, k) = c(2k − 3, k) = 2k

for all k ≥ 3.

2. G = Cc
n for n = 2k − 1 and k ≥ 4.

The graph G has regularity r = 2k − 4 and chromatic number χ = k. Any (2k − 4|k)-graph has at
least rχ

χ−1 =
(2k−4)k

k−1 = 2k − 2 − 2
k−1 vertices.

If k − 1 > 2, we have that 2
k−1 < 1. Therefore

2k − 2 ≤ n(2k − 4, k) ≤ c(2k − 4, k) ≤ 2k − 1

for all k ≥ 4.
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Suppose that G is a (2k − 4|k)-graph of 2k − 2 vertices. Then G = ((k − 1)K2)c, i.e., G is the
complement of a matching of k − 1 edges. Then χ(G) = k − 1, a contradiction. Therefore

n(2k − 4, k) = c(2k − 4, k) = 2k − 1

for all k ≥ 4.

Therefore, we have the following theorem.

Theorem 3. The antihole graphs of order n ≥ 6 are extremal (n − 3|
⌈

n
2

⌉
)-graphs.

A hole graph is also considered a 2-factor since is a spanning 2-regular graph. For short, we denote
the disjoint union of j cycles of lenght i as jCi.

Let G be an union of cycles
a3C3 ∪ a4C4 ∪ . . . ∪ a2tC2t

for ai ≥ 0 with i ∈ {3, 4, . . . , 2t}. Note that the complement Gc of G is the join of the complement of
cycles.

Theorem 4. The graph (a3C3 ∪ a4C4 ∪ . . . ∪ a2tC2t)c is extremal if a5 + a7 + · · · + a2t−1 + 1 < a3.

Proof. Let Gc = (a3C3 ∪ a4C4 ∪ . . . ∪ a2tC2t)c. The graph Gc has order n = 3a3 + 4a4 + · · · + 2ta2t,
regularity r = n − 3 and chromatic number χ = a3 + 2a4 + 3a5 + 3a6 + · · · + ta2t−1 + ta2t since the the
chromatic numbers of Cc

3, Cc
4, Cc

5, ...,Cc
i are 1, 2, 3, . . . , ⌈i/2⌉ respectively.

Any (r|χ)-graph has at least rχ
χ−1 = r + r

χ−1 = n − 3χ−n
χ−1 vertices for r = n − 3. If 3χ−n

χ−1 < 1 then Gc is
extremal, that is, when

2χ + 1 < n,

i.e. when
a5 + a7 + · · · + a2t−1 + 1 < a3.

□

Moreover, we have the following results.

Theorem 5. Since Cc
n is extremal then

1. When n is even, if G = (a3C3∪ a4C4∪ . . .∪ a2tC2t)c is a graph of order n such that a5 + a7 + · · ·+

a2t−1 = a3, then G is extremal.

2. When n is odd, if G = (a3C3 ∪ a4C4 ∪ . . .∪ a2tC2t)c is a graph of order n such that a5 + a7 + · · ·+

a2t−1 = a3 + 1, then G is extremal.

Corollary 2. Since the antihole graphs of order n ≥ 8 are (r|χ)-graphs, then there exist many non-
isomorphic extremal (r|χ)-graphs (not necessarily Cayley).

For instance, there are three extremal (5, 4)-graphs, namely, Cc
8, (2C4)c and (C3 ∪ C5)c. See also

Table 1.

2.2. The case of r = χ

In this subsection, we discuss the case of r = χ = k, i.e., the (k|k)-graphs of minimum order. We
have the following bounds so far: ⌈

k2

k − 1

⌉
= k + 1 ≤ n(k|k) ≤ 2k.
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We prove that the upper bound is correct except for k = 4 and maybe for k = 6, 8, 10, 12. To
achieve it, we assume that there exist (k|k)-graphs of order n ≤ 2k − 2, that is⌈n

2

⌉
< k = χ. (1)

Now, we use a bound for the chromatic number arising from the Reed’s Conjecture, see [8]. We recall
the clique number ω(G) of a graph G is the largest k for which G has a complete subgraph of order k.

Conjecture 1. For every graph G,

χ(G) ≤
⌈
ω(G) + 1 + ∆(G)

2

⌉
.

It is known that the conjecture is true for graphs satisfying Equation 1, see [9]. It follows that
k ≤ ω(G) + 1 for any (k|k)-graph G of order n ≤ 2k − 2, that is, ω(G) = k or ω(G) = k − 1.

Case 1: ω(G) = k.

Let H1 be a clique of G and H2 = G \ V(H1). There is a set of k edges from V(H1) and V(H2).
Therefore, if t = n − k ≤ k − 2 is the order of H2 and m = (kt − k)/2 is the number of edges in
H2, then

m ≤
(
t
2

)
.

We obtain that k ≤ t, a contradiction.

Case 2: ω(G) = k − 1.

Let H1 be a clique of G and H2 = G \ V(H1). There is a set of 2(k − 1) edges from V(H1) to
V(H2). Therefore, if t = n − (k − 1) ≤ k − 1 is the order of H2 and m = (kt − 2(k − 1))/2 is the
number of edges in H2, then

m ≤
(
t
2

)
.

We obtain that k ≤ t + 1, hence, k = t + 1 and n has to be 2k − 2. Since every vertex v in V(H2)
has degree k in G, v has at least two neighbours in H1. By symmetry, G is the union of two
complete graphs Kk−1 with the addition of two perfect matchings between them. Its complement
is a (k − 3)-regular bipartite graph. Any perfect matching of Gc induce a (k − 1)-coloring in G, a
contradiction.

We have the following results.

Lemma 2. For any k ≥ 3,
2k − 1 ≤ n(k|k) ≤ c(k|k) ≤ 2k.

If k is odd then the order of any k-regular graph is even, therefore:

Corollary 3. For any k ≥ 3 an odd number, n(k|k) = c(k|k) = 2k.

We have that Cc
7 is the extremal (4|4)-graph. Next, assume that k ≥ 6 is an even number and there

exists a (k|k)-graph G of n = 2k − 1 vertices. Owing to the fact that χ(G) ≤ n − α(G) + 1 where α(G)
is the independence number of G, we get that α(G) ≤ k.

In [9] was proved that the Reed’s conjecture holds for graphs of order n satisfying χ > n+3−α
2 . In

the case of the graph G, we have that

n + 3 − α(G)
2

≤
k
2
+ 1 < k.

It follows that ω(G) ≤ k ≤ ω(G) + 1. Newly, we have two cases:
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Case 1: ω(G) = k.

As we saw before, let H1 be a clique of G and H2 = G \ V(H1). There is a set of k edges from
V(H1) and V(H2). Therefore, if t = k − 1 is the order of H2 and m = (kt − k)/2 is the number of
edges in H2, then

m ≤
(
t
2

)
.

We obtain that k ≤ t, a contradiction.

Case 2: ω(G) = k − 1.

In [10] was proved that every graph satisfies

χ ≤

ω,∆ − 1,
15 +

√
48n + 73
4


 .

Hence, for the graph G we have that k ≤
⌈

15+
√

96k+25
4

⌉
. After some calculations we get that

k = 6, 8, 10, 12, otherwise, k >
⌈

15+
√

96k+25
4

⌉
.

Finally, we have the following theorem.

Theorem 6. For any k ≥ 3 such that k < {4, 6, 8, 10, 12},

n(k|k) = c(k|k) = 2k.

Moreover, if k = 4 then n(k|k) = c(k|k) = 2k − 1 and if k ∈ {6, 8, 10, 12} then

2k − 1 ≤ n(k|k) ≤ c(k|k) ≤ 2k.

We point out that if there exists an extremal (k|k)-graph G of 2k − 1 vertices for k ∈ {6, 8, 10, 12},
then G has clique number ω = k − 1, a clique H1 of order ω for which G \ V(H1) has k

2 − 1 edges, G
is Hamiltonian-connected and it has independence number α(G) such that α(G) ∈ {k/4, . . . , k/2 + 1},
see [10].

3. Non-Cayley constructions

In this section we improve the upper bound of n(r|χ) given on Theorem 2 by exhibiting a construc-
tion of graphs not necessarily Cayley. We assume that r is not a multiple of χ−1, therefore 2 ≤ χ ≤ r.
Additionally, we show two more constructions which are tight for some values.

3.1. Upper bound

To begin with, take the Turán graph Tn,χ, for n = aχ + b, 0 < b < χ with r = a(χ − 1) + b and the
partition (V1,V2, . . . ,Vb,Vb+1, . . . ,Vχ) such that |Vi| = a + 1 if 1 ≤ i ≤ b and |Vi| = a if b + 1 ≤ i ≤ χ.
Every vertex in Vi for 1 ≤ i ≤ b has degree r − 1 and every vertex in Vi for b + 1 ≤ i ≤ χ has degree r.

Next, we define the graph Gn,χ as the graph formed by two copies G1 and G2 of Tn,χ with the
addition of a matching between the vertices of degree r − 1 of G1 and the vertices of degree r − 1 of
G2 in the natural way. In consequence, the graph Gn,χ is an r-regular graph of order 2n and chromatic
number χ. To obtain its chromatic number, suppose that Tn,χ has the vertex partition Vi, then the
vertices of Vi have the color i in G1 and the vertices of Vi are colored i + 1 mod χ in G2. Hence
χ = χ(G1) ≤ χ(Gn,χ) ≤ χ and then χ(Gn,χ) = χ.

Theorem 7. For 2 ≤ χ ≤ r + 1, then⌈
rχ
χ − 1

⌉
≤ n(r|χ) ≤ min

{
2
⌊

rχ
χ − 1

⌋
,

r − b
χ − 1

χ(b + 1)
}
,

where χ − 1|r − b with 0 ≤ b < χ.

Ars Combinatoria Volume 157, 133–141



Extremal Regular Graphs of Given Chromatic Number 139

3.2. The graph T ∗n,χ

In this subsection we give a better construction for some values of r and χ. Consider the (aχ+b, χ)-
Turán graph Taχ+b,χ such that χ > b ≥ 0 and partition (V1, . . . ,Vχ−b, . . . ,Vχ) for χ ≥ 3, |Vi| = ai = a ≥ 2
with i ∈ {1, . . . , χ − b} and |Vi| = ai = a + 1 ≥ 3 with i ∈ {χ − b + 1, . . . , χ}.

We claim that a is even or χ − b is even. To prove it, assume that a and χ − b are odd. Hence, if
b is even, then χ is odd, n = aχ + b is odd and r is odd, a contradiction. If b is odd, then χ is even,
n = aχ + b is odd and r is odd, newly, a contradiction.

Now, we define the graph T ∗n,χ of regularity r = a(χ − 1) + b − 1 as follows: If χ − b is even, the
removal of a perfect matching between Xi and Xi+1 for all i ∈ {1, 3, . . . , χ − b − 1} of Tn,χ produces
T ∗n,χ. If χ − b ≥ 3 is odd then a is even, therefore, the removal of a perfect matching between Xi and
Xi+1 for all i ∈ {4, 6 . . . , χ − b − 1} and a perfect matching between V ′1 and V ′′2 , V ′2 and V ′′3 , and V ′3 and
V ′′1 where Vi \ V ′i = V ′′i is a set of a/2 vertices for i ∈ {1, 2, 3}, of Tn,χ produces T ∗n,χ.

The graphs T ∗n,χ improve the upper bound given in Theorem 7 for some numbers n and χ:

rχ
χ − 1

= aχ + b −
χ − b
χ − 1

≤ aχ + b.

Hence, if χ−b
χ−1 < 1, the construction gives extremal graphs, that is, when

1 < b.

Theorem 8. Let χ ≥ 3, χ ≥ b > 1 and a ≥ 2. Then the graph T ∗aχ+b,χ defined above is an extremal
(a(χ − 1) + b − 1|χ)-graph when χ − b is even or a > 2 is even.

3.3. The graph Ga,c,t

Consider the (at, t)-Turán graph Tat,t with partition (V1, . . . ,Vt). Now, we define the graph Ga,c,t

with 1 ≤ c < a as follows: consider two parts of (V1, . . . ,Vt), e.g. V1 and V2, and c vertices of these
two parts {u1, . . . , uc} ⊆ V1 and {v1, . . . , vc} ⊆ V2.

The removal of the edges uiv j for i, j ∈ {1, . . . , c} when i , j (all the edges between {u1, . . . , uc}

and {v1, . . . , vc} except for a matching) and the addition of the edges uiu j and viv j for i, j ∈ {1, . . . , c}
when i , j (all the edges between the vertices ui and all the edges between the vertices vi) results in
the graph Ga,c,t.

The graph Ga,c,t is a a(t − 1)-regular graph of order at. Its chromatic number is t + c − 1 because
the partition

(V1 \ {u2, . . . , uc},V2 \ {v1, . . . , vc−1},V2, . . . ,Vt, {u2, v1}, . . . , {uc, vc−1})

is a proper coloring with t + c − 1 colors. Moreover, the graph Ga,c,t has a clique of t + c − 1 vertices,
namely, the vertices {u1, . . . , uc, x2, . . . , xt} where xi ∈ Vi for i ∈ {3, . . . , t} and x2 ∈ V2 \ {v1 . . . , vc}.

The graphs Ga,c,t improve the upper bound given in Theorem 2:

t + c − 1
t + c − 2

a(t − 1) = at − a
c − 1

t + c − 2
≤ at.

Hence, if a c−1
t+c−2 < 1, the construction gives extremal graphs, that is, when

(a − 1)(c − 1) < t − 1.

Theorem 9. Let a, t ≥ 2 and a > c ≥ 1. The graph Ga,c,t defined above is an extremal (a(t − 1)|at)-
graph when (a − 1)(c − 1) < t − 1.
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r \ χ 2 3 4 5 6
2 T4,2 T3,3 - - -
3 T6,2 Cc

6 T4,4 - -
4 T8,2 T6,3 Cc

7 T5,5 -

5 T10,2 G5,2,2
Cc

8, (2C4)c,
K5 × K2 T6,6(C3 ∪C5)c

6 T12,2 T9,3 T8,4 Cc
9, (C4 ∪C5)c ?

7 T14,2 T ∗12,3 T ∗10,4
Cc

10, (C4 ∪C6)c
(2C5)c

(C3 ∪C7)c

8 T16,2 T12,3 G4,2,3 T10,5
Cc

11, (C4 ∪C7)c

(C5 ∪C6)c

Cc
12, (2C6)c, (3C4)c

9 T18,2 T ∗∗16,3 T12,4 T ∗12,5 (C3 ∪C4 ∪C5)c

(C3 ∪C9)c

10 T20,2 T15,3 T ∗14,4 T ∗13,5 T12,6

Table 1. Extremal (r|χ)-graphs.

4. Small values

In this section we exhibit extremal (r|χ)-graphs of small orders. These exclude the extremal graphs
given before. Table 1 shows the extremal (r|χ)-graphs for 2 ≤ r ≤ 10 and 2 ≤ χ ≤ 6.

4.1. Extremal (5|3)-graph

Suppose that G is an extremal (5|3)-graph of order 8, i.e., its order equals the lower bound given
in Theorem 2. Then its complement is 2 regular. That is, Gc is C8 or C5 ∪C3 or C4 ∪C4. By Theorem
5, the complement of C8 or C5 ∪C3 or C4 ∪C4 has chromatic number 4. Since G is 5-regular, a (5|3)-
graph of order 9 does not exist and therefore 10 is the best possible. The graph G5,2,2 is an extremal
(5|3)-graph with 10 vertices.

4.2. Extremal (7|χ)-graphs for χ = 3, 6

Let G be an extremal (7|3)-graph. Its order is at least 11. Since its degree is odd, its order is at
least 12. The graph T ∗12,3 is an extremal (7|3)-graph.

Now, suppose that G is an extremal (7|6)-graph. G has at least 9 vertices. Newly, because it has an
odd regularity, G has at least 10 vertices. If this is the case, its complement is a 2 regular graph. The
graph (2C5)c has chromatic number 6. It is unique and it is Cayley.

4.3. Extremal (9|3)-graph

Any (9|3)-graph has 14 vertices, i.e., its order equals the lower bound given in Theorem 2. Suppose
that there exist at least one of degree 14. Let (V1,V2,V3) a partition by independent sets. Some of the
parts, V1, has at least five vertices. Since the graph is 9-regular, V1 has exactly 5 vertices. The induced
graph of V2 and V3 is a bipartite regular graph of an odd number of vertices, a contradiction. Then,
any (9|3)-graph has at least 16 vertices.

Consider the graph T16,3 with partition (U,V,W) and the sets partition are U = {u1, u2, u3, u4, u5},
V = {v1, v2, v3, v4, v5}, W = {w1,w2,w3,w4,w5,w6}. The removal of the edges

{w1v1, v1u1, u1w4,w2v2, v2u2, u2w5,w3v3, v3u3, u3w6, u4v4, v4u5, u5v5, v5u4}

is the graph T ∗∗16,3 which is the extremal (9|3)-graph.
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