

Article

On Domination and 2-packing Numbers in Intersecting Linear Systems

Adrián Vázquez-Ávila^{1,*}

- ¹ Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Parque Aeroespacial de Querétaro, 76278, Querétaro, México
- * Correspondence: adrian.vazquez@unaq.mx

Abstract: A linear system is a pair (P, \mathcal{L}) where \mathcal{L} is a finite family of subsets on a finite ground set P such that any two subsets of \mathcal{L} share at most one element. Furthermore, if for every two subsets of \mathcal{L} share exactly one element, the linear system is called intersecting. A linear system (P, \mathcal{L}) has rank r if the maximum size of any element of \mathcal{L} is r. By $\gamma(P, \mathcal{L})$ and $\nu_2(P, \mathcal{L})$ we denote the size of the minimum dominating set and the maximum 2-packing of a linear system (P, \mathcal{L}) , respectively. It is known that any intersecting linear system (P, \mathcal{L}) of rank r is such that $\gamma(P, \mathcal{L}) \leq r - 1$. Li et al. in [S. Li, L. Kang, E. Shan and Y. Dong, The finite projective plane and the 5-Uniform linear intersecting hypergraphs with domination number four, Graphs and 34 Combinatorics (2018), no. 5, 931–945.] proved that every intersecting linear system of rank 5 satisfying $\gamma(P, \mathcal{L}) = 4$ can be constructed from a 4-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order 3 satisfying $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = 4$, where $\tau(P', \mathcal{L}')$ is the transversal number of (P', \mathcal{L}') . In this paper, we give an alternative proof of this result given by Li et al., giving a complete characterization of these 4-uniform intersecting linear subsystems. Moreover, we prove a general case, that is, we prove if q is an odd prime power and (P, \mathcal{L}) is an intersecting linear system of rank (q + 2) satisfying $\gamma(P, \mathcal{L}) = q+1$, then this linear system can be constructed from a spanning (q+1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q satisfying $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = q + 1$.

Keywords: Linear systems, Domination number, Transversal number, 2-packing number, Projective plane

Mathematics Subject Classification: 05C65, 05C69

1. Introduction

A set system is a pair (X, \mathcal{F}) where \mathcal{F} is a finite family of subsets on a finite ground set X. A set system can be also thought of as a hypergraph, where the elements of X and \mathcal{F} are called *vertices* and *hyperedges*, respectively. The set system (X, \mathcal{F}) is *intersecting* if $E \cap F \neq \emptyset$, for for every pair of distinct subsets $E, F \in \mathcal{F}$. On the other hand, the set system (X, \mathcal{F}) is a *linear system* if it satisfies $|E \cap F| \leq 1$, for every pair of distinct subsets $E, F \in \mathcal{F}$; and it is denoted by (P, \mathcal{L}) . The elements of P and \mathcal{L} are called *points* and *lines* respectively. In this paper, we only consider linear systems, and the most of following definitions can be generalized for set systems.

The *rank* of a linear system (P, \mathcal{L}) is the maximum size of a line of \mathcal{L} . An *r*-uniform linear system (P, \mathcal{L}) is a linear system such that every line contains exactly *r* points. Hence, a (simple) graph is a 2-uniform linear system. In this paper we only consider linear systems of rank $r \ge 2$.

Let (P, \mathcal{L}) be a linear system and $p \in P$ be a point. The *degree* of p is the number of lines containing p and it is denoted by deg(p). The maximum degree overall points of the linear systems is denoted by $\Delta(P, \mathcal{L})$. A point of degree 2 and 3 is called *double point* and *triple point*, respectively. Two points p and q in (P, \mathcal{L}) are *adjacent* if there is a line $l \in \mathcal{L}$ such that $p, q \in l$.

A *linear subsystem* (P', \mathcal{L}') of a linear system (P, \mathcal{L}) satisfies that for any line $l' \in \mathcal{L}'$ there exists a line $l \in \mathcal{L}$ such that $l' = l \cap P'$. The *linear subsystem induced* by a set of lines $\mathcal{L}' \subseteq \mathcal{L}$ is the linear subsystem (P', \mathcal{L}') where $P' = \bigcup_{l \in \mathcal{L}'} l$. The linear subsystem (P', \mathcal{L}') of (P, \mathcal{L}) is called *spanning linear subsystem* if P' = P. Given a linear system (P, \mathcal{L}) , and a point $p \in P$, the linear system obtained from (P, \mathcal{L}) by *deleting the point* p is the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \{l \setminus \{p\} : l \in \mathcal{L}\}$. Given a linear system (P, \mathcal{L}) and a line $l \in \mathcal{L}$, the linear system obtained from (P, \mathcal{L}) by *deleting the line* l is the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \mathcal{L} \setminus \{l\}$. Let (P', \mathcal{L}') and (P, \mathcal{L}) be two linear systems. The linear systems (P', \mathcal{L}') and (P, \mathcal{L}) are isomorphic, denoted by $(P', \mathcal{L}') \simeq (P, \mathcal{L})$, if after deleting points of degree 1 or 0 from both, the systems (P', \mathcal{L}') and (P, \mathcal{L}) are isomorphic as hypergraphs, see [1].

A subset *D* of points of a linear system (P, \mathcal{L}) is a *dominating set* of (P, \mathcal{L}) if for every $p \in P \setminus D$ there exists $q \in D$ such that *p* and *q* are adjacent. The minimum cardinality of a dominating set of a linear system (P, \mathcal{L}) is called *domination number*, denoted by $\gamma(P, \mathcal{L})$. Domination in set systems (hypergraphs) was introduced by Acharya [2] and studied further in [3–7].

A subset *T* of points of a linear system (P, \mathcal{L}) is a *transversal* of (P, \mathcal{L}) (also called *vertex cover* or *hitting set*) if $T \cap l \neq \emptyset$, for every line $l \in \mathcal{L}$. The minimum cardinality of a transversal of a linear system (P, \mathcal{L}) is called *transversal number*, denoted by $\tau(P, \mathcal{L})$. Since any transversal of a linear system (P, \mathcal{L}) is a dominating set, then $\gamma(P, \mathcal{L}) \leq \tau(P, \mathcal{L})$.

A subset *R* of lines of a linear system (P, \mathcal{L}) is a 2-*packing* of (P, \mathcal{L}) if the elements of *R* are triplewise disjoint, that is, if any three elements are chosen in *R* then they are not incidents in a common point. The 2-*packing number* of (P, \mathcal{L}) is the maximum cardinality of a 2-packing of (P, \mathcal{L}) , denoted by $v_2(P, \mathcal{L})$. There are some works related on transversal and 2-packing numbers in linear systems, see for example [1,8–11].

Kang et al. [12] proved if (P, \mathcal{L}) is an intersecting linear system of rank $r \ge 2$, then $\gamma(P, \mathcal{L}) \le r-1$. Shan et al. [13] gave a characterization of set systems (X, \mathcal{F}) holding the equality when r = 3. On the other hand, Dong et al. [6] shown all intersecting linear systems (P, \mathcal{L}) of rank 4, satisfying $\gamma(P, \mathcal{L}) = 3$, can be constructed by the Fano plane. In this paper, we prove that if (P, \mathcal{L}) is an intersecting linear system of rank 5 satisfying $\gamma(P, \mathcal{L}) = 4$, then this linear system can be constructed from an 4-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order 3 satisfying $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = 4$, and we give a complete characterization of this 4-uniform intersecting linear subsystems. The result was also obtained by Li et al. [14]. Furthermore, we prove that if q is an odd prime power and if (P, \mathcal{L}) is an intersecting linear system of rank (q + 2) satisfying $\gamma(P, \mathcal{L}) = q+1$ then, this linear system can be constructed from a spanning (q+1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q satisfying $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = q + 1$.

2. Previous Results

Let I_r be the family of intersecting linear systems (P, \mathcal{L}) of rank r with $\gamma(P, \mathcal{L}) = r - 1$. To better understand this paper, we need the following results:

Lemma 1 (Lemma 2.1 in [6]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_r$, there exists a spanning intersecting r-uniform linear subsystem (P^*, \mathcal{L}^*) of (P, \mathcal{L}) such that every line in \mathcal{L}^* contains one point of degree one.

Let (P^*, \mathcal{L}^*) be the spanning intersecting *r*-uniformlinear subsystem obtained from Lemma 1. Furthermore, let (P', \mathcal{L}') be the intersecting (r - 1)-uniform linear subsystem obtained from (P^*, \mathcal{L}^*) by deleting the point of degree one of each line of \mathcal{L}^* , see [6].

Lemma 2 (Lemma 2.2 in [6]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_r$ it satisfies

$$\gamma(P, \mathcal{L}) = \gamma(P^*, \mathcal{L}^*) = \tau(P^*, \mathcal{L}^*) = \tau(P', \mathcal{L}') = r - 1.$$

Lemma 3 (Lemma 2.4 in [6]). Let $(P, \mathcal{L}) \in I_r$ $(r \ge 3)$, then every line of (P', \mathcal{L}') has at most one point of degree 2 and $\Delta(P', \mathcal{L}') = r - 1$.

Lemma 4 (Lemma 2.5 in [6]). Let $(P, \mathcal{L}) \in \mathcal{I}_r$ $(r \ge 3)$, then

$$3(r-2) \le |\mathcal{L}'| \le (r-1)^2 - (r-1) + 1$$
 and $|P'| = (r-1)^2 - (r-1) + 1$,

and so $\gamma(P', \mathcal{L}') = 1$.

Proposition 1 (Proposition 2.1 and Proposition 2.2 in [1]). Let (P, \mathcal{L}) be a linear system with $|\mathcal{L}| > v_2(P, \mathcal{L})$. If $v_2(P, \mathcal{L}) \in \{2, 3\}$, then $\tau(P, \mathcal{L}) \leq v_2(P, \mathcal{L}) - 1$.

Theorem 1 (Theorem 2.1 in [8]). Let (P, \mathcal{L}) be a linear system and $p, q \in P$ be two points such that $deg(p) = \Delta(P, \mathcal{L})$ and $deg(q) = \max\{deg(x) : x \in P \setminus \{p\}\}$. If $|\mathcal{L}| \leq deg(p) + deg(q) + v_2(P, \mathcal{L}) - 3$, then $\tau(P, \mathcal{L}) \leq v_2(P, \mathcal{L}) - 1$.

Lemma 5. Let (P, \mathcal{L}) be an r-uniform intersecting linear system with $r \ge 2$ be an even integer. If $v_2(P, \mathcal{L}) = r + 1$ then $\tau(P, \mathcal{L}) = \frac{r+2}{2}$.

Proof. Let (P, \mathcal{L}) be a *r*-uniform intersecting linear system with $v_2(P, \mathcal{L}) = r + 1$, where $r \ge 2$ is an even integer. Let $R = \{l_1, \ldots, l_{r+1}\}$ be a maximum 2-packing of (P, \mathcal{L}) . Since (P, \mathcal{L}) is an intersecting linear system then $l_i \cap l_j \ne \emptyset$, for $1 \le i < j \le r + 1$, hence $|l_i| = r$, for $i = 1, \ldots, r + 1$. Let $l \in \mathcal{L} \setminus R$. Since (P, \mathcal{L}) is an intersecting linear system it satisfies $l \cap l_i = l \cap l_i \cap l_{j_i} \ne \emptyset$, for $i = 1, \ldots, r + 1$ and for some $j_i \in \{1, \ldots, r+1\} \setminus \{i\}$, however, by the pigeonhole principle there are a line $l_s \in R$ such that $l \cap l_s = \emptyset$, since there are an odd number of lines in R and by linearity of (P, \mathcal{L}) . Therefore $|\mathcal{L}| = |R|$ and $\tau(P, \mathcal{L}) = \lceil v_2/2 \rceil = \frac{r+2}{2}$ (see [9]).

3. Intersecting Linear Systems (P, \mathcal{L}) of Rank 5 with $\gamma(P, \mathcal{L}) = 4$

In this section, we give a complete characterization of the linear systems (P', \mathcal{L}') of $(P, \mathcal{L}) \in \mathcal{I}_5$. Notice that any line $l \in \mathcal{L}'$ satisfies $|l| \ge v_2(P', \mathcal{L}') - 1$ (since (P', \mathcal{L}') is intersecting), which implies that. $v_2(P', \mathcal{L}') \le r$. It is clear, by Lemma 2 and Proposition 1, for every $(P, \mathcal{L}) \in \mathcal{I}_5$ satisfies $4 \le v_2(P', \mathcal{L}') \le 5$. In fact, by the following lemma, Lemma 6, it implies that $v_2(P', \mathcal{L}') = 4$.

Lemma 6. Any $(P, \mathcal{L}) \in \mathcal{I}_5$ satisfies $v_2(P', \mathcal{L}') = 4$.

Proof. Let $(P, \mathcal{L}) \in \mathcal{I}_5$ and suppose that $v_2(P, \mathcal{L}) = 5$. Then, by Lemma 5 it satisfies $\tau(P', \mathcal{L}') = 3$, a contradiction since $\tau(P', \mathcal{L}') = 4$. \Box

Hence, by the following Theorem 2, if $(P, \mathcal{L}) \in I_5$ then (P', \mathcal{L}') is a linear subsystem of the projective plane of order 3.

A finite projective plane (or merely projective plane) is an uniform linear system satisfying that any pair of points have a common line, any pair of lines have a common point and there exist four points in general position (there are not three collinear points). It is well known that if (P, \mathcal{L}) is a projective plane then there exists a number $q \in \mathbb{N}$, called *order of projective plane*, such that every point (line, respectively) of (P, \mathcal{L}) is incident to exactly q + 1 lines (points, respectively), and (P, \mathcal{L}) contains exactly $q^2 + q + 1$ points (lines, respectively). In addition to this, it is well known that projective planes of order q, denoted by Π_q , exist when q is a power prime. For more information about the existence and the unicity of projective planes see, for instance, [15, 16].

Theorem 2 (Theorem 2.1 in [1]). Let (P, \mathcal{L}) be a linear system with $|\mathcal{L}| > 4$. If $v_2(P, \mathcal{L}) = 4$, then $\tau(P, \mathcal{L}) \leq 4$. Moreover, if $\tau(P, \mathcal{L}) = v_2(P, \mathcal{L}) = 4$, then (P, \mathcal{L}) is a linear subsystem of Π_3 .

Figure 1. (a) Projective Plane of Order 3, Π_3 and (b) Linear System Obtained from Π_3 by Deleting the Lines of the Triangle \mathcal{T} . Figure obtained from [8]

Araujo-Pardo et al. [1] proved that the linear system (P, \mathcal{L}) with $|\mathcal{L}| > 4$ satisfying $\tau(P, \mathcal{L}) = v_2(P, \mathcal{L}) = 4$ are a special family of linear subsystems of Π_3 .

Given a linear system (P, \mathcal{L}) , a *triangle* \mathcal{T} of (P, \mathcal{L}) , is the linear subsystem of (P, \mathcal{L}) induced by three points in general position (non collinear) and the three lines induced by them. Consider the projective plane Π_3 and a triangle \mathcal{T} of Π_3 (see (*a*) of Figure 1). Araujo-Pardo et al. [1] defined the intersecting 4-uniform linear system $\hat{C} = (P_{\hat{C}}, \mathcal{L}_{\hat{C}})$ induced by $\mathcal{L}_{\hat{C}} = \mathcal{L} \setminus \mathcal{T}$ (see (*b*) of Figure 1). The linear system \hat{C} just defined has thirteen points and ten lines. In the same paper, [1], it was defined $\hat{C}_{4,4}$ to be the family of spanning intersecting 4-uniform linear systems (P, \mathcal{L}) such that:

- i) \hat{C} is a linear subsystem of (P, \mathcal{L}) ; and
- ii) (P, \mathcal{L}) is a linear subsystem of Π_3 ,

Proposition 2 (Proposition 4.1 in [1]). If $(P, \mathcal{L}) \in \hat{C}_{4,4}$ then $\tau(P, \mathcal{L}) = v_2(P, \mathcal{L}) = 4$.

It is easy to check that if $(P, \mathcal{L}) \in \hat{C}_{4,4}$ then any point *p* of degree 4 of (P, \mathcal{L}) is a minimum dominating set, which implies $\gamma(P, \mathcal{L}) = 1$. Therefore

Corollary 1. If $(P, \mathcal{L}) \in \mathcal{I}_5$ then $(P', \mathcal{L}') \in \hat{\mathcal{C}}_{4,4}$.

4. Intersecting Linear Systems (P, \mathcal{L}) of Rank q + 2 with $\gamma(P, \mathcal{L}) = q + 1$

In this section, we prove if q is an odd prime power and (P, \mathcal{L}) is an intersecting linear system of rank (q + 2) satisfying $\gamma(P, \mathcal{L}) = q + 1$, then this linear system can be constructed from a spanning (q+1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q, Π_q , satisfying $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') = q + 1$.

Araujo-Pardo et al. [1] proved if q is an even prime power then $\tau(\Pi_q) \le v_2(\Pi_q) - 1 = q + 1$, however, if q is an odd prime power then $\tau(\Pi_q) = v_2(\Pi_q) = q + 1$.

Lemma 7. Let q be an odd integer. For every $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$ it satisfies $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = q + 1$.

Proof. Since (P', \mathcal{L}') is an intersecting (q + 1)-uniform linear system then $|l'| \ge v_2(P', \mathcal{L}') - 1$, for any line $l' \in \mathcal{L}'$. Hence $v_2(P', \mathcal{L}') \le q + 2$. On the other hand, if $v_2(P', \mathcal{L}') = q + 2$ then by Lemma 5 it follows that $\tau(P', \mathcal{L}') = \frac{q+3}{2}$, which is a contradiction, since $\tau(P', \mathcal{L}') = q + 1$. Therefore $v_2(P', \mathcal{L}') \le q + 1$. On the other hand, let $p \in P'$ be a point such that $deg(p) = \Delta(P', \mathcal{L}')$ and $\Delta'(P', \mathcal{L}') = \max\{deg(x) : x \in P' \setminus \{p\}\}$. By Theorem 1 if $|\mathcal{L}'| \le \Delta(P', \mathcal{L}') + \Delta'(P', \mathcal{L}') + v_2(P, \mathcal{L}) - 3 \le 3q$ then $\tau(P', \mathcal{L}') \le v_2(P', \mathcal{L}') - 1$, which implies $q + 2 \le v_2(P', \mathcal{L}')$, a contradiction, since $v_2(P', \mathcal{L}') \le q + 1$. Hence, if $\tau(P', \mathcal{L}') \ge v_2(P', \mathcal{L}')$ then $|\mathcal{L}'| \ge \Delta(P', \mathcal{L}') + \Delta'(P', \mathcal{L}') + v_2(P, \mathcal{L}) - 2 \ge 3q + 1$, which implies $v_2(P', \mathcal{L}') \ge q + 1$. Hence $v_2(P', \mathcal{L}') \ge q + 1$.

Theorem 3. Let q be an odd prime power. For every $(P, \mathcal{L}) \in I_{q+2}$, the linear system (P', \mathcal{L}') is a spanning (q + 1)-uniform linear subsystem of Π_q such that $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = q + 1$ with $|\mathcal{L}'| \ge 3q + 1$.

Proof. Let $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$. Then (P', \mathcal{L}') is an (q + 1)-uniform intersecting linear system with $|P'| = q^2 + q + 1$ (by Lemma 4). Furthermore, If $|\mathcal{L}'| = q^2 + q + 1$ then all points of (P', \mathcal{L}') have degree q + 1 (it is a consequence of Lemma 4, see [6]). Since projective planes are dual systems, the 2-packing number coincides with the cardinality of an oval, which is the maximum number of points in general position (no three of them collinear), and it is equal to $q + 1 = v_2(P', \mathcal{L}')$ (Lemma 7), when q is odd, see for example [16]. Hence, the linear system (P', \mathcal{L}') is a projective plane of order q, Π_q . Therefore, if $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$ then (P', \mathcal{L}') is a spanning linear subsystem of Π_q satisfying $\tau(P', \mathcal{L}') = v_2(P', \mathcal{L}') = q + 1$ with $|\mathcal{L}'| \ge 3q + 1$ (see proof of Lemma 7).

Acknowledgment

Research was partially supported by SNI and CONACyT.

Conflict of Interest

The author declares no conflict of interest.

References

- 1. Araujo-Pardo, G., Montejano, A., Montejano, L. and Vázquez-Àvila, A., 2017. On transversal and 2-packing numbers in straight line systems on \mathbb{R}^2 . *Utilitas Mathematica*, 105(2017), pp.317-336.
- 2. Acharya, B. D., 2007. Domination in hypergraphs. *AKCE International Journal of Graphs and Combinatorics*, 4(2), pp.117-126.
- 3. Acharya, B. D., 2008. Domination in hypergraphs II. New directions. In *Proc. Int. Conf.-ICDM* 2008, Mysore, India, (pp. 1-16).
- 4. Arumugam, S., Jose, B., Bujtás, Cs. and Tuza, Zs., 2013. Equality of domination and transversal numbers in hypergraphs. *Discrete Applied Mathematics*, *161*, pp.1859-1867.
- 5. Bujtás, Cs., Henning, M. A. and Tuza, Zs., 2013. Transversals of domination in uniform hypergraphs. *Discrete Applied Mathematics*, *161*, pp.1859-1867.
- 6. Dong, Y., Shan, E., Li, S. and Kang, L., 2018. Domination in intersecting hypergraphs. *Discrete Applied Mathematics*, 251, pp.155-159.
- 7. Jose, B. K. and Tuza, Zs., 2009. Hypergraph domination and strong independence. *Applicable Analysis and Discrete Mathematics*, *3*, pp.237-358.
- 8. Alfaro, C., Araujo-Pardo, G., Rubio-Montiel, C. and Vázquez-Ávila, A., 2020. On transversal and 2-packing numbers in uniform linear systems. *AKCE International Journal of Graphs and Combinatorics*, 17(1), pp.335-3341.
- 9. Alfaro, C. and Vázquez-Ávila, A., 2020. A note on a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed. *Discrete Mathematics Letters*, *3*, 61-66.
- 10. Vázquez-Ávila, A., 2022. On intersecting straight line systems. *Journal of Discrete Mathematical Sciences and Cryptography*, 25(6), pp.1931-1936.
- 11. Vázquez-Ávila, A., 2021. On transversal numbers of intersecting straight line systems and intersecting segment systems. *Boletín de la Sociedad Matemática Mexicana*, 27(3), pp.64.

- 12. Kang, L., Li, S., Dong, Y. and Shan, E., 2017. Matching and domination numbers in r-uniform hypergraphs. *Journal of Combinatorial Optimization*, *34*, pp.656-659.
- 13. Shan, E., Dong, Y., Kang, L. and Li, S., 2018. Extremal hypergraphs for matching number and domination number. *Discrete Applied Mathematics*, 236, pp.415-421.
- 14. Li, S., Kang, L., Shan, E. and Dong, Y., 2018. The finite projective plane and the 5-Uniform linear intersecting hypergraphs with domination number four. *Graphs and Combinatorics*, *34*(5), pp.931-945.
- 15. Batten, L. M., 1986. Combinatorics of Finite Geometries. Cambridge University Press, Cambridge.
- 16. Buekenhout, F., 1995. Handbook of Incidence Geometry: Buildings and Foundations. Elsevier.

 \bigcirc 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)