

Article

Extremal Regular Graphs of Given Chromatic Number

Christian Rubio-Montiel^{1,*}

- ¹ División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico.
- * Correspondence: christian.rubio@apolo.acatlan.unam.mx

Abstract: We define an extremal $(r|\chi)$ -graph as an *r*-regular graph with chromatic number χ of minimum order. We show that the Turán graphs $T_{ak,k}$, the antihole graphs and the graphs $K_k \times K_2$ are extremal in this sense. We also study extremal Cayley $(r|\chi)$ -graphs and we exhibit several $(r|\chi)$ -graph constructions arising from Turán graphs.

Keywords: extremal graphs; Turán graphs; Reed's conjecture **Mathematics Subject Classification:**05C35, 05C15

1. Introduction

An *r*-regular graph is a simple finite graph such that each of its vertices has degree *r*. Regular graphs are one of the most studied classes of graphs; especially those with symmetries such as Cayley graphs. Let Γ be a finite group and let $X = \{x_1, x_2, \ldots, x_t\}$ a generating set for Γ such that $X = X^{-1}$ with $1_{\Gamma} \notin X$; a *Cayley* graph *Cay*(Γ, X) has vertex set consisting of the elements of Γ and two vertices *g* and *h* are adjacent if $gx_i = h$ for some $1 \le i \le t$. Cayley graphs are regular but there exist non-Cayley vertex-transitive graphs. The Petersen graph is a classic example of this fact.

The *girth* of a graph is the size of its shortest cycle. An (r, g)-graph is an *r*-regular graph of girth *g*. An (r, g)-cage is an (r, g)-graph of smallest possible order. The *diameter* of a graph is the largest length between shortest paths of any two vertices. An (r; D)-graph is an *r*-regular graph of diameter *D*.

While the cage problem asks for the constructions of cages, the *degree-diameter problem* asks for the construction of (r; D)-graphs of maximum order. Both of them are open and active problems (see [1,2]) in which, frequently, it is considered the restriction to Cayley graphs, see [3,4].

In this paper, we study a similar problem using a well-known parameter of coloration instead of girth or diameter. A *k*-coloring of a graph *G* is a partition of its vertices into *k* independent sets. The *chromatic number* $\chi(G)$ of *G* is the smallest number *k* for which there exists a *k*-coloring of *G*.

We define an $(r|\chi)$ -graph as an *r*-regular graph of chromatic number χ . In this work, we investigate the $(r|\chi)$ -graphs of minimum order. We also consider the case of Cayley $(r|\chi)$ -graphs.

The remainder of this paper is organized as follows: In Section 2 we show the existence of $(r|\chi)$ graphs, we define $n(r|\chi)$ as the order of the smallest $(r|\chi)$ -graph, and similarly, we define $c(r|\chi)$ as the order of the smallest Cayley $(r|\chi)$ -graph. We also exhibit lower and upper bounds on the orders of the extremal graphs. We show that the Turán graphs $T_{ak,k}$, antihole graphs (the complements of cycles) and $K_k \times K_2$ are Cayley $(r|\chi)$ -graphs of order $n(r|\chi)$ for some r and χ . To prove that $K_k \times K_2$ are extremal we use instances of the Reed's Conjecture for which it is true. In Section 3 we only consider non-Cayley graphs. We give another upper bound for $n(r|\chi)$ and we exhibit two families of $(r|\chi)$ -graphs with a few number of vertices which are extremal for some values of r and χ . Finally, in Section 4 we study the small values $2 \le r \le 10$ and $2 \le \chi \le 6$. We obtain a full table of extremal $(r|\chi)$ -graphs except for the pair (6|6).

2. Cayley $(r|\chi)$ -graphs

It is known that for any graph G, $1 \le \chi(G) \le \Delta + 1$ where Δ is the maximum degree of G. Therefore, for any $(r|\chi)$ -graph we have that

$$1 \le \chi \le r + 1.$$

Suppose that *G* is a (r|1)-graph. Hence *G* is the empty graph, then r = 0. Therefore, the extremal graph is the trivial graph. We can assume that $2 \le \chi \le r + 1$.

Next, we prove that for any *r* and χ such that $2 \le \chi \le r + 1$, there exists a Cayley $(r|\chi)$ -graph *G*.

We recall that the (n, k)-Turán graph $T_{n,k}$ is the complete k-partite graph on n vertices whose partite sets are as nearly equal in cardinality as possible, i.e., it is formed by partitioning a set of n = ak + bvertices (with $0 \le b < k$) into the partition of independent sets $(V_1, V_2, ..., V_b, V_{b+1}, ..., V_k)$ with order $|V_i| = a + 1$ if $1 \le i \le b$ and $|V_i| = a$ if $b + 1 \le i \le k$. Every vertex in V_i has degree a(k - 1) + b - 1 for $1 \le i \le b$ and every vertex in V_i has degree a(k - 1) + b for $b + 1 \le i \le k$. The (n, k)-Turán graph has chromatic number k, and size (see [5])

$$\left\lfloor \frac{(k-1)n^2}{2k} \right\rfloor.$$

Lemma 1. The (ak, k)-Turán graph $T_{ak,k}$ is a Cayley graph.

Proof. Let Γ be the group $\mathbb{Z}_a \times \mathbb{Z}_k$ and $X = \{(i, j) : 0 \le i < a, 0 < j < k\}$. Then, the graph $Cay(\Gamma, X)$ is isomorphic to $T_{ak,k}$.

Before to continue, we recall some definitions. Given two graphs H_1 and H_2 , the *cartesian product* $H_1 \Box H_2$ is defined as the graph with vertex set $V(H_1) \times V(H_2)$ and two vertices (u, u') and (v, v') are adjacent if either u = v and u' is adjacent with v' in H_2 , or u' = v' and u is adjacent with v in H_1 . The following proposition appears in [6].

Proposition 1. The cartesian product of two Cayley graphs is a Cayley graph.

On the other hand, the chromatic number of $H_1 \square H_2$ is the maximum between $\chi(H_1)$ and $\chi(H_2)$, see [7]. Now we can prove the following theorem.

Theorem 1. For any *r* and χ such that $2 \le \chi \le r + 1$, there exists a Cayley $(r|\chi)$ -graph.

Proof. Let $r = a(\chi - 1) + b$ where $a \ge 1$ and $0 \le b < \chi - 1$. Consider the Cayley graph $H_1 = T_{a\chi\chi}$. The graph H_1 has chromatic number χ and it is an $a(\chi - 1)$ -regular graph of order $a\chi$.

Additionally, consider the graph $H_2 = T_{b+1,b+1} = K_{b+1}$. The graph H_2 has chromatic number $b + 1 < \chi$ and it is a *b*-regular graph of order b + 1.

Therefore, the graph $G = H_1 \Box H_2$ is a Cayley graph by Proposition 1 such that it has chromatic number

$$\max\{\chi(H_1),\chi(H_2)\}=\chi,$$

regularity *r* and order $a\chi(b+1)$.

Now, we define $n(r|\chi)$ as the order of the smallest $(r|\chi)$ -graph and $c(r|\chi)$ as the order of the smallest Cayley $(r|\chi)$ -graph. Hence,

$$r+1 \le n(r|\chi) \le c(r|\chi) \le a\chi(b+1)$$

where $r = a(\chi - 1) + b$ with $a \ge 1$ and $0 \le b < \chi - 1$.

To improve the lower bound we consider the (n, χ) -Turán graph $T_{n,\chi}$. Suppose *G* is an $(r|\chi)$ -graph. Let ς be a χ -coloring of *G* resulting in the partition $(V_1, V_2, \ldots, V_{\chi})$ with $|V_i| = a_i$ for $1 \le i \le \chi$. Then the largest possible size of *G* occurs when *G* is a complete χ -partite graph with partite sets $(V_1, V_2, \ldots, V_{\chi})$ and the cardinalities of these partite sets are as equal as possible. This implies that

$$\frac{nr}{2} \le \left\lfloor \frac{(\chi - 1)n^2}{2\chi} \right\rfloor \le \frac{(\chi - 1)n^2}{2\chi},$$

since G has size rn/2. After some calculations we get that

$$\frac{r\chi}{\chi-1} \le n$$

Theorem 2. For any $2 \le \chi \le r + 1$,

$$\left\lceil \frac{r\chi}{\chi - 1} \right\rceil \le n(r|\chi) \le c(r|\chi) \le \frac{r - b}{\chi - 1}\chi(b + 1)$$

where $\chi - 1 | r - b$ with $0 \le b < \chi - 1$.

An $(r|\chi)$ -graph *G* of $n(r|\chi)$ vertices is called *extremal* $(r|\chi)$ -graph. Similarly, a Cayley $(r|\chi)$ -graph *G* of $c(r|\chi)$ vertices is called *extremal Cayley* $(r|\chi)$ -graph. When $\chi - 1|r$ the lower bound and the upper bound of Theorem 2 are equal. We have the following corollary.

Corollary 1. The Cayley graph $T_{a\chi,\chi}$ is an extremal $(a(\chi - 1)|\chi)$ -graph.

In the remainder of this paper we exclusively work with $b \neq 0$, that is, when $\chi - 1$ is not a divisor of *r*.

2.1. Antihole graphs

A *hole graph* is a cycle of length at least four. An *antihole graph* is the complement G^c of a hole graph G. Note that a hole graph and its antihole graph are both connected if and only if their orders are at least five. In this subsection we prove that antihole graphs of order n are extremal $(r|\chi)$ -graphs for any n at least six. There are two cases depending of the number of vertices.

1. $G = C_n^c$ for n = 2k and $k \ge 3$.

The graph *G* has regularity r = 2k - 3 and chromatic number $\chi = k$. Any (2k - 3|k)-graph has an even number of vertices and at least $\frac{r\chi}{\chi^{-1}} = \frac{(2k-3)k}{k-1} = 2k - \frac{k}{k-1}$ vertices.

If k > 2, then $\frac{k}{k-1} < 2$. Therefore we have the following result:

$$n(2k - 3, k) = c(2k - 3, k) = 2k$$

for all $k \ge 3$.

2. $G = C_n^c$ for n = 2k - 1 and $k \ge 4$.

The graph *G* has regularity r = 2k - 4 and chromatic number $\chi = k$. Any (2k - 4|k)-graph has at least $\frac{r\chi}{\chi - 1} = \frac{(2k - 4)k}{k - 1} = 2k - 2 - \frac{2}{k - 1}$ vertices.

If k - 1 > 2, we have that $\frac{2}{k-1} < 1$. Therefore

$$2k - 2 \le n(2k - 4, k) \le c(2k - 4, k) \le 2k - 1$$

for all $k \ge 4$.

Suppose that G is a (2k - 4|k)-graph of 2k - 2 vertices. Then $G = ((k - 1)K_2)^c$, i.e., G is the complement of a matching of k - 1 edges. Then $\chi(G) = k - 1$, a contradiction. Therefore

$$n(2k - 4, k) = c(2k - 4, k) = 2k - 1$$

for all $k \ge 4$.

Therefore, we have the following theorem.

Theorem 3. The antihole graphs of order $n \ge 6$ are extremal $(n - 3 \lfloor \frac{n}{2} \rfloor)$ -graphs.

A hole graph is also considered a 2-*factor* since is a spanning 2-regular graph. For short, we denote the disjoint union of j cycles of lenght i as jC_i .

Let G be an union of cycles

$$a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t}$$

for $a_i \ge 0$ with $i \in \{3, 4, ..., 2t\}$. Note that the complement G^c of G is the join of the complement of cycles.

Theorem 4. The graph $(a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is extremal if $a_5 + a_7 + \cdots + a_{2t-1} + 1 < a_3$.

Proof. Let $G^c = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$. The graph G^c has order $n = 3a_3 + 4a_4 + \cdots + 2ta_{2t}$, regularity r = n - 3 and chromatic number $\chi = a_3 + 2a_4 + 3a_5 + 3a_6 + \cdots + ta_{2t-1} + ta_{2t}$ since the the chromatic numbers of C_3^c , C_4^c , C_5^c , ..., C_i^c are $1, 2, 3, \ldots, \lceil i/2 \rceil$ respectively.

Any $(r|\chi)$ -graph has at least $\frac{r\chi}{\chi-1} = r + \frac{r}{\chi-1} = n - \frac{3\chi-n}{\chi-1}$ vertices for r = n - 3. If $\frac{3\chi-n}{\chi-1} < 1$ then G^c is extremal, that is, when

$$2\chi + 1 < n$$

i.e. when

$$a_5 + a_7 + \cdots + a_{2t-1} + 1 < a_3.$$

Moreover, we have the following results.

Theorem 5. Since C_n^c is extremal then

- 1. When n is even, if $G = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is a graph of order n such that $a_5 + a_7 + \cdots + a_{2t-1} = a_3$, then G is extremal.
- 2. When n is odd, if $G = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is a graph of order n such that $a_5 + a_7 + \cdots + a_{2t-1} = a_3 + 1$, then G is extremal.

Corollary 2. Since the antihole graphs of order $n \ge 8$ are $(r|\chi)$ -graphs, then there exist many nonisomorphic extremal $(r|\chi)$ -graphs (not necessarily Cayley).

For instance, there are three extremal (5, 4)-graphs, namely, C_8^c , $(2C_4)^c$ and $(C_3 \cup C_5)^c$. See also Table 1.

2.2. The case of $r = \chi$

In this subsection, we discuss the case of $r = \chi = k$, i.e., the (k|k)-graphs of minimum order. We have the following bounds so far:

$$\left\lceil \frac{k^2}{k-1} \right\rceil = k+1 \le n(k|k) \le 2k.$$

We prove that the upper bound is correct except for k = 4 and maybe for k = 6, 8, 10, 12. To achieve it, we assume that there exist (k|k)-graphs of order $n \le 2k - 2$, that is

$$\left\lceil \frac{n}{2} \right\rceil < k = \chi. \tag{1}$$

Now, we use a bound for the chromatic number arising from the Reed's Conjecture, see [8]. We recall the clique number $\omega(G)$ of a graph *G* is the largest *k* for which *G* has a complete subgraph of order *k*.

Conjecture 1. For every graph G,

$$\chi(G) \le \left\lceil \frac{\omega(G) + 1 + \Delta(G)}{2} \right\rceil.$$

It is known that the conjecture is true for graphs satisfying Equation 1, see [9]. It follows that $k \le \omega(G) + 1$ for any (k|k)-graph G of order $n \le 2k - 2$, that is, $\omega(G) = k$ or $\omega(G) = k - 1$.

Case 1: $\omega(G) = k$.

Let H_1 be a clique of G and $H_2 = G \setminus V(H_1)$. There is a set of k edges from $V(H_1)$ and $V(H_2)$. Therefore, if $t = n - k \le k - 2$ is the order of H_2 and m = (kt - k)/2 is the number of edges in H_2 , then

$$m \leq \binom{t}{2}.$$

We obtain that $k \le t$, a contradiction.

Case 2: $\omega(G) = k - 1$.

Let H_1 be a clique of G and $H_2 = G \setminus V(H_1)$. There is a set of 2(k - 1) edges from $V(H_1)$ to $V(H_2)$. Therefore, if $t = n - (k - 1) \le k - 1$ is the order of H_2 and m = (kt - 2(k - 1))/2 is the number of edges in H_2 , then

$$m \leq \binom{t}{2}.$$

We obtain that $k \le t + 1$, hence, k = t + 1 and *n* has to be 2k - 2. Since every vertex *v* in $V(H_2)$ has degree *k* in *G*, *v* has at least two neighbours in H_1 . By symmetry, *G* is the union of two complete graphs K_{k-1} with the addition of two perfect matchings between them. Its complement is a (k - 3)-regular bipartite graph. Any perfect matching of G^c induce a (k - 1)-coloring in *G*, a contradiction.

We have the following results.

Lemma 2. For any $k \ge 3$,

$$2k - 1 \le n(k|k) \le c(k|k) \le 2k.$$

If *k* is odd then the order of any *k*-regular graph is even, therefore:

Corollary 3. For any $k \ge 3$ an odd number, n(k|k) = c(k|k) = 2k.

We have that C_7^c is the extremal (4|4)-graph. Next, assume that $k \ge 6$ is an even number and there exists a (k|k)-graph G of n = 2k - 1 vertices. Owing to the fact that $\chi(G) \le n - \alpha(G) + 1$ where $\alpha(G)$ is the independence number of G, we get that $\alpha(G) \le k$.

In [9] was proved that the Reed's conjecture holds for graphs of order *n* satisfying $\chi > \frac{n+3-\alpha}{2}$. In the case of the graph *G*, we have that

$$\frac{n+3 - \alpha(G)}{2} \le \frac{k}{2} + 1 < k.$$

It follows that $\omega(G) \le k \le \omega(G) + 1$. Newly, we have two cases:

Case 1: $\omega(G) = k$.

As we saw before, let H_1 be a clique of G and $H_2 = G \setminus V(H_1)$. There is a set of k edges from $V(H_1)$ and $V(H_2)$. Therefore, if t = k - 1 is the order of H_2 and m = (kt - k)/2 is the number of edges in H_2 , then

$$m \leq \binom{t}{2}.$$

We obtain that $k \le t$, a contradiction.

Case 2: $\omega(G) = k - 1$.

In [10] was proved that every graph satisfies

$$\chi \leq \left\{\omega, \Delta - 1, \left\lceil \frac{15 + \sqrt{48n + 73}}{4} \right\rceil \right\}.$$

Hence, for the graph G we have that $k \leq \left\lceil \frac{15 + \sqrt{96k + 25}}{4} \right\rceil$. After some calculations we get that k = 6, 8, 10, 12, otherwise, $k > \left\lceil \frac{15 + \sqrt{96k + 25}}{4} \right\rceil$.

Finally, we have the following theorem.

Theorem 6. For any $k \ge 3$ such that $k \notin \{4, 6, 8, 10, 12\}$,

$$n(k|k) = c(k|k) = 2k.$$

Moreover, if k = 4 *then* n(k|k) = c(k|k) = 2k - 1 *and if* $k \in \{6, 8, 10, 12\}$ *then*

$$2k - 1 \le n(k|k) \le c(k|k) \le 2k.$$

We point out that if there exists an extremal (k|k)-graph G of 2k - 1 vertices for $k \in \{6, 8, 10, 12\}$, then G has clique number $\omega = k - 1$, a clique H_1 of order ω for which $G \setminus V(H_1)$ has $\frac{k}{2} - 1$ edges, Gis Hamiltonian-connected and it has independence number $\alpha(G)$ such that $\alpha(G) \in \{k/4, \dots, k/2 + 1\}$, see [10].

3. Non-Cayley constructions

In this section we improve the upper bound of $n(r|\chi)$ given on Theorem 2 by exhibiting a construction of graphs not necessarily Cayley. We assume that *r* is not a multiple of $\chi - 1$, therefore $2 \le \chi \le r$. Additionally, we show two more constructions which are tight for some values.

3.1. Upper bound

To begin with, take the Turán graph $T_{n,\chi}$, for $n = a\chi + b$, $0 < b < \chi$ with $r = a(\chi - 1) + b$ and the partition $(V_1, V_2, \dots, V_b, V_{b+1}, \dots, V_{\chi})$ such that $|V_i| = a + 1$ if $1 \le i \le b$ and $|V_i| = a$ if $b + 1 \le i \le \chi$. Every vertex in V_i for $1 \le i \le b$ has degree r - 1 and every vertex in V_i for $b + 1 \le i \le \chi$ has degree r.

Next, we define the graph $G_{n,\chi}$ as the graph formed by two copies G_1 and G_2 of $T_{n,\chi}$ with the addition of a matching between the vertices of degree r - 1 of G_1 and the vertices of degree r - 1 of G_2 in the natural way. In consequence, the graph $G_{n,\chi}$ is an *r*-regular graph of order 2n and chromatic number χ . To obtain its chromatic number, suppose that $T_{n,\chi}$ has the vertex partition V_i , then the vertices of V_i have the color *i* in G_1 and the vertices of V_i are colored $i + 1 \mod \chi$ in G_2 . Hence $\chi = \chi(G_1) \leq \chi(G_{n,\chi}) \leq \chi$ and then $\chi(G_{n,\chi}) = \chi$.

Theorem 7. For $2 \le \chi \le r + 1$, then

$$\left[\frac{r\chi}{\chi-1}\right] \le n(r|\chi) \le \min\left\{2\left\lfloor\frac{r\chi}{\chi-1}\right\rfloor, \frac{r-b}{\chi-1}\chi(b+1)\right\},\$$

where $\chi - 1 | r - b$ with $0 \le b < \chi$.

3.2. The graph $T^*_{n,\chi}$

In this subsection we give a better construction for some values of *r* and χ . Consider the $(a\chi + b, \chi)$ -Turán graph $T_{a\chi+b,\chi}$ such that $\chi > b \ge 0$ and partition $(V_1, \ldots, V_{\chi-b}, \ldots, V_{\chi})$ for $\chi \ge 3$, $|V_i| = a_i = a \ge 2$ with $i \in \{1, \ldots, \chi - b\}$ and $|V_i| = a_i = a + 1 \ge 3$ with $i \in \{\chi - b + 1, \ldots, \chi\}$.

We claim that *a* is even or $\chi - b$ is even. To prove it, assume that *a* and $\chi - b$ are odd. Hence, if *b* is even, then χ is odd, $n = a\chi + b$ is odd and *r* is odd, a contradiction. If *b* is odd, then χ is even, $n = a\chi + b$ is odd and *r* is odd, newly, a contradiction.

Now, we define the graph $T_{n,\chi}^*$ of regularity $r = a(\chi - 1) + b - 1$ as follows: If $\chi - b$ is even, the removal of a perfect matching between X_i and X_{i+1} for all $i \in \{1, 3, ..., \chi - b - 1\}$ of $T_{n,\chi}$ produces $T_{n,\chi}^*$. If $\chi - b \ge 3$ is odd then *a* is even, therefore, the removal of a perfect matching between X_i and X_{i+1} for all $i \in \{4, 6, ..., \chi - b - 1\}$ and a perfect matching between V'_1 and V''_2 , V'_2 and V''_3 , and V''_3 and V''_1 where $V_i \setminus V'_i = V''_i$ is a set of a/2 vertices for $i \in \{1, 2, 3\}$, of $T_{n,\chi}$ produces $T_{n,\chi}^*$.

The graphs $T_{n,\chi}^*$ improve the upper bound given in Theorem 7 for some numbers *n* and χ :

$$\frac{r\chi}{\chi-1} = a\chi + b - \frac{\chi-b}{\chi-1} \le a\chi + b.$$

Hence, if $\frac{\chi-b}{\chi-1} < 1$, the construction gives extremal graphs, that is, when

1 < b.

Theorem 8. Let $\chi \ge 3$, $\chi \ge b > 1$ and $a \ge 2$. Then the graph $T^*_{a\chi+b\chi}$ defined above is an extremal $(a(\chi - 1) + b - 1|\chi)$ -graph when $\chi - b$ is even or a > 2 is even.

3.3. The graph $G_{a,c,t}$

Consider the (at, t)-Turán graph $T_{at,t}$ with partition (V_1, \ldots, V_t) . Now, we define the graph $G_{a,c,t}$ with $1 \le c < a$ as follows: consider two parts of (V_1, \ldots, V_t) , e.g. V_1 and V_2 , and c vertices of these two parts $\{u_1, \ldots, u_c\} \subseteq V_1$ and $\{v_1, \ldots, v_c\} \subseteq V_2$.

The removal of the edges $u_i v_j$ for $i, j \in \{1, ..., c\}$ when $i \neq j$ (all the edges between $\{u_1, ..., u_c\}$ and $\{v_1, ..., v_c\}$ except for a matching) and the addition of the edges $u_i u_j$ and $v_i v_j$ for $i, j \in \{1, ..., c\}$ when $i \neq j$ (all the edges between the vertices u_i and all the edges between the vertices v_i) results in the graph $G_{a,c,i}$.

The graph $G_{a,c,t}$ is a a(t-1)-regular graph of order *at*. Its chromatic number is t + c - 1 because the partition

$$(V_1 \setminus \{u_2, \ldots, u_c\}, V_2 \setminus \{v_1, \ldots, v_{c-1}\}, V_2, \ldots, V_t, \{u_2, v_1\}, \ldots, \{u_c, v_{c-1}\})$$

is a proper coloring with t + c - 1 colors. Moreover, the graph $G_{a,c,t}$ has a clique of t + c - 1 vertices, namely, the vertices $\{u_1, \ldots, u_c, x_2, \ldots, x_t\}$ where $x_i \in V_i$ for $i \in \{3, \ldots, t\}$ and $x_2 \in V_2 \setminus \{v_1, \ldots, v_c\}$.

The graphs $G_{a,c,t}$ improve the upper bound given in Theorem 2:

$$\frac{t+c-1}{t+c-2}a(t-1) = at - a\frac{c-1}{t+c-2} \le at.$$

Hence, if $a \frac{c-1}{t+c-2} < 1$, the construction gives extremal graphs, that is, when

$$(a-1)(c-1) < t-1.$$

Theorem 9. Let $a, t \ge 2$ and $a > c \ge 1$. The graph $G_{a,c,t}$ defined above is an extremal (a(t-1)|at)-graph when (a-1)(c-1) < t-1.

$r \setminus \chi$	2	3	4	5	6
2	$T_{4,2}$	<i>T</i> _{3,3}	-	-	-
3	$T_{6,2}$	C_6^c	$T_{4,4}$	-	-
4	$T_{8,2}$	$T_{6,3}$	C_7^c	$T_{5,5}$	-
5	$T_{10,2}$	$G_{5,2,2}$	$C_8^c, (2C_4)^c, (C_3 \cup C_5)^c$	$K_5 \times K_2$	$T_{6,6}$
6	$T_{12,2}$	$T_{9,3}$	$T_{8,4}$	$C_9^c, (C_4 \cup C_5)^c$?
7	<i>T</i> _{14,2}	$T^{*}_{12,3}$	$T^{*}_{10,4}$	$C_{10}^c, (C_4 \cup C_6)^c \ (C_3 \cup C_7)^c$	$(2C_5)^c$
8	$T_{16,2}$	$T_{12,3}$	$G_{4,2,3}$	$T_{10,5}$	$C_{11}^c, (C_4 \cup C_7)^c \ (C_5 \cup C_6)^c$
9	<i>T</i> _{18,2}	$T_{16,3}^{**}$	<i>T</i> _{12,4}	$T^*_{12,5}$	$C_{12}^{c}, (2C_{6})^{c}, (3C_{4})^{c}$ $(C_{3} \cup C_{4} \cup C_{5})^{c}$ $(C_{3} \cup C_{9})^{c}$
10	$T_{20,2}$	$T_{15,3}$	$T^{*}_{14,4}$	$T^{*}_{13,5}$	$T_{12,6}$
Table 1 Extramel (re) graphs					

Table 1. Extremal $(r|\chi)$ -graphs.

4. Small values

In this section we exhibit extremal $(r|\chi)$ -graphs of small orders. These exclude the extremal graphs given before. Table 1 shows the extremal $(r|\chi)$ -graphs for $2 \le r \le 10$ and $2 \le \chi \le 6$.

4.1. Extremal (5|3)-graph

Suppose that *G* is an extremal (5|3)-graph of order 8, i.e., its order equals the lower bound given in Theorem 2. Then its complement is 2 regular. That is, G^c is C_8 or $C_5 \cup C_3$ or $C_4 \cup C_4$. By Theorem 5, the complement of C_8 or $C_5 \cup C_3$ or $C_4 \cup C_4$ has chromatic number 4. Since *G* is 5-regular, a (5|3)graph of order 9 does not exist and therefore 10 is the best possible. The graph $G_{5,2,2}$ is an extremal (5|3)-graph with 10 vertices.

4.2. Extremal $(7|\chi)$ -graphs for $\chi = 3, 6$

Let G be an extremal (7|3)-graph. Its order is at least 11. Since its degree is odd, its order is at least 12. The graph $T_{12,3}^*$ is an extremal (7|3)-graph.

Now, suppose that G is an extremal (7|6)-graph. G has at least 9 vertices. Newly, because it has an odd regularity, G has at least 10 vertices. If this is the case, its complement is a 2 regular graph. The graph $(2C_5)^c$ has chromatic number 6. It is unique and it is Cayley.

4.3. Extremal (9|3)-graph

Any (9|3)-graph has 14 vertices, i.e., its order equals the lower bound given in Theorem 2. Suppose that there exist at least one of degree 14. Let (V_1, V_2, V_3) a partition by independent sets. Some of the parts, V_1 , has at least five vertices. Since the graph is 9-regular, V_1 has exactly 5 vertices. The induced graph of V_2 and V_3 is a bipartite regular graph of an odd number of vertices, a contradiction. Then, any (9|3)-graph has at least 16 vertices.

Consider the graph $T_{16,3}$ with partition (U, V, W) and the sets partition are $U = \{u_1, u_2, u_3, u_4, u_5\}, V = \{v_1, v_2, v_3, v_4, v_5\}, W = \{w_1, w_2, w_3, w_4, w_5, w_6\}$. The removal of the edges

$$\{w_1v_1, v_1u_1, u_1w_4, w_2v_2, v_2u_2, u_2w_5, w_3v_3, v_3u_3, u_3w_6, u_4v_4, v_4u_5, u_5v_5, v_5u_4\}$$

is the graph $T_{16,3}^{**}$ which is the extremal (9|3)-graph.

Acknowledgment

We thank Robert Jajcay for useful discussions. C. Rubio-Montiel was partially supported by PAIDI grant 007/19. The authors wish to thank the anonymous referees of this paper for their suggestions and remarks.

Conflict of Interest

The author declares no conflict of interests.

References

- 1. Exoo, G. and Jajcay, R., 2013. Dynamic cage survey. *The Electronic Journal of Combinatorics*, #DS16, 55pg.
- 2. Miller, M. and Širán, J., 2013. Moore graphs and beyond: A survey of the degree/diameter problem. *The Electronic Journal of Combinatorics*, #DS14, 92pg.
- 3. Macbeth, H., Šiagiová, J. and Širán, J., 2012. Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups. *Discrete Mathematics*, *312*(1), pp.94-99.
- 4. Exoo, G., Jajcay, R. and Širán, J., 2013. Cayley cages. Journal of Algebraic Combinatorics. *An International Journal*, *38*(1), pp.209-224.
- 5. Bondy, J. A. and Murty, U. S. R., 1976. *Graph theory with applications*. American Elsevier Publishing Co., Inc., New York.
- 6. Xu, J., 2003. *Theory and application of graphs* (Network Theory and Applications, Vol. 10). Kluwer Academic Publishers, Dordrecht.
- 7. Chartrand, G. and Zhang, P., 2009. *Chromatic graph theory* (Discrete Mathematics and its Applications (Boca Raton)). CRC Press, Boca Raton, FL.
- 8. Reed, B., 1998. *ω*, Δ, and *X. Journal of Graph Theory*, 27(4), pp.177-212.
- 9. Rabern, L. 2008. A note on B. Reed's conjecture. *SIAM Journal on Discrete Mathematics*, 22(2), pp.820-827.
- 10. Rabern, L., 2014. Coloring graphs with dense neighborhoods. *Journal of Graph Theory*, 76(4), pp.323-340.