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Abstract: An H-(a,d)-antimagic labeling in a H-decomposable graph G is a bijection f :
V(G) ∪ E(G) → {1, 2, ..., p + q} such that

∑
f (H1),

∑
f (H2), · · · ,

∑
f (Hh) forms an arithmetic pro-

gression with difference d and first element a. f is said to be H-V-super-(a, d)-antimagic if
f (V(G)) = {1, 2, ..., p}. Suppose that V(G) = U(G) ∪ W(G) with |U(G)| = m and |W(G)| = n.
Then f is said to be H-V-super-strong-(a, d)-antimagic labeling if f (U(G)) = {1, 2, ...,m} and
f (W(G)) = {m + 1,m + 2, ..., (m + n = p)}. A graph that admits a H-V-super-strong-(a, d)-antimagic
labeling is called a H-V-super-strong-(a, d)-antimagic decomposable graph. In this paper, we prove
that complete bipartite graphs Km,n are H-V-super-strong-(a, d)-antimagic decomposable with both m
and n are even.
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1. Introduction

In this paper we consider only finite and simple undirected bipartite graphs. The vertex and edge
sets of a graph G are denoted by V(G) and E(G) respectively and we let |V(G)| = p and |E(G)| = q.
For graph theoretic notations, we follow [1,2]. A labeling of a graph G is a mapping that carries a set
of graph elements, usually vertices and/or edges into a set of numbers, usually integers. Many kinds
of labeling have been studied and an excellent survey of graph labeling can be found in [3].

Although magic labeling of graphs was introduced by Sedlacek [4], the concept of vertex magic
total labeling (VMTL) first appeared in 2002 in [5]. In 2004, MacDougall et al. [6] introduced
the notion of super vertex magic total labeling (SVMTL). In 1998, Enomoto et al. [7] introduced
the concept of super edge-magic graphs. In 2005, Sugeng and Xie [8] constructed some super
edge-magic total graphs. The usage of the word ”super” was introduced in [7]. The notion of a
V-super vertex magic labeling was introduced by MacDougall et al. [6] as in the name of super
vertex-magic total labeling and it was renamed as V-super vertex magic labeling by Marr and Wallis
in [9] after referencing the article [10]. Most recently, Tao-ming Wang and Guang-Hui Zhang [11],
generalized some results found in [10].

Hartsfield and Ringel [12] introduced the concept of an antimagic graph. In their terminology, an
antimagic labeling is an edge-labeling of the graph with the integers 1, 2, · · · , q so that the weight
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at each vertex is different from the weight at any other vertex. Bodendiek and Walther [13] defined
the concept of an (a, d)-antimagic labeling as an edge-labeling in which the vertex weights forms an
arithmetic progression starting from a and having common difference d. Bǎca et al. [14] introduced
the notions of vertex-antimagic total labeling and (a, d)-vertex-antimagic total labeling. Simanjuntak
et al [15] introduced the concept of (a, d)-antimagic graph. Sudarasana et al [16] studied the concept
of super edge-antimagic total lableing of disconnected graphs.

A bijection f from V(G) ∪ E(G) to the integers 1, 2, ..., p + q is called a vertex-antimagic total
labeling of G if the weights of vertices {w f (x) = f (x) +

∑
xy∈E(G) f (xy), x ∈ V(G)}, are pairwise

distinct. f is called an (a, d)-vertex-antimagic total labeling of G if the set of vertex weights
{w f (x)|x ∈ V(G)} = {a, a + d, · · · , a + (p − 1)d} for some integers a and d. f is said to be super-(a, d)-
vertex-antimagic labeling if f (V(G)) = {1, 2, ..., p}. A graph G is called super-(a, d)-vertex-antimagic
if it admits a super-(a, d)-vertex-antimagic labeling. A bijection f from V(G) ∪ E(G) to the
integers 1, 2, ..., p + q is called an (a, d)-edge-antimagic total labeling of G if the edge weights
{w(uv) = f (u) + f (v) + f (uv), uv ∈ E(G)}, forms an arithmetic sequence with the first term a and
common difference d. f is said to be super-(a, d)-edge-antimagic labeling if f (V(G)) = {1, 2, ..., p}.
A graph G is called super-(a, d)-edge-antimagic if it admits a super-(a, d)-edge-antimagic labeling.

A covering of G is a family of subgraphs H1,H2, ...,Hh such that each edge of E(G) belongs to at
least one of the subgraphs Hi, 1 ≤ i ≤ h. Then it is said that G admits an (H1,H2, · · · ,Hh) covering.
If every Hi is isomorphic to a given graph H, then G admits an H-covering. A family of subgraphs
H1,H2, · · · ,Hh of G is a H-decomposition of G if all the subgraphs are isomorphic to a graph H,
E(Hi) ∩ E(H j) = ∅ for i , j and ∪h

i=1E(Hi) = E(G). In this case, we write G = H1 ⊕ H2 ⊕ · · · ⊕ Hh

and G is said to be H-decomposable.

The notion of H-super magic labeling was first introduced and studied by Gutiérrez and Lladó [17]
in 2005. They proved that some classes of connected graphs are H-super magic. Suppose G is
H-decomposable. A total labeling f : V(G) ∪ E(G) → {1, 2, · · · , p + q} is called an H-magic
labeling of G if there exists a positive integer k (called magic constant) such that for every copy
H in the decomposition,

∑
v∈V(H) f (v) +

∑
e∈E(H) f (e) = k. A graph G that admits such a labeling

is called a H-magic decomposable graph. An H-magic labeling f is called a H-V-super magic
labeling if f (V(G)) = {1, 2, · · · , p}. A graph that admits a H-V-super magic labeling is called a
H-V-super magic decomposable graph. An H-magic labeling f is called a H-E-super magic labeling
if f (E(G)) = {1, 2, · · · , q}. A graph that admits a H-E-super magic labeling is called a H-E-super
magic decomposable graph. The sum of all vertex and edge labels on H is denoted by

∑
f (H).

In 2001, Muntaner-Batle [18] introduced the concept of super-strong magic labeling of bipartite
graph as in the name of special super magic labeling of bipartite graph and it was renamed as
super-strong magic labeling by Marr and Wallis [9]. Marimuthu and Stalin Kumar [19] introduced
the concept of H-V-super-strong magic decomposition and H-E-super-strong magic decomposi-
tion of complete bipartite graphs. Suppose G is a bipartite graph with vertex-sets V1 and V2 of
sizes m and n respectively. An edge-magic total labeling of G is super-strong if the elements
of V1 receive labels {1, 2, ...,m} and the elements of V2 receive labels {m + 1,m + 2, ...,m + n}.
Suppose G is H-decomposable and if V(G) = U(G) ∪ W(G) with |U(G)| = m and |W(G)| = n.
An H-V-super magic labeling f is called a H-V-super-strong magic if f (U(G)) = {1, 2, ...,m}
and f (W(G)) = {m + 1,m + 2, ..., (m + n = p)}. A graph that admits a H-V-super-strong magic
labeling is called a H-V-super-strong magic decomposable graph. An H-E-super magic label-
ing f is called a H-E-super-strong magic labeling if if f (U(G)) = {q + 1, q + 2, ..., q + m} and
f (W(G)) = {q + m + 1, q + m + 2, ...,
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(q+m+n = qp)}. A graph that admits a H-E-super-strong magic labeling is called a H-E-super-strong
magic decomposable graph.

Suppose G is H-decomposable. A total labeling f : V(G) ∪ E(G)→ {1, 2, · · · ,
p+q} is called an H-antimagic labeling of G if

∑
f (H1),

∑
f (H2), · · · ,

∑
f (Hh) are pairwaise distinct.

f is said to be H-(a, d)-antimagic if these numbers forms an arithmetic progression with difference
d and first element a. A H-(a, d)-antimagic labeling f is called H-V-super-(a, d)-antimagic labeling
if f (V(G)) = {1, 2, ..., p}. Suppose that V(G) = U(G) ∪ W(G) with |U(G)| = m and |W(G)| = n.
Then f is said to be H-V-super-strong-(a, d)-antimagic labeling if f (U(G)) = {1, 2, ...,m} and
f (W(G)) = {m + 1,m + 2, ..., (m + n = p)}. A graph that admits a H-V-super-strong-(a, d)-antimagic
labeling is called a H-V-super-strong-(a, d)-antimagic decomposable graph. A H-(a, d)-antimagic
labeling f is called H-E-super-(a, d)-antimagic labeling if f (E(G)) = {1, 2, ..., q}. f is said
to be H-E-super-strong-(a, d)-antimagic labeling if f (U(G)) = {q + 1, q + 2, ..., q + m} and
f (W(G)) = {q + m + 1, q + m + 2, ..., (q + m + n = qp)}. A graph that admits a H-E-super-strong-
(a, d)-antimagic labeling is called a H-E-super-strong-(a, d)-antimagic decomposable graph.

In 2012, Inayah et al. [20] studied magic and anti-magic H-decompositions and Zhihe Liang [21]
studied cycle-super magic decompositions of complete multipartite graphs. In many of the results
about H-magic graphs, the host graph G is required to be H-decomposable. Yoshimi Ecawa et al
[22] studied the decomposition of complete bipartite graphs into edge-disjoint subgraphs with star
components. The notion of star-subgraph was introduced by Akiyama and Kano in [23]. A subgraph
F of a graph G is called a star-subgraph if each component of F is a star. Here by a star, we mean
a complete bipartite graph of the form K1,m with m ≥ 1. A subgraph F of a graph G is called a
n-star-subgraph if F � K1,n with 2 ≤ n < p. Marimuthu and Stalin Kumar [24, 25] studied about the
H-V-super magic decomposition and H-E-super magic decomposition of complete bipartite graphs.

2. Main Results

In this section, we consider the graphs G � Km,n and H � K1,n, where n ≥ 1 and both m and n
are even. Clearly p = m + n and q = mn.

Theorem 1. Suppose {H1,H2, · · · ,Hm} is a n-star-decomposition of G with both m and n are even.
Then G is H-V-super-strong-(a, d)-antimagic decomposable with a = 1 + n2(m+3)+2n(2m+1)

2 and d = 1.

Proof. Let U = {u1, u2, · · · , um} and V = {v1, v2, · · · , vn} be two stable sets of G. Let {H1,H2, · · · ,Hm}

be a n-star decomposition of G with both m and n are even, where each Hi is isomorphic to H, such
that V(Hi) = {ui, v1, v2, · · · , vn} and E(Hi) = {uiv1, uiv2, · · · , uivn}, for all 1 ≤ i ≤ m. Define a total
labeling f : V(G) ∪ E(G) → {1, 2, · · · , p + q} by f (ui) = i and f (v j) = m + j, for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

Case 1: m , n.
Now the edges of G can be labeled as shown in Table 1.
We prove the result for n = k and the result follows for all 1 ≤ k ≤ m.
From Table 1 and from definition of f , we get∑

f (Hk) = f (uk) +
n∑

i=1

f (vi) +
n∑

i=1

f (ukvi) = k +
n∑

i=1

(m + i) +
n∑

i=1

f (ukvi).

Now,
n∑

i=1

f (vi) = (m + 1) + (m + 2) + · · · + (m + n)
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Table 1. The edge label of a n-star-decomposition of G if m , n..

f v1 v2 ... vn−1 vn

u1 (m + n) (2m + n) ... (m + n) (m + n)
+m +1 +((n − 1)m) +((n − 1)m + 1)

u2 (m + n)+ (2m + n) ... (m + n) (m + n)
(m − 1) +2 +((n − 1)m − 1) +((n − 1)m + 2)

u3 (m + n)+ (2m + n) ... (m + n) (m + n)
(m − 2) +3 ((n − 1)m − 2) +((n − 1)m + 3)

... ... ... ... ... ...

uk (m + n)+ (2m + n) ... (m + n) + ((n − 2)m) (m + n) + (n − 1)m
(m − (k − 1)) +k +(m − (k − 1)) +k

... ... ... ... ... ...

um−1 (m + n)+ (2m + n) ... (m + n) (m + n)
2 +(m − 1) +((n − 2)m + 2) +(mn − 1)

um (m + n)+ (2m + n) ... (m + n) (m + n)
1 +m +((n − 2)m + 1) +mn

= mn + (1 + 2 + · · · + n) = mn +
n(n + 1)

2
.

Also
n∑

i=1

f (ukvi) = ((m + n) + (m − (k − 1))) + ((m + n) + (m + k)) + · · ·

+((m + n) + (n − 2)m + (m − (k − 1))) + ((m + n) + (n − 1)m + k)
= ((2m + n) − (k − 1)) + ((2m + n) + k) + ((4m + n) − (k − 1)) +

((4m + n) + k) + · · · + (((n)m + n) − (k − 1)) + (((n)m + n) + k)

= 2((2m + n) + (4m + n) + · · · + (nm + n)) +
n
2

(1)

= 2((2m + 2n + · · · + nm) +
n(n)

2
) +

n
2

= 4m(1 + 2 + · · · +
n
2

) +
2n2 + n

2
= 4m(

n(n + 2)
8

) +
2n2 + n

2

=
mn2 + 2mn + 2n2 + n

2
=

n2(m + 2) + n(2m + 1)
2

.

Hence
n∑

i=1

f (ukvi) =
n2(m + 2) + n(2m + 1)

2
.

and is constant for all 1 ≤ k ≤ m.
Using the above values, we get∑

f (Hk) = k + mn +
n(n + 1)

2
+

n2(m + 2) + n(2m + 1)
2

= k +
2mn + n2 + n + n2(m + 2) + n(2m + 1)

2

= k +
n2(m + 3) + 2n(2m + 1)

2
.
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Table 2. The edge label of a n-star-decomposition of G if m = n.

f v1 v2 ... vn−1 vn

u1 3n 3n + 1 ... (n + 1)n (n + 1)n + 1
u2 3n − 1 3n + 2 ... (n + 1)n − 1 (n + 1)n + 2
u3 3n − 2 3n + 3 ... (n + 1)n − 2 (n + 1)n + 3
... ... ... ... ... ...

uk 3n − (k − 1) 3n + k ... (n + 1)n − (k − 1) (n + 1)n + k
... ... ... ... ... ...

un−1 2n + 2 4n − 1 ... n(n) + 2 (n + 2)n − 1
un 2n + 1 4n ... n(n) + 1 (n + 2)n

for all 1 ≤ k ≤ m. So, {
∑

f (H1),
∑

f (H2), · · · ,
∑

f (Hm) = a, a + d, · · · , a + (m − 1)d} forms an
arithmetic progression with a = (1 + n2(m+3)+2n(2m+1)

2 ) and common difference d = 1. Thus in this case,
the graph G is a H-V-super-strong-(a, d)-antimagic decomposable.

Case 2: m = n.
Now the edges of G can be labeled as shown in Table 2.
We prove the result for n = k and the result follows for all 1 ≤ k ≤ n.
From Table 2 and from definition of f , we get∑

f (Hk) = f (uk) +
n∑

i=1

f (vi) +
n∑

i=1

f (ukvi) = k +
n∑

i=1

(n + i) +
n∑

i=1

f (ukvi).

Now,

n∑
i=1

f (vi) = (n + 1) + (n + 2) + · · · + (n + n) = (n)n + (1 + 2 + · · · + n)

= (n)n +
n(n + 1)

2
.

Also
n∑

i=1

f (ukvi) = (3n − (k − 1)) + (3n + k) + (5n − (k − 1)) + (5n + k) + · · ·

+((n + 1)n − (k − 1)) + ((n + 1)n + k)
= (3n + 1) + 3n + (5n + 1) + 5n + · · · + ((n + 1)n + 1) + (n + 1)n

= 2(3n + 5n + · · · + (n + 1)n) +
n
2

(1)

= 2n(3 + 5 + · · · + (n + 1)) +
n
2

= 2n((1 + 2 + 3 + · · · + (n + 1)) − (2 + 4 + 6 + · · · + n) − 1) +
n
2

= 2n(
(n + 1)(n + 2)

2
− 2

( n
2 )(n+1

2 )
2

− 1) +
n
2

= 2(
n2 + 3n + 2

2
−

(n2 + 2n)
4

− 1) +
n
2

= 2n(
2n2 + 6n + 4 − n2 − 2n − 4

4
+

n
2
=

n(n2 + 4n + n)
2

=
n3 + 2n2 + 2n2 + n

2
=

n2(n + 2) + (n(2n + 1)
2

.
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Hence
n∑

i=1

f (ukvi) =
n2(n + 2) + n(2n + 1)

2
.

and is constant for all 1 ≤ k ≤ n.
Using the above values, we get∑

f (Hk) = k + (n)n +
n(n + 1)

2
+

n2(n + 2) + n(2n + 1)
2

= k +
2(n)n + n2 + n + n2(n + 2) + n(2n + 1)

2

= k +
n2(n + 3) + 2n(2n + 1)

2
.

for all 1 ≤ k ≤ n. So, {
∑

f (H1),
∑

f (H2), · · · ,
∑

f (Hn) = a, a+d, · · · , a+(n−1)d} forms an arithmetic
progression with a = (1 + n2(n+3)+2n(2n+1)

2 ) and common difference d = 1. Thus in this case also, the
graph G is a H-V-super-strong-(a, d)-antimagic decomposable. □

Theorem 2. If a non-trivial H-decomposable graph G � Km,n is H-V-super-strong-(a, d)-antimagic
decomposable graph with both m and n are even and if the sum of edge labels of a decomposition
H j is denoted by

∑
f (E(H j)) then

∑
f (E(H j)) is constant for all 1 ≤ j ≤ m and it is given by∑

f (E(H j)) =
n2(m+2)+n(2m+1)

2 .

Proof. Suppose G is H-decomposable and possesses a H-V-super-strong-(a, d)-antimagic labeling f ,
then by Theorem 1, for each H j in the H-decomposition of G, we get∑

f (E(H j)) =
n∑

i=1

f (u jvi) =
n2(m + 2) + n(2m + 1)

2

which is true for all 1 ≤ j ≤ m. Thus
∑

f (E(H j)) is constant for all 1 ≤ k ≤ m and it is given by∑
f (E(H j)) =

n2(m+2)+n(2m+1)
2 . □

Theorem 3. If a non-trivial H-decomposable graph G � Km,n is H-V-super-strong-(a, d)-antimagic
decomposable graph with both m and n are even and if the sum of vertex labels of a decomposition
H j is denoted by

∑
f (V(H j)) then

{
∑

f (V(H1)),
∑

f (V(H2)), · · · ,
∑

f (V(Hm))} = {a, a + d, · · · , a + (m − 1)d} with a = (mn + 1) + n(n+1)
2

and d = 1.

Proof. Suppose G is H-decomposable and possesses a H-V-super-strong-(a, d)-antimagic labeling f ,
then by Theorem 1, for each H j in the H-decomposition of G, we get∑

f (V(H j)) = f (u j) +
n∑

i=1

f (vi) = j +
n∑

i=1

(m + i) = j + ((m + 1) + (m + 2) + · · · + (m + n))

= j + mn +
n(n + 1)

2
.

which is true for all 1 ≤ j ≤ m. Thus {
∑

f (V(H1)),
∑

f (V(H2)), · · · ,∑
f (V(Hm))} = {a, a + d, · · · , a + (m − 1)d} with a = (mn + 1) + n(n+1)

2 and d = 1. □

Theorem 4. Let G � Km,n be a H-decomposable graph with both m and n are even and if V(G) =
U(G) ∪W(G) with |U(G)| = m and |W(G)| = n. let g be a bijection from V(G) onto {1, 2, · · · , p} with
g(U(G)) = {1, 2, · · · ,m} and g(W(G)) = {(m+ 1), (m+ 2), · · · , (m+ n = p)} then g can be extended to
an H-V-super-strong-(a, d)-antimagic labeling if and only if

∑
f (E(H j)) is constant for all 1 ≤ j ≤ m

and it is given by
∑

f (E(H j)) =
n2(m+2)+n(2m+1)

2 .
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Proof. Suppose G � Km.n be a H-decomposable graph with both m and n are even and if V(G) =
U(G) ∪ W(G) with |U(G)| = m and |W(G)| = n. let g be a bijection from V(G) onto {1, 2, · · · , p}
with g(U(G)) = {1, 2, · · · ,m} and g(W(G)) = {(m + 1), (m + 2), · · · , (m + n = p)}. Assume that∑

f (E(H j)) is constant for all 1 ≤ j ≤ m and it is given by
∑

f (E(H j)) =
n2(m+2)+n(2m+1)

2 . Define
f : V(G)∪ E(G)→ {1, 2, ..., p + q} as f (ui) = g(ui); f (u j) = g(u j) for all 1 ≤ i ≤ m; 1 ≤ j ≤ n and the
edge labels are in either Table 1 (if m , n) or Table 2 (if m = n) then by Theorem 2.1, for each H j in
the H-decomposition of G, we get

∑
f (V(H j)) = f (u j) +

n∑
i=1

f (vi) = j +
n∑

i=1

(m + i) = j + ((m + 1) + (m + 2) + · · · + (m + n))

= j + mn +
n(n + 1)

2
.

which is true for all 1 ≤ j ≤ m. So, we have {
∑

f (V(H1)),
∑

f (V(H2)), · · · ,∑
f (V(Hm))} = {a, a + d, · · · , a + (m − 1)d} with a = (mn + 1) + n(n+1)

2 and d = 1. Hence,

∑
f (H j) =

∑
f (V(H j)) +

∑
f (E(H j)) = ( j + mn +

n(n + 1)
2

) + (
n2(m + 2) + n(2m + 1)

2
)

= j +
2mn + n2 + n + n2(m + 2) + n(2m + 1)

2
= j +

n2(m + 3) + 2n(2m + 1)
2

.

for every H j in the H-decomposition of G and for all 1 ≤ j ≤ m. Thus we have, f is an H-V-super-
strong-(a, d)-antimagic labeling.
Suppose g can be extended to an H-V-super-strong-(a, d)-antimagic labeling f of G with with a =
1 + n2(m+3)+2n(2m+1)

2 and d = 1. Then by Theorem 2
∑

f (E(H j)) is constant for all 1 ≤ j ≤ m and it is
given by

∑
f (E(H j)) =

n2(m+2)+n(2m+1)
2 . □

3. Conclusion

In this paper, we studied the H-V-super-strong-(a, d)-antimagic decomposition of Km,n with
n ≥ 1 and both m and n are even.
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