## Article

# Extremal Regular Graphs of Given Chromatic Number 

Christian Rubio-Montiel ${ }^{1, *}$

${ }^{1}$ División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico.

* Correspondence: christian.rubio@apolo.acatlan.unam.mx


#### Abstract

We define an extremal ( $r \mid \chi$ )-graph as an $r$-regular graph with chromatic number $\chi$ of minimum order. We show that the Turán graphs $T_{a k, k}$, the antihole graphs and the graphs $K_{k} \times K_{2}$ are extremal in this sense. We also study extremal Cayley $(r \mid \chi)$-graphs and we exhibit several ( $r \mid \chi$ )-graph constructions arising from Turán graphs.


Keywords: extremal graphs; Turán graphs; Reed's conjecture
Mathematics Subject Classification:05C35, 05C15

## 1. Introduction

An $r$-regular graph is a simple finite graph such that each of its vertices has degree $r$. Regular graphs are one of the most studied classes of graphs; especially those with symmetries such as Cayley graphs. Let $\Gamma$ be a finite group and let $X=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ a generating set for $\Gamma$ such that $X=X^{-1}$ with $1_{\Gamma} \notin X$; a Cayley graph $\operatorname{Cay}(\Gamma, X)$ has vertex set consisting of the elements of $\Gamma$ and two vertices $g$ and $h$ are adjacent if $g x_{i}=h$ for some $1 \leq i \leq t$. Cayley graphs are regular but there exist non-Cayley vertex-transitive graphs. The Petersen graph is a classic example of this fact.

The girth of a graph is the size of its shortest cycle. An $(r, g)$-graph is an $r$-regular graph of girth $g$. An $(r, g)$-cage is an $(r, g)$-graph of smallest possible order. The diameter of a graph is the largest length between shortest paths of any two vertices. An $(r ; D)$-graph is an $r$-regular graph of diameter D.

While the cage problem asks for the constructions of cages, the degree-diameter problem asks for the construction of $(r ; D)$-graphs of maximum order. Both of them are open and active problems (see $[1,2]$ ) in which, frequently, it is considered the restriction to Cayley graphs, see [3,4].

In this paper, we study a similar problem using a well-known parameter of coloration instead of girth or diameter. A $k$-coloring of a graph $G$ is a partition of its vertices into $k$ independent sets. The chromatic number $\chi(G)$ of $G$ is the smallest number $k$ for which there exists a $k$-coloring of $G$.

We define an $(r \mid \chi)$-graph as an $r$-regular graph of chromatic number $\chi$. In this work, we investigate the ( $r \mid \chi$ )-graphs of minimum order. We also consider the case of Cayley ( $r \mid \chi$ )-graphs.

The remainder of this paper is organized as follows: In Section 2 we show the existence of $(r \mid \chi)$ graphs, we define $n(r \mid \chi)$ as the order of the smallest $(r \mid \chi)$-graph, and similarly, we define $c(r \mid \chi)$ as the order of the smallest Cayley $(r \mid \chi)$-graph. We also exhibit lower and upper bounds on the orders of the extremal graphs. We show that the Turán graphs $T_{a k, k}$, antihole graphs (the complements of cycles) and $K_{k} \times K_{2}$ are Cayley ( $r \mid \chi$ )-graphs of order $n(r \mid \chi)$ for some $r$ and $\chi$. To prove that $K_{k} \times K_{2}$
are extremal we use instances of the Reed's Conjecture for which it is true. In Section 3 we only consider non-Cayley graphs. We give another upper bound for $n(r \mid \chi)$ and we exhibit two families of $(r \mid \chi)$-graphs with a few number of vertices which are extremal for some values of $r$ and $\chi$. Finally, in Section 4 we study the small values $2 \leq r \leq 10$ and $2 \leq \chi \leq 6$. We obtain a full table of extremal ( $r \mid \chi$ )-graphs except for the pair (6|6).

## 2. Cayley ( $r \mid \chi$ )-graphs

It is known that for any graph $G, 1 \leq \chi(G) \leq \Delta+1$ where $\Delta$ is the maximum degree of $G$. Therefore, for any $(r \mid x)$-graph we have that

$$
1 \leq \chi \leq r+1
$$

Suppose that $G$ is a $(r \mid 1)$-graph. Hence $G$ is the empty graph, then $r=0$. Therefore, the extremal graph is the trivial graph. We can assume that $2 \leq \chi \leq r+1$.

Next, we prove that for any $r$ and $\chi$ such that $2 \leq \chi \leq r+1$, there exists a Cayley ( $r \mid \chi$ )-graph $G$.
We recall that the $(n, k)$-Turán graph $T_{n, k}$ is the complete $k$-partite graph on $n$ vertices whose partite sets are as nearly equal in cardinality as possible, i.e., it is formed by partitioning a set of $n=a k+b$ vertices (with $0 \leq b<k$ ) into the partition of independent sets ( $V_{1}, V_{2}, \ldots, V_{b}, V_{b+1}, \ldots, V_{k}$ ) with order $\left|V_{i}\right|=a+1$ if $1 \leq i \leq b$ and $\left|V_{i}\right|=a$ if $b+1 \leq i \leq k$. Every vertex in $V_{i}$ has degree $a(k-1)+b-1$ for $1 \leq i \leq b$ and every vertex in $V_{i}$ has degree $a(k-1)+b$ for $b+1 \leq i \leq k$. The ( $n, k$ )-Turán graph has chromatic number $k$, and size (see [5])

$$
\left\lfloor\frac{(k-1) n^{2}}{2 k}\right\rfloor .
$$

Lemma 1. The (ak,k)-Turán graph $T_{a k, k}$ is a Cayley graph.
Proof. Let $\Gamma$ be the group $\mathbb{Z}_{a} \times \mathbb{Z}_{k}$ and $X=\{(i, j): 0 \leq i<a, 0<j<k\}$. Then, the graph $\operatorname{Cay}(\Gamma, X)$ is isomorphic to $T_{a k, k}$.

Before to continue, we recall some definitions. Given two graphs $H_{1}$ and $H_{2}$, the cartesian product $H_{1} \square H_{2}$ is defined as the graph with vertex set $V\left(H_{1}\right) \times V\left(H_{2}\right)$ and two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent if either $u=v$ and $u^{\prime}$ is adjacent with $v^{\prime}$ in $H_{2}$, or $u^{\prime}=v^{\prime}$ and $u$ is adjacent with $v$ in $H_{1}$. The following proposition appears in [6].

Proposition 1. The cartesian product of two Cayley graphs is a Cayley graph.
On the other hand, the chromatic number of $H_{1} \square H_{2}$ is the maximum between $\chi\left(H_{1}\right)$ and $\chi\left(H_{2}\right)$, see [7]. Now we can prove the following theorem.

Theorem 1. For any $r$ and $\chi$ such that $2 \leq \chi \leq r+1$, there exists a Cayley $(r \mid \chi)$-graph.
Proof. Let $r=a(\chi-1)+b$ where $a \geq 1$ and $0 \leq b<\chi-1$. Consider the Cayley graph $H_{1}=T_{a \chi, \chi}$. The graph $H_{1}$ has chromatic number $\chi$ and it is an $a(\chi-1)$-regular graph of order $a \chi$.

Additionally, consider the graph $H_{2}=T_{b+1, b+1}=K_{b+1}$. The graph $H_{2}$ has chromatic number $b+1<\chi$ and it is a $b$-regular graph of order $b+1$.

Therefore, the graph $G=H_{1} \square H_{2}$ is a Cayley graph by Proposition 1 such that it has chromatic number

$$
\max \left\{\chi\left(H_{1}\right), \chi\left(H_{2}\right)\right\}=\chi,
$$

regularity $r$ and order $a \chi(b+1)$.
Now, we define $n(r \mid \chi)$ as the order of the smallest $(r \mid \chi)$-graph and $c(r \mid \chi)$ as the order of the smallest Cayley ( $r \mid \chi$ )-graph. Hence,

$$
r+1 \leq n(r \mid \chi) \leq c(r \mid \chi) \leq a \chi(b+1)
$$

where $r=a(\chi-1)+b$ with $a \geq 1$ and $0 \leq b<\chi-1$.
To improve the lower bound we consider the ( $n, \chi$ )-Turán graph $T_{n, \chi}$. Suppose $G$ is an ( $r \mid \chi$ )-graph. Let $\varsigma$ be a $\chi$-coloring of $G$ resulting in the partition $\left(V_{1}, V_{2}, \ldots, V_{\chi}\right)$ with $\left|V_{i}\right|=a_{i}$ for $1 \leq i \leq \chi$. Then the largest possible size of $G$ occurs when $G$ is a complete $\chi$-partite graph with partite sets $\left(V_{1}, V_{2}, \ldots, V_{\chi}\right)$ and the cardinalities of these partite sets are as equal as possible. This implies that

$$
\frac{n r}{2} \leq\left\lfloor\frac{(\chi-1) n^{2}}{2 \chi}\right\rfloor \leq \frac{(\chi-1) n^{2}}{2 \chi}
$$

since $G$ has size $r n / 2$. After some calculations we get that

$$
\frac{r \chi}{\chi-1} \leq n
$$

Theorem 2. For any $2 \leq \chi \leq r+1$,

$$
\left\lceil\frac{r \chi}{\chi-1}\right\rceil \leq n(r \mid \chi) \leq c(r \mid \chi) \leq \frac{r-b}{\chi-1} \chi(b+1)
$$

where $\chi-1 \mid r-b$ with $0 \leq b<\chi-1$.
An $(r \mid \chi)$-graph $G$ of $n(r \mid \chi)$ vertices is called extremal ( $r \mid \chi$ )-graph. Similarly, a Cayley ( $r \mid \chi$ )-graph $G$ of $c(r \mid \chi)$ vertices is called extremal Cayley ( $r \mid \chi$ )-graph. When $\chi-1 \mid r$ the lower bound and the upper bound of Theorem 2 are equal. We have the following corollary.

Corollary 1. The Cayley graph $T_{a \chi, \chi}$ is an extremal $(a(\chi-1) \mid \chi)$-graph.
In the remainder of this paper we exclusively work with $b \neq 0$, that is, when $\chi-1$ is not a divisor of $r$.

### 2.1. Antihole graphs

A hole graph is a cycle of length at least four. An antihole graph is the complement $G^{c}$ of a hole graph $G$. Note that a hole graph and its antihole graph are both connected if and only if their orders are at least five. In this subsection we prove that antihole graphs of order $n$ are extremal ( $r \mid \chi$ )-graphs for any $n$ at least six. There are two cases depending of the number of vertices.

1. $G=C_{n}^{c}$ for $n=2 k$ and $k \geq 3$.

The graph $G$ has regularity $r=2 k-3$ and chromatic number $\chi=k$. Any $(2 k-3 \mid k)$-graph has an even number of vertices and at least $\frac{r \chi}{\chi-1}=\frac{(2 k-3) k}{k-1}=2 k-\frac{k}{k-1}$ vertices.
If $k>2$, then $\frac{k}{k-1}<2$. Therefore we have the following result:

$$
n(2 k-3, k)=c(2 k-3, k)=2 k
$$

for all $k \geq 3$.
2. $G=C_{n}^{c}$ for $n=2 k-1$ and $k \geq 4$.

The graph $G$ has regularity $r=2 k-4$ and chromatic number $\chi=k$. Any $(2 k-4 \mid k)$-graph has at least $\frac{r \chi}{\chi-1}=\frac{(2 k-4) k}{k-1}=2 k-2-\frac{2}{k-1}$ vertices.
If $k-1>2$, we have that $\frac{2}{k-1}<1$. Therefore

$$
2 k-2 \leq n(2 k-4, k) \leq c(2 k-4, k) \leq 2 k-1
$$

for all $k \geq 4$.

Suppose that $G$ is a $(2 k-4 \mid k)$-graph of $2 k-2$ vertices. Then $G=\left((k-1) K_{2}\right)^{c}$, i.e., $G$ is the complement of a matching of $k-1$ edges. Then $\chi(G)=k-1$, a contradiction. Therefore

$$
n(2 k-4, k)=c(2 k-4, k)=2 k-1
$$

for all $k \geq 4$.
Therefore, we have the following theorem.
Theorem 3. The antihole graphs of order $n \geq 6$ are extremal ( $n-3 \left\lvert\,\left\lceil\frac{n}{2}\right]\right.$ )-graphs.
A hole graph is also considered a 2 -factor since is a spanning 2-regular graph. For short, we denote the disjoint union of $j$ cycles of lenght $i$ as $j C_{i}$.

Let $G$ be an union of cycles

$$
a_{3} C_{3} \cup a_{4} C_{4} \cup \ldots \cup a_{2 t} C_{2 t}
$$

for $a_{i} \geq 0$ with $i \in\{3,4, \ldots, 2 t\}$. Note that the complement $G^{c}$ of $G$ is the join of the complement of cycles.

Theorem 4. The graph $\left(a_{3} C_{3} \cup a_{4} C_{4} \cup \ldots \cup a_{2 t} C_{2 t}\right)^{c}$ is extremal if $a_{5}+a_{7}+\cdots+a_{2 t-1}+1<a_{3}$.
Proof. Let $G^{c}=\left(a_{3} C_{3} \cup a_{4} C_{4} \cup \ldots \cup a_{2 t} C_{2 t}\right)^{c}$. The graph $G^{c}$ has order $n=3 a_{3}+4 a_{4}+\cdots+2 t a_{2 t}$, regularity $r=n-3$ and chromatic number $\chi=a_{3}+2 a_{4}+3 a_{5}+3 a_{6}+\cdots+t a_{2 t-1}+t a_{2 t}$ since the the chromatic numbers of $C_{3}^{c}, C_{4}^{c}, C_{5}^{c}, \ldots, C_{i}^{c}$ are $1,2,3, \ldots,\lceil i / 2\rceil$ respectively.

Any ( $r \mid \chi$ )-graph has at least $\frac{r \chi}{\chi-1}=r+\frac{r}{\chi-1}=n-\frac{3 \chi-n}{\chi-1}$ vertices for $r=n-3$. If $\frac{3 \chi-n}{\chi-1}<1$ then $G^{c}$ is extremal, that is, when

$$
2 \chi+1<n,
$$

i.e. when

$$
a_{5}+a_{7}+\cdots+a_{2 t-1}+1<a_{3} .
$$

Moreover, we have the following results.
Theorem 5. Since $C_{n}^{c}$ is extremal then

1. When $n$ is even, if $G=\left(a_{3} C_{3} \cup a_{4} C_{4} \cup \ldots \cup a_{2 t} C_{2 t}\right)^{c}$ is a graph of order $n$ such that $a_{5}+a_{7}+\cdots+$ $a_{2 t-1}=a_{3}$, then $G$ is extremal.
2. When $n$ is odd, if $G=\left(a_{3} C_{3} \cup a_{4} C_{4} \cup \ldots \cup a_{2 t} C_{2 t}\right)^{c}$ is a graph of order $n$ such that $a_{5}+a_{7}+\cdots+$ $a_{2 t-1}=a_{3}+1$, then $G$ is extremal.

Corollary 2. Since the antihole graphs of order $n \geq 8$ are (r| $\mathbf{r}$ )-graphs, then there exist many nonisomorphic extremal ( $r \mid \chi$ )-graphs (not necessarily Cayley).

For instance, there are three extremal $(5,4)$-graphs, namely, $C_{8}^{c},\left(2 C_{4}\right)^{c}$ and $\left(C_{3} \cup C_{5}\right)^{c}$. See also Table 1.

### 2.2. The case of $r=\chi$

In this subsection, we discuss the case of $r=\chi=k$, i.e., the $(k \mid k)$-graphs of minimum order. We have the following bounds so far:

$$
\left\lceil\frac{k^{2}}{k-1}\right\rceil=k+1 \leq n(k \mid k) \leq 2 k
$$

We prove that the upper bound is correct except for $k=4$ and maybe for $k=6,8,10,12$. To achieve it, we assume that there exist $(k \mid k)$-graphs of order $n \leq 2 k-2$, that is

$$
\begin{equation*}
\left\lceil\frac{n}{2}\right\rceil<k=\chi \tag{1}
\end{equation*}
$$

Now, we use a bound for the chromatic number arising from the Reed's Conjecture, see [8]. We recall the clique number $\omega(G)$ of a graph $G$ is the largest $k$ for which $G$ has a complete subgraph of order $k$.

Conjecture 1. For every graph $G$,

$$
\chi(G) \leq\left\lceil\frac{\omega(G)+1+\Delta(G)}{2}\right\rceil .
$$

It is known that the conjecture is true for graphs satisfying Equation 1, see [9]. It follows that $k \leq \omega(G)+1$ for any $(k \mid k)$-graph $G$ of order $n \leq 2 k-2$, that is, $\omega(G)=k$ or $\omega(G)=k-1$.

Case 1: $\omega(G)=k$.
Let $H_{1}$ be a clique of $G$ and $H_{2}=G \backslash V\left(H_{1}\right)$. There is a set of $k$ edges from $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$. Therefore, if $t=n-k \leq k-2$ is the order of $H_{2}$ and $m=(k t-k) / 2$ is the number of edges in $H_{2}$, then

$$
m \leq\binom{ t}{2}
$$

We obtain that $k \leq t$, a contradiction.
Case 2: $\omega(G)=k-1$.
Let $H_{1}$ be a clique of $G$ and $H_{2}=G \backslash V\left(H_{1}\right)$. There is a set of $2(k-1)$ edges from $V\left(H_{1}\right)$ to $V\left(H_{2}\right)$. Therefore, if $t=n-(k-1) \leq k-1$ is the order of $H_{2}$ and $m=(k t-2(k-1)) / 2$ is the number of edges in $H_{2}$, then

$$
m \leq\binom{ t}{2}
$$

We obtain that $k \leq t+1$, hence, $k=t+1$ and $n$ has to be $2 k-2$. Since every vertex $v$ in $V\left(H_{2}\right)$ has degree $k$ in $G, v$ has at least two neighbours in $H_{1}$. By symmetry, $G$ is the union of two complete graphs $K_{k-1}$ with the addition of two perfect matchings between them. Its complement is a $(k-3)$-regular bipartite graph. Any perfect matching of $G^{c}$ induce a $(k-1)$-coloring in $G$, a contradiction.

We have the following results.
Lemma 2. For any $k \geq 3$,

$$
2 k-1 \leq n(k \mid k) \leq c(k \mid k) \leq 2 k .
$$

If $k$ is odd then the order of any $k$-regular graph is even, therefore:
Corollary 3. For any $k \geq 3$ an odd number, $n(k \mid k)=c(k \mid k)=2 k$.
We have that $C_{7}^{c}$ is the extremal (4|4)-graph. Next, assume that $k \geq 6$ is an even number and there exists a ( $k \mid k$ )-graph $G$ of $n=2 k-1$ vertices. Owing to the fact that $\chi(G) \leq n-\alpha(G)+1$ where $\alpha(G)$ is the independence number of $G$, we get that $\alpha(G) \leq k$.

In [9] was proved that the Reed's conjecture holds for graphs of order $n$ satisfying $\chi>\frac{n+3-\alpha}{2}$. In the case of the graph $G$, we have that

$$
\frac{n+3-\alpha(G)}{2} \leq \frac{k}{2}+1<k
$$

It follows that $\omega(G) \leq k \leq \omega(G)+1$. Newly, we have two cases:

Case 1: $\omega(G)=k$.
As we saw before, let $H_{1}$ be a clique of $G$ and $H_{2}=G \backslash V\left(H_{1}\right)$. There is a set of $k$ edges from $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$. Therefore, if $t=k-1$ is the order of $H_{2}$ and $m=(k t-k) / 2$ is the number of edges in $H_{2}$, then

$$
m \leq\binom{ t}{2}
$$

We obtain that $k \leq t$, a contradiction.
Case 2: $\omega(G)=k-1$.
In [10] was proved that every graph satisfies

$$
x \leq\left\{\omega, \Delta-1,\left\lceil\frac{15+\sqrt{48 n+73}}{4}\right\rceil\right\} .
$$

Hence, for the graph $G$ we have that $k \leq\left\lceil\frac{15+\sqrt{96 k+25}}{4}\right\rceil$. After some calculations we get that $k=6,8,10,12$, otherwise, $k>\left\lceil\frac{15+\sqrt{96 k+25}}{4}\right\rceil$.
Finally, we have the following theorem.
Theorem 6. For any $k \geq 3$ such that $k \notin\{4,6,8,10,12\}$,

$$
n(k \mid k)=c(k \mid k)=2 k .
$$

Moreover, if $k=4$ then $n(k \mid k)=c(k \mid k)=2 k-1$ and if $k \in\{6,8,10,12\}$ then

$$
2 k-1 \leq n(k \mid k) \leq c(k \mid k) \leq 2 k .
$$

We point out that if there exists an extremal $(k \mid k)$-graph $G$ of $2 k-1$ vertices for $k \in\{6,8,10,12\}$, then $G$ has clique number $\omega=k-1$, a clique $H_{1}$ of order $\omega$ for which $G \backslash V\left(H_{1}\right)$ has $\frac{k}{2}-1$ edges, $G$ is Hamiltonian-connected and it has independence number $\alpha(G)$ such that $\alpha(G) \in\{k / 4, \ldots, k / 2+1\}$, see [10].

## 3. Non-Cayley constructions

In this section we improve the upper bound of $n(r \mid \chi)$ given on Theorem 2 by exhibiting a construction of graphs not necessarily Cayley. We assume that $r$ is not a multiple of $\chi-1$, therefore $2 \leq \chi \leq r$. Additionally, we show two more constructions which are tight for some values.

### 3.1. Upper bound

To begin with, take the Turán graph $T_{n \chi}$, for $n=a \chi+b, 0<b<\chi$ with $r=a(\chi-1)+b$ and the partition $\left(V_{1}, V_{2}, \ldots, V_{b}, V_{b+1}, \ldots, V_{\chi}\right)$ such that $\left|V_{i}\right|=a+1$ if $1 \leq i \leq b$ and $\left|V_{i}\right|=a$ if $b+1 \leq i \leq \chi$. Every vertex in $V_{i}$ for $1 \leq i \leq b$ has degree $r-1$ and every vertex in $V_{i}$ for $b+1 \leq i \leq \chi$ has degree $r$.

Next, we define the graph $G_{n, \chi}$ as the graph formed by two copies $G_{1}$ and $G_{2}$ of $T_{n, \chi}$ with the addition of a matching between the vertices of degree $r-1$ of $G_{1}$ and the vertices of degree $r-1$ of $G_{2}$ in the natural way. In consequence, the graph $G_{n, \chi}$ is an $r$-regular graph of order $2 n$ and chromatic number $\chi$. To obtain its chromatic number, suppose that $T_{n, \chi}$ has the vertex partition $V_{i}$, then the vertices of $V_{i}$ have the color $i$ in $G_{1}$ and the vertices of $V_{i}$ are colored $i+1 \bmod \chi$ in $G_{2}$. Hence $\chi=\chi\left(G_{1}\right) \leq \chi\left(G_{n, \chi}\right) \leq \chi$ and then $\chi\left(G_{n, \chi}\right)=\chi$.
Theorem 7. For $2 \leq \chi \leq r+1$, then

$$
\left\lceil\frac{r \chi}{\chi-1}\right\rceil \leq n(r \mid \chi) \leq \min \left\{2\left\lfloor\frac{r \chi}{\chi-1}\right\rfloor, \frac{r-b}{\chi-1} \chi(b+1)\right\},
$$

where $\chi-1 \mid r-b$ with $0 \leq b<\chi$.

### 3.2. The graph $T_{n, \chi}^{*}$

In this subsection we give a better construction for some values of $r$ and $\chi$. Consider the $(a \chi+b, \chi)-$ Turán graph $T_{a \chi+b, \chi}$ such that $\chi>b \geq 0$ and partition $\left(V_{1}, \ldots, V_{\chi-b}, \ldots, V_{\chi}\right)$ for $\chi \geq 3,\left|V_{i}\right|=a_{i}=a \geq 2$ with $i \in\{1, \ldots, \chi-b\}$ and $\left|V_{i}\right|=a_{i}=a+1 \geq 3$ with $i \in\{\chi-b+1, \ldots, \chi\}$.

We claim that $a$ is even or $\chi-b$ is even. To prove it, assume that $a$ and $\chi-b$ are odd. Hence, if $b$ is even, then $\chi$ is odd, $n=a \chi+b$ is odd and $r$ is odd, a contradiction. If $b$ is odd, then $\chi$ is even, $n=a \chi+b$ is odd and $r$ is odd, newly, a contradiction.

Now, we define the graph $T_{n, \chi}^{*}$ of regularity $r=a(\chi-1)+b-1$ as follows: If $\chi-b$ is even, the removal of a perfect matching between $X_{i}$ and $X_{i+1}$ for all $i \in\{1,3, \ldots, \chi-b-1\}$ of $T_{n, \chi}$ produces $T_{n, \chi}^{*}$. If $\chi-b \geq 3$ is odd then $a$ is even, therefore, the removal of a perfect matching between $X_{i}$ and $X_{i+1}$ for all $i \in\{4,6 \ldots, \chi-b-1\}$ and a perfect matching between $V_{1}^{\prime}$ and $V_{2}^{\prime \prime}, V_{2}^{\prime}$ and $V_{3}^{\prime \prime}$, and $V_{3}^{\prime}$ and $V_{1}^{\prime \prime}$ where $V_{i} \backslash V_{i}^{\prime}=V_{i}^{\prime \prime}$ is a set of $a / 2$ vertices for $i \in\{1,2,3\}$, of $T_{n, \chi}$ produces $T_{n, \chi}^{*}$.

The graphs $T_{n, \chi}^{*}$ improve the upper bound given in Theorem 7 for some numbers $n$ and $\chi$ :

$$
\frac{r \chi}{\chi-1}=a \chi+b-\frac{\chi-b}{\chi-1} \leq a \chi+b
$$

Hence, if $\frac{\chi-b}{\chi-1}<1$, the construction gives extremal graphs, that is, when

$$
1<b
$$

Theorem 8. Let $\chi \geq 3, \chi \geq b>1$ and $a \geq 2$. Then the graph $T_{a \chi+b, \chi}^{*}$ defined above is an extremal $(a(\chi-1)+b-1 \chi)$-graph when $\chi-b$ is even or $a>2$ is even.

### 3.3. The graph $G_{a, c, t}$

Consider the ( $a t, t$ )-Turán graph $T_{a t, t}$ with partition $\left(V_{1}, \ldots, V_{t}\right)$. Now, we define the graph $G_{a, c, t}$ with $1 \leq c<a$ as follows: consider two parts of $\left(V_{1}, \ldots, V_{t}\right)$, e.g. $V_{1}$ and $V_{2}$, and $c$ vertices of these two parts $\left\{u_{1}, \ldots, u_{c}\right\} \subseteq V_{1}$ and $\left\{v_{1}, \ldots, v_{c}\right\} \subseteq V_{2}$.

The removal of the edges $u_{i} v_{j}$ for $i, j \in\{1, \ldots, c\}$ when $i \neq j$ (all the edges between $\left\{u_{1}, \ldots, u_{c}\right\}$ and $\left\{v_{1}, \ldots, v_{c}\right\}$ except for a matching) and the addition of the edges $u_{i} u_{j}$ and $v_{i} v_{j}$ for $i, j \in\{1, \ldots, c\}$ when $i \neq j$ (all the edges between the vertices $u_{i}$ and all the edges between the vertices $v_{i}$ ) results in the graph $G_{a, c, t}$.

The graph $G_{a, c, t}$ is a $a(t-1)$-regular graph of order at. Its chromatic number is $t+c-1$ because the partition

$$
\left(V_{1} \backslash\left\{u_{2}, \ldots, u_{c}\right\}, V_{2} \backslash\left\{v_{1}, \ldots, v_{c-1}\right\}, V_{2}, \ldots, V_{t},\left\{u_{2}, v_{1}\right\}, \ldots,\left\{u_{c}, v_{c-1}\right\}\right)
$$

is a proper coloring with $t+c-1$ colors. Moreover, the graph $G_{a, c, t}$ has a clique of $t+c-1$ vertices, namely, the vertices $\left\{u_{1}, \ldots, u_{c}, x_{2}, \ldots, x_{t}\right\}$ where $x_{i} \in V_{i}$ for $i \in\{3, \ldots, t\}$ and $x_{2} \in V_{2} \backslash\left\{v_{1} \ldots, v_{c}\right\}$.

The graphs $G_{a, c, t}$ improve the upper bound given in Theorem 2:

$$
\frac{t+c-1}{t+c-2} a(t-1)=a t-a \frac{c-1}{t+c-2} \leq a t .
$$

Hence, if $a \frac{c-1}{t+c-2}<1$, the construction gives extremal graphs, that is, when

$$
(a-1)(c-1)<t-1 .
$$

Theorem 9. Let $a, t \geq 2$ and $a>c \geq 1$. The graph $G_{a, c, t}$ defined above is an extremal $(a(t-1) \mid a t)$ graph when $(a-1)(c-1)<t-1$.

| $r \backslash \chi$ | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $T_{4,2}$ | $T_{3,3}$ | - | - | - |
| 3 | $T_{6,2}$ | $C_{6}^{c}$ | $T_{4,4}$ | - | - |
| 4 | $T_{8,2}$ | $T_{6,3}$ | $C_{7}^{c}$ | $T_{5,5}$ | - |
| 5 | $T_{10,2}$ | $G_{5,2,2}$ | $C_{8}^{c},\left(2 C_{4}\right)^{c}$, | $K_{5} \times K_{2}$ | $T_{6,6}$ |
| 6 | $T_{12,2}$ | $T_{9,3}$ | $T_{8,4}$ | $C_{9}^{c},\left(C_{4} \cup C_{5}\right)^{c}$ | $?$ |
| 7 | $T_{14,2}$ | $T_{12,3}^{*}$ | $T_{10,4}^{*}$ | $C_{10}^{c},\left(C_{4} \cup C_{6}\right)^{c}$ | $\left(C_{3} \cup C_{7}\right)^{c}$ |
|  |  |  |  | $T_{10,5}$ | $C_{11}^{c},\left(C_{5} \cup C^{c} C_{7}\right)^{c}$ |
| 8 | $T_{16,2}$ | $T_{12,3}$ | $G_{4,2,3}$ | $\left(C_{5} \cup C_{6}\right)^{c}$ |  |
|  |  |  |  |  | $C_{12}^{c},\left(2 C_{6}\right)^{c},\left(3 C_{4}\right)^{c}$ |
| 9 | $T_{18,2}$ | $T_{16,3}^{* *}$ | $T_{12,4}$ | $T_{12,5}^{*}$ | $\left(C_{3} \cup C_{4} \cup C_{5}\right)^{c}$ |
| 10 | $T_{20,2}$ | $T_{15,3}$ | $T_{14,4}^{*}$ | $T_{13,5}^{*}$ | $\left(C_{3} \cup C_{9}\right)^{c}$ |

Table 1. Extremal ( $r \mid \chi$ )-graphs.

## 4. Small values

In this section we exhibit extremal $(r \mid \chi)$-graphs of small orders. These exclude the extremal graphs given before. Table 1 shows the extremal ( $r \mid \chi$ )-graphs for $2 \leq r \leq 10$ and $2 \leq \chi \leq 6$.

### 4.1. Extremal (5|3)-graph

Suppose that $G$ is an extremal (5|3)-graph of order 8, i.e., its order equals the lower bound given in Theorem 2. Then its complement is 2 regular. That is, $G^{c}$ is $C_{8}$ or $C_{5} \cup C_{3}$ or $C_{4} \cup C_{4}$. By Theorem 5, the complement of $C_{8}$ or $C_{5} \cup C_{3}$ or $C_{4} \cup C_{4}$ has chromatic number 4. Since $G$ is 5-regular, a (5|3)graph of order 9 does not exist and therefore 10 is the best possible. The graph $G_{5,2,2}$ is an extremal (5|3)-graph with 10 vertices.

### 4.2. Extremal (7| $\chi$ )-graphs for $\chi=3,6$

Let $G$ be an extremal (7|3)-graph. Its order is at least 11 . Since its degree is odd, its order is at least 12. The graph $T_{12,3}^{*}$ is an extremal (7|3)-graph.

Now, suppose that $G$ is an extremal (7|6)-graph. $G$ has at least 9 vertices. Newly, because it has an odd regularity, $G$ has at least 10 vertices. If this is the case, its complement is a 2 regular graph. The graph $\left(2 C_{5}\right)^{c}$ has chromatic number 6. It is unique and it is Cayley.

### 4.3. Extremal (9|3)-graph

Any (9|3)-graph has 14 vertices, i.e., its order equals the lower bound given in Theorem 2. Suppose that there exist at least one of degree 14. Let $\left(V_{1}, V_{2}, V_{3}\right)$ a partition by independent sets. Some of the parts, $V_{1}$, has at least five vertices. Since the graph is 9 -regular, $V_{1}$ has exactly 5 vertices. The induced graph of $V_{2}$ and $V_{3}$ is a bipartite regular graph of an odd number of vertices, a contradiction. Then, any (9|3)-graph has at least 16 vertices.

Consider the graph $T_{16,3}$ with partition $(U, V, W)$ and the sets partition are $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$. The removal of the edges

$$
\left\{w_{1} v_{1}, v_{1} u_{1}, u_{1} w_{4}, w_{2} v_{2}, v_{2} u_{2}, u_{2} w_{5}, w_{3} v_{3}, v_{3} u_{3}, u_{3} w_{6}, u_{4} v_{4}, v_{4} u_{5}, u_{5} v_{5}, v_{5} u_{4}\right\}
$$

is the graph $T_{16,3}^{* *}$ which is the extremal (9|3)-graph.

## Acknowledgment

We thank Robert Jajcay for useful discussions. C. Rubio-Montiel was partially supported by PAIDI grant 007/19. The authors wish to thank the anonymous referees of this paper for their suggestions and remarks.

## Conflict of Interest

The author declares no conflict of interests.

## References

1. Exoo, G. and Jajcay, R., 2013. Dynamic cage survey. The Electronic Journal of Combinatorics, \#DS16, 55pg.
2. Miller, M. and Širán, J., 2013. Moore graphs and beyond: A survey of the degree/diameter problem. The Electronic Journal of Combinatorics, \#DS14, 92pg.
3. Macbeth, H., Šiagiová, J. and Širán, J., 2012. Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups. Discrete Mathematics, 312(1), pp.94-99.
4. Exoo, G., Jajcay, R. and Širán, J., 2013. Cayley cages. Journal of Algebraic Combinatorics. An International Journal, 38(1), pp.209-224.
5. Bondy, J. A. and Murty, U. S. R., 1976. Graph theory with applications. American Elsevier Publishing Co., Inc., New York.
6. Xu, J., 2003. Theory and application of graphs (Network Theory and Applications, Vol. 10). Kluwer Academic Publishers, Dordrecht.
7. Chartrand, G. and Zhang, P., 2009. Chromatic graph theory (Discrete Mathematics and its Applications (Boca Raton)). CRC Press, Boca Raton, FL.
8. Reed, B., 1998. $\omega$, $\Delta$, and X. Journal of Graph Theory, 27(4), pp.177-212.
9. Rabern, L. 2008. A note on B. Reed's conjecture. SIAM Journal on Discrete Mathematics, 22(2), pp.820-827.
10. Rabern, L., 2014. Coloring graphs with dense neighborhoods. Journal of Graph Theory, 76(4), pp.323-340.
