Article

H - V -Super-Strong-((a, d)-antimagic decomposition of complete bipartite graphs

Solomon Stalin Kumar ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, The American College, Madurai - 625 002, Tamilnadu, India.
* Correspondence: sskumbas@ gmail.com

Abstract

An H-(a,d)-antimagic labeling in a H-decomposable graph G is a bijection f : $V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that $\sum f\left(H_{1}\right), \sum f\left(H_{2}\right), \cdots, \sum f\left(H_{h}\right)$ forms an arithmetic progression with difference d and first element $a . \quad f$ is said to be H - V-super- (a, d)-antimagic if $f(V(G))=\{1,2, \ldots, p\}$. Suppose that $V(G)=U(G) \cup W(G)$ with $|U(G)|=m$ and $|W(G)|=n$. Then f is said to be H - V-super-strong- (a, d)-antimagic labeling if $f(U(G))=\{1,2, \ldots, m\}$ and $f(W(G))=\{m+1, m+2, \ldots,(m+n=p)\}$. A graph that admits a H - V-super-strong- (a, d)-antimagic labeling is called a H - V-super-strong- (a, d)-antimagic decomposable graph. In this paper, we prove that complete bipartite graphs $K_{m, n}$ are H - V-super-strong-((a, d)-antimagic decomposable with both m and n are even.

Keywords: H-decomposable graph, H - V-super magic labeling, complete bipartite graph.
Mathematics Subject Classification: 05C78, 05C70.

1. Introduction

In this paper we consider only finite and simple undirected bipartite graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$ respectively and we let $|V(G)|=p$ and $|E(G)|=q$. For graph theoretic notations, we follow [1,2]. A labeling of a graph G is a mapping that carries a set of graph elements, usually vertices and/or edges into a set of numbers, usually integers. Many kinds of labeling have been studied and an excellent survey of graph labeling can be found in [3].

Although magic labeling of graphs was introduced by Sedlacek [4], the concept of vertex magic total labeling (VMTL) first appeared in 2002 in [5]. In 2004, MacDougall et al. [6] introduced the notion of super vertex magic total labeling (SVMTL). In 1998, Enomoto et al. [7] introduced the concept of super edge-magic graphs. In 2005, Sugeng and Xie [8] constructed some super edge-magic total graphs. The usage of the word "super" was introduced in [7]. The notion of a V-super vertex magic labeling was introduced by MacDougall et al. [6] as in the name of super vertex-magic total labeling and it was renamed as V-super vertex magic labeling by Marr and Wallis in [9] after referencing the article [10]. Most recently, Tao-ming Wang and Guang-Hui Zhang [11], generalized some results found in [10].

Hartsfield and Ringel [12] introduced the concept of an antimagic graph. In their terminology, an antimagic labeling is an edge-labeling of the graph with the integers $1,2, \cdots, q$ so that the weight
at each vertex is different from the weight at any other vertex. Bodendiek and Walther [13] defined the concept of an (a, d)-antimagic labeling as an edge-labeling in which the vertex weights forms an arithmetic progression starting from a and having common difference d. Bǎca et al. [14] introduced the notions of vertex-antimagic total labeling and (a, d)-vertex-antimagic total labeling. Simanjuntak et al [15] introduced the concept of (a, d)-antimagic graph. Sudarasana et al [16] studied the concept of super edge-antimagic total lableing of disconnected graphs.

A bijection f from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ is called a vertex-antimagic total labeling of G if the weights of vertices $\left\{w_{f}(x)=f(x)+\sum_{x y \in E(G)} f(x y), x \in V(G)\right\}$, are pairwise distinct. f is called an (a, d)-vertex-antimagic total labeling of G if the set of vertex weights $\left\{w_{f}(x) \mid x \in V(G)\right\}=\{a, a+d, \cdots, a+(p-1) d\}$ for some integers a and $d . f$ is said to be super- (a, d) -vertex-antimagic labeling if $f(V(G))=\{1,2, \ldots, p\}$. A graph G is called super- (a, d)-vertex-antimagic if it admits a super- (a, d)-vertex-antimagic labeling. A bijection f from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ is called an (a, d)-edge-antimagic total labeling of G if the edge weights $\{w(u v)=f(u)+f(v)+f(u v), u v \in E(G)\}$, forms an arithmetic sequence with the first term a and common difference d. f is said to be super- (a, d)-edge-antimagic labeling if $f(V(G))=\{1,2, \ldots, p\}$. A graph G is called super- (a, d)-edge-antimagic if it admits a super- (a, d)-edge-antimagic labeling.

A covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq h$. Then it is said that G admits an $\left(H_{1}, H_{2}, \cdots, H_{h}\right)$ covering. If every H_{i} is isomorphic to a given graph H, then G admits an H-covering. A family of subgraphs $H_{1}, H_{2}, \cdots, H_{h}$ of G is a H-decomposition of G if all the subgraphs are isomorphic to a graph H, $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{h} E\left(H_{i}\right)=E(G)$. In this case, we write $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{h}$ and G is said to be H-decomposable.

The notion of H-super magic labeling was first introduced and studied by Gutiérrez and Lladó [17] in 2005. They proved that some classes of connected graphs are H-super magic. Suppose G is H-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ is called an H-magic labeling of G if there exists a positive integer k (called magic constant) such that for every copy H in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)=k$. A graph G that admits such a labeling is called a H-magic decomposable graph. An H-magic labeling f is called a H-V-super magic labeling if $f(V(G))=\{1,2, \cdots, p\}$. A graph that admits a H - V-super magic labeling is called a H - V-super magic decomposable graph. An H-magic labeling f is called a H - E-super magic labeling if $f(E(G))=\{1,2, \cdots, q\}$. A graph that admits a H - E-super magic labeling is called a H - E-super magic decomposable graph. The sum of all vertex and edge labels on H is denoted by $\sum f(H)$.

In 2001, Muntaner-Batle [18] introduced the concept of super-strong magic labeling of bipartite graph as in the name of special super magic labeling of bipartite graph and it was renamed as super-strong magic labeling by Marr and Wallis [9]. Marimuthu and Stalin Kumar [19] introduced the concept of H-V-super-strong magic decomposition and H - E-super-strong magic decomposition of complete bipartite graphs. Suppose G is a bipartite graph with vertex-sets V_{1} and V_{2} of sizes m and n respectively. An edge-magic total labeling of G is super-strong if the elements of V_{1} receive labels $\{1,2, \ldots, m\}$ and the elements of V_{2} receive labels $\{m+1, m+2, \ldots, m+n\}$. Suppose G is H-decomposable and if $V(G)=U(G) \cup W(G)$ with $|U(G)|=m$ and $|W(G)|=n$. An H - V-super magic labeling f is called a H - V-super-strong magic if $f(U(G))=\{1,2, \ldots, m\}$ and $f(W(G))=\{m+1, m+2, \ldots,(m+n=p)\}$. A graph that admits a H - V-super-strong magic labeling is called a H - V-super-strong magic decomposable graph. An H - E-super magic labeling f is called a H - E-super-strong magic labeling if if $f(U(G))=\{q+1, q+2, \ldots, q+m\}$ and $f(W(G))=\{q+m+1, q+m+2, \ldots$,
$\overline{(q+m+n=q p)\} \text {. A graph that admits a } H \text { - } E \text {-super-strong magic labeling is called a } H \text { - } E \text {-super-strong }}$ magic decomposable graph.

Suppose G is H-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots$, $p+q\}$ is called an H-antimagic labeling of G if $\sum f\left(H_{1}\right), \sum f\left(H_{2}\right), \cdots, \sum f\left(H_{h}\right)$ are pairwaise distinct. f is said to be $H-(a, d)$-antimagic if these numbers forms an arithmetic progression with difference d and first element a. A $H-(a, d)$-antimagic labeling f is called $H-V$-super- (a, d)-antimagic labeling if $f(V(G))=\{1,2, \ldots, p\}$. Suppose that $V(G)=U(G) \cup W(G)$ with $|U(G)|=m$ and $|W(G)|=n$. Then f is said to be H - V-super-strong- (a, d)-antimagic labeling if $f(U(G))=\{1,2, \ldots, m\}$ and $f(W(G))=\{m+1, m+2, \ldots,(m+n=p)\}$. A graph that admits a H - V-super-strong- (a, d)-antimagic labeling is called a H-V-super-strong- (a, d)-antimagic decomposable graph. A $H-(a, d)$-antimagic labeling f is called H - E-super- (a, d)-antimagic labeling if $f(E(G))=\{1,2, \ldots, q\} . \quad f$ is said to be H - E-super-strong- (a, d)-antimagic labeling if $f(U(G))=\{q+1, q+2, \ldots, q+m\}$ and $f(W(G))=\{q+m+1, q+m+2, \ldots,(q+m+n=q p)\}$. A graph that admits a H - E-super-strong(a, d)-antimagic labeling is called a H - E-super-strong- (a, d)-antimagic decomposable graph.

In 2012, Inayah et al. [20] studied magic and anti-magic H-decompositions and Zhihe Liang [21] studied cycle-super magic decompositions of complete multipartite graphs. In many of the results about H-magic graphs, the host graph G is required to be H-decomposable. Yoshimi Ecawa et al [22] studied the decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components. The notion of star-subgraph was introduced by Akiyama and Kano in [23]. A subgraph F of a graph G is called a star-subgraph if each component of F is a star. Here by a star, we mean a complete bipartite graph of the form $K_{1, m}$ with $m \geq 1$. A subgraph F of a graph G is called a n-star-subgraph if $F \cong K_{1, n}$ with $2 \leq n<p$. Marimuthu and Stalin Kumar [24,25] studied about the H - V-super magic decomposition and H - E-super magic decomposition of complete bipartite graphs.

2. Main Results

In this section, we consider the graphs $G \cong K_{m, n}$ and $H \cong K_{1, n}$, where $n \geq 1$ and both m and n are even. Clearly $p=m+n$ and $q=m n$.

Theorem 1. Suppose $\left\{H_{1}, H_{2}, \cdots, H_{m}\right\}$ is a n-star-decomposition of G with both m and n are even. Then G is H - V-super-strong-(a, d-antimagic decomposable with $a=1+\frac{n^{2}(m+3)+2 n(2 m+1)}{2}$ and $d=1$.
Proof. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be two stable sets of G. Let $\left\{H_{1}, H_{2}, \cdots, H_{m}\right\}$ be a n-star decomposition of G with both m and n are even, where each H_{i} is isomorphic to H, such that $V\left(H_{i}\right)=\left\{u_{i}, v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $E\left(H_{i}\right)=\left\{u_{i} v_{1}, u_{i} v_{2}, \cdots, u_{i} v_{n}\right\}$, for all $1 \leq i \leq m$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ by $f\left(u_{i}\right)=i$ and $f\left(v_{j}\right)=m+j$, for all $1 \leq i \leq m$ and $1 \leq j \leq n$.

Case 1: $m \neq n$.
Now the edges of G can be labeled as shown in Table 1.
We prove the result for $n=k$ and the result follows for all $1 \leq k \leq m$.
From Table 1 and from definition of f, we get

$$
\sum f\left(H_{k}\right)=f\left(u_{k}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)=k+\sum_{i=1}^{n}(m+i)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right) .
$$

Now,

$$
\sum_{i=1}^{n} f\left(v_{i}\right)=(m+1)+(m+2)+\cdots+(m+n)
$$

Table 1. The edge label of a n-star-decomposition of G if $m \neq n$..

f	v_{1}	v_{2}	\ldots	v_{n-1}	v_{n}
u_{1}	$(m+n)$	$(2 m+n)$	\ldots	$(m+n)$	$(m+n)$
	$+m$	+1		$+((n-1) m)$	$+((n-1) m+1)$
u_{2}	$(m+n)+$	$(2 m+n)$	\ldots	$(m+n)$	$(m+n)$
	$(m-1)$	+2		$+((n-1) m-1)$	$+((n-1) m+2)$
u_{3}	$(m+n)+$	$(2 m+n)$	\ldots	$(m+n)$	$(m+n)$
	$(m-2)$	+3		$((n-1) m-2)$	$+((n-1) m+3)$
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots
u_{k}	$(m+n)+$	$(2 m+n)$	\ldots	$(m+n)+((n-2) m)$	$(m+n)+(n-1) m$
	$(m-(k-1))$	$+k$		$+(m-(k-1))$	$+k$
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots
u_{m-1}	$(m+n)+$	$(2 m+n)$	\ldots	$(m+n)$	$(m+n)$
	2	$+(m-1)$		$+((n-2) m+2)$	$+(m n-1)$
u_{m}	$(m+n)+$	$(2 m+n)$	\ldots	$(m+n)$	$(m+n)$
	1	$+m$		$+((n-2) m+1)$	$+m n$

$$
=m n+(1+2+\cdots+n)=m n+\frac{n(n+1)}{2} .
$$

Also

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)= & ((m+n)+(m-(k-1)))+((m+n)+(m+k))+\cdots \\
& +((m+n)+(n-2) m+(m-(k-1)))+((m+n)+(n-1) m+k) \\
= & ((2 m+n)-(k-1))+((2 m+n)+k)+((4 m+n)-(k-1))+ \\
& ((4 m+n)+k)+\cdots+(((n) m+n)-(k-1))+(((n) m+n)+k) \\
= & 2((2 m+n)+(4 m+n)+\cdots+(n m+n))+\frac{n}{2}(1) \\
= & 2\left((2 m+2 n+\cdots+n m)+\frac{n(n)}{2}\right)+\frac{n}{2} \\
= & 4 m\left(1+2+\cdots+\frac{n}{2}\right)+\frac{2 n^{2}+n}{2}=4 m\left(\frac{n(n+2)}{8}\right)+\frac{2 n^{2}+n}{2} \\
= & \frac{m n^{2}+2 m n+2 n^{2}+n}{2}=\frac{n^{2}(m+2)+n(2 m+1)}{2} .
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}
$$

and is constant for all $1 \leq k \leq m$.
Using the above values, we get

$$
\begin{aligned}
\sum f\left(H_{k}\right) & =k+m n+\frac{n(n+1)}{2}+\frac{n^{2}(m+2)+n(2 m+1)}{2} \\
& =k+\frac{2 m n+n^{2}+n+n^{2}(m+2)+n(2 m+1)}{2} \\
& =k+\frac{n^{2}(m+3)+2 n(2 m+1)}{2} .
\end{aligned}
$$

Table 2. The edge label of a n-star-decomposition of G if $m=n$.

f	v_{1}	v_{2}	\ldots	v_{n-1}	v_{n}
u_{1}	$3 n$	$3 n+1$	\ldots	$(n+1) n$	$(n+1) n+1$
u_{2}	$3 n-1$	$3 n+2$	\ldots	$(n+1) n-1$	$(n+1) n+2$
u_{3}	$3 n-2$	$3 n+3$	\ldots	$(n+1) n-2$	$(n+1) n+3$
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots
u_{k}	$3 n-(k-1)$	$3 n+k$	\ldots	$(n+1) n-(k-1)$	$(n+1) n+k$
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots
u_{n-1}	$2 n+2$	$4 n-1$	\ldots	$n(n)+2$	$(n+2) n-1$
u_{n}	$2 n+1$	$4 n$	\ldots	$n(n)+1$	$(n+2) n$

for all $1 \leq k \leq m$. So, $\left\{\sum f\left(H_{1}\right), \sum f\left(H_{2}\right), \cdots, \sum f\left(H_{m}\right)=a, a+d, \cdots, a+(m-1) d\right\}$ forms an arithmetic progression with $a=\left(1+\frac{n^{2}(m+3)+2 n(2 m+1)}{2}\right)$ and common difference $d=1$. Thus in this case, the graph G is a $H-V$-super-strong- (a, d)-antimagic decomposable.

Case 2: $m=n$.
Now the edges of G can be labeled as shown in Table 2.
We prove the result for $n=k$ and the result follows for all $1 \leq k \leq n$.
From Table 2 and from definition of f, we get

$$
\sum f\left(H_{k}\right)=f\left(u_{k}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)=k+\sum_{i=1}^{n}(n+i)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right) .
$$

Now,

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(v_{i}\right) & =(n+1)+(n+2)+\cdots+(n+n)=(n) n+(1+2+\cdots+n) \\
& =(n) n+\frac{n(n+1)}{2}
\end{aligned}
$$

Also

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)= & (3 n-(k-1))+(3 n+k)+(5 n-(k-1))+(5 n+k)+\cdots \\
& +((n+1) n-(k-1))+((n+1) n+k) \\
= & (3 n+1)+3 n+(5 n+1)+5 n+\cdots+((n+1) n+1)+(n+1) n \\
= & 2(3 n+5 n+\cdots+(n+1) n)+\frac{n}{2}(1) \\
= & 2 n(3+5+\cdots+(n+1))+\frac{n}{2} \\
= & 2 n((1+2+3+\cdots+(n+1))-(2+4+6+\cdots+n)-1)+\frac{n}{2} \\
= & 2 n\left(\frac{(n+1)(n+2)}{2}-2 \frac{\left(\frac{n}{2}\right)\left(\frac{n+1}{2}\right)}{2}-1\right)+\frac{n}{2} \\
= & 2\left(\frac{n^{2}+3 n+2}{2}-\frac{\left(n^{2}+2 n\right)}{4}-1\right)+\frac{n}{2} \\
= & 2 n\left(\frac{2 n^{2}+6 n+4-n^{2}-2 n-4}{4}+\frac{n}{2}=\frac{n\left(n^{2}+4 n+n\right)}{2}\right. \\
= & \frac{n^{3}+2 n^{2}+2 n^{2}+n}{2}=\frac{n^{2}(n+2)+(n(2 n+1)}{2} .
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)=\frac{n^{2}(n+2)+n(2 n+1)}{2}
$$

and is constant for all $1 \leq k \leq n$.
Using the above values, we get

$$
\begin{aligned}
\sum f\left(H_{k}\right) & =k+(n) n+\frac{n(n+1)}{2}+\frac{n^{2}(n+2)+n(2 n+1)}{2} \\
& =k+\frac{2(n) n+n^{2}+n+n^{2}(n+2)+n(2 n+1)}{2} \\
& =k+\frac{n^{2}(n+3)+2 n(2 n+1)}{2} .
\end{aligned}
$$

for all $1 \leq k \leq n$. So, $\left\{\sum f\left(H_{1}\right), \sum f\left(H_{2}\right), \cdots, \sum f\left(H_{n}\right)=a, a+d, \cdots, a+(n-1) d\right\}$ forms an arithmetic progression with $a=\left(1+\frac{n^{2}(n+3)+2 n(2 n+1)}{2}\right)$ and common difference $d=1$. Thus in this case also, the graph G is a H - V-super-strong- (a, d)-antimagic decomposable.

Theorem 2. If a non-trivial H-decomposable graph $G \cong K_{m, n}$ is H - V-super-strong-(a,d)-antimagic decomposable graph with both m and n are even and if the sum of edge labels of a decomposition H_{j} is denoted by $\sum f\left(E\left(H_{j}\right)\right)$ then $\sum f\left(E\left(H_{j}\right)\right)$ is constant for all $1 \leq j \leq m$ and it is given by $\sum f\left(E\left(H_{j}\right)\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}$.
Proof. Suppose G is H-decomposable and possesses a H - V-super-strong-(a, d-antimagic labeling f, then by Theorem 1, for each H_{j} in the H-decomposition of G, we get

$$
\sum f\left(E\left(H_{j}\right)\right)=\sum_{i=1}^{n} f\left(u_{j} v_{i}\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}
$$

which is true for all $1 \leq j \leq m$. Thus $\sum f\left(E\left(H_{j}\right)\right)$ is constant for all $1 \leq k \leq m$ and it is given by $\sum f\left(E\left(H_{j}\right)\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}$.
Theorem 3. If a non-trivial H-decomposable graph $G \cong K_{m, n}$ is H - V-super-strong-(a, d)-antimagic decomposable graph with both m and n are even and if the sum of vertex labels of a decomposition H_{j} is denoted by $\sum f\left(V\left(H_{j}\right)\right)$ then
$\left\{\sum f\left(V\left(H_{1}\right)\right), \sum f\left(V\left(H_{2}\right)\right), \cdots, \sum f\left(V\left(H_{m}\right)\right)\right\}=\{a, a+d, \cdots, a+(m-1) d\}$ with $a=(m n+1)+\frac{n(n+1)}{2}$ and $d=1$.

Proof. Suppose G is H-decomposable and possesses a H - V-super-strong- (a, d)-antimagic labeling f, then by Theorem 1, for each H_{j} in the H-decomposition of G, we get

$$
\begin{aligned}
\sum f\left(V\left(H_{j}\right)\right) & =f\left(u_{j}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)=j+\sum_{i=1}^{n}(m+i)=j+((m+1)+(m+2)+\cdots+(m+n)) \\
& =j+m n+\frac{n(n+1)}{2} .
\end{aligned}
$$

which is true for all $1 \leq j \leq m$. Thus $\left\{\sum f\left(V\left(H_{1}\right)\right), \sum f\left(V\left(H_{2}\right)\right), \cdots\right.$,
$\left.\sum f\left(V\left(H_{m}\right)\right)\right\}=\{a, a+d, \cdots, a+(m-1) d\}$ with $a=(m n+1)+\frac{n(n+1)}{2}$ and $d=1$.
Theorem 4. Let $G \cong K_{m, n}$ be a H-decomposable graph with both m and n are even and if $V(G)=$ $U(G) \cup W(G)$ with $|U(G)|=m$ and $|W(G)|=n$. let g be a bijection from $V(G)$ onto $\{1,2, \cdots, p\}$ with $g(U(G))=\{1,2, \cdots, m\}$ and $g(W(G))=\{(m+1),(m+2), \cdots,(m+n=p)\}$ then g can be extended to an H-V-super-strong-(a,d)-antimagic labeling if and only if $\sum f\left(E\left(H_{j}\right)\right)$ is constant for all $1 \leq j \leq m$ and it is given by $\sum f\left(E\left(H_{j}\right)\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}$.

Proof. Suppose $G \cong K_{m . n}$ be a H-decomposable graph with both m and n are even and if $V(G)=$ $U(G) \cup W(G)$ with $|U(G)|=m$ and $|W(G)|=n$. let g be a bijection from $V(G)$ onto $\{1,2, \cdots, p\}$ with $g(U(G))=\{1,2, \cdots, m\}$ and $g(W(G))=\{(m+1),(m+2), \cdots,(m+n=p)\}$. Assume that $\sum f\left(E\left(H_{j}\right)\right)$ is constant for all $1 \leq j \leq m$ and it is given by $\sum f\left(E\left(H_{j}\right)\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}$. Define $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ as $f\left(u_{i}\right)=g\left(u_{i}\right) ; f\left(u_{j}\right)=g\left(u_{j}\right)$ for all $1 \leq i \leq m ; 1 \leq j \leq n$ and the edge labels are in either Table 1 (if $m \neq n$) or Table 2 (if $m=n$) then by Theorem 2.1, for each H_{j} in the H-decomposition of G, we get

$$
\begin{aligned}
\sum f\left(V\left(H_{j}\right)\right) & =f\left(u_{j}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)=j+\sum_{i=1}^{n}(m+i)=j+((m+1)+(m+2)+\cdots+(m+n)) \\
& =j+m n+\frac{n(n+1)}{2} .
\end{aligned}
$$

which is true for all $1 \leq j \leq m$. So, we have $\left\{\sum f\left(V\left(H_{1}\right)\right), \sum f\left(V\left(H_{2}\right)\right), \cdots\right.$, $\left.\sum f\left(V\left(H_{m}\right)\right)\right\}=\{a, a+d, \cdots, a+(m-1) d\}$ with $a=(m n+1)+\frac{n(n+1)}{2}$ and $d=1$. Hence,

$$
\begin{aligned}
\sum f\left(H_{j}\right) & =\sum f\left(V\left(H_{j}\right)\right)+\sum f\left(E\left(H_{j}\right)\right)=\left(j+m n+\frac{n(n+1)}{2}\right)+\left(\frac{n^{2}(m+2)+n(2 m+1)}{2}\right) \\
& =j+\frac{2 m n+n^{2}+n+n^{2}(m+2)+n(2 m+1)}{2}=j+\frac{n^{2}(m+3)+2 n(2 m+1)}{2}
\end{aligned}
$$

for every H_{j} in the H-decomposition of G and for all $1 \leq j \leq m$. Thus we have, f is an H - V-super-strong- (a, d)-antimagic labeling.
Suppose g can be extended to an H - V-super-strong- (a, d)-antimagic labeling f of G with with $a=$ $1+\frac{n^{2}(m+3)+2 n(2 m+1)}{2}$ and $d=1$. Then by Theorem $2 \sum f\left(E\left(H_{j}\right)\right)$ is constant for all $1 \leq j \leq m$ and it is given by $\sum f\left(E\left(H_{j}\right)\right)=\frac{n^{2}(m+2)+n(2 m+1)}{2}$.

3. Conclusion

In this paper, we studied the H - V-super-strong- (a, d)-antimagic decomposition of $K_{m, n}$ with $n \geq 1$ and both m and n are even.

Conflict of Interest

The author declares no conflict of interests.

References

1. Chartrand, G. and Lesniak, L., 1996. Graphs and Digraphs. Chapman and Hall, Boca Raton, London, Newyork, Washington, D.C.
2. Chartrand, G. and Zhang, P., 2009. Chromatic graph theory. Chapman and Hall, CRC, Boca Raton.
3. Gallian, J.A., 2018. A dynamic survey of graph labeling. Electronic Journal of combinatorics, 1(Dynamic Surveys), p.DS6.
4. Sedláček, J., 1963, June. Problem 27. Theory of graphs and its applications. In Proceedings of the Symposium held in Smolenice. Praha (pp. 163-164).
5. MacDougall, J.A., Miller, M. and Wallis, W.D., 2002. Vertex-magic total labelings of graphs. Utilitas Mathematics, 61, pp.3-21.
6. MacDougall, J.A., Miller, M. and Sugeng, K.A., 2004. Super vertex-magic total labelings of graphs. In Proceedings of the 15th Australasian Workshop on Combinatorial Algorithms (pp. 222-229).
7. Enomoto, H., Llado, A.S., Nakamigawa, T. and Ringel, G., 1998. Super edge-magic graphs. SUT Journal of Mathematics, 34(2), pp.105-109.
8. Sugeng, K.A. and Xie, W., 2005. Construction of super edge magic total graphs. Proceedings. 16th AWOCA, 303-310.
9. Marr, A.M. and Wallis, W.D., 2013. Magic graphs(2nd edition). Birkhauser, Boston, Basel, Berlin.
10. Marimuthu, G. and Balakrishnan, M., 2012. E-super vertex magic labelings of graphs. Discrete Applied Mathematics, 160(12), pp.1766-1774.
11. Wang, T.M. and Zhang, G.H., 2014. Note on E-super vertex magic graphs. Discrete Applied Mathematics, 178, pp.160-162.
12. Ringel, G. and Hartsfield, N., 1990. Pearls in graph theory. Academic Press, Boston-SanDiego-Newyork-London.
13. Bodendiek, R. and Walther, G., 1993. Arithmetisch antimagische graphen. Graphentheorie III. Ink. Wagner and R. Bodendiek, Bl-wiss. Verl., Manheim
14. Baca, M., MacDougall, J., Bertault, F., Miller, M., Simanjuntak, R. and Slamin, , 2003. Vertexantimagic total labelings of graphs. Discussiones mathematicae graph theory, 23(1), pp.67-83.
15. Simanjuntak, R., Bertault, F. and Miller, M., 2000. Two new (a, d)-antimagic graph labelings. In Proceedings of Eleventh Australasian Workshop on Combinatorial Algorithms (Vol. 11, pp. 179-189).
16. Sudarsana, I.W., Ismaimuza, D., Baskoro, E.T. and Assiyatun, H., 2005. On super (a, d)-edge antimagic total labeling of disconnected graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 55, pp.149-158.
17. Gutiérrez, A. and Lladó, A., 2005. Magic coverings, Journal of Combinatorial Mathematics and Combinatorial Computing, 55, 43-56.
18. Muntaner-Batle, F.A., 2001. Special Super Edge Magic-Labelings of Bipartite Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 39, pp.107-120.
19. Kumar, S. S., and Marimuthu, G. A H - V-super-strong magic decomposition of complete bipartite graphs, communicated.
20. Inayah, N., Lladó, A. and Moragas, J., 2012. Magic and antimagic H-decompositions. Discrete Mathematics, 312(7), pp.1367-1371.
21. Liang, Z., 2012. Cycle-supermagic decompositions of complete multipartite graphs. Discrete Mathematics, 312(22), pp.3342-3348.
22. Egawa, Y., Urabe, M., Fukuda, T. and Nagoya, S., 1986. A decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components. Discrete mathematics, 58(1), pp.93-95.
23. Akiyama, J. and Kano, M., 1984. Path factors of a graph, Graphs and Applications, Wiley, Newyork.
24. Marimuthu, G.T. and Kumar, S.S., H-E-super magic decomposition of complete bipartite graphs, communicated.
25. Kumar, S.S. and Marimuthu, G.T., 2015. HV-super magic decomposition of complete bipartite graphs. Communications of the Korean Mathematical Society, 30(3), pp.313-325.
