Article

On Domination and 2-packing Numbers in Intersecting Linear Systems

Adrián Vázquez-Ávila ${ }^{1, *}$
${ }^{1}$ Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Parque
Aeroespacial de Querétaro, 76278, Querétaro, México
* Correspondence: adrian.vazquez@unaq.mx

Abstract

A linear system is a pair (P, \mathcal{L}) where \mathcal{L} is a finite family of subsets on a finite ground set P such that any two subsets of \mathcal{L} share at most one element. Furthermore, if for every two subsets of \mathcal{L} share exactly one element, the linear system is called intersecting. A linear system (P, \mathcal{L}) has rank r if the maximum size of any element of \mathcal{L} is r. By $\gamma(P, \mathcal{L})$ and $v_{2}(P, \mathcal{L})$ we denote the size of the minimum dominating set and the maximum 2-packing of a linear system (P, \mathcal{L}), respectively. It is known that any intersecting linear system (P, \mathcal{L}) of rank r is such that $\gamma(P, \mathcal{L}) \leq r-1$. Li et al. in [S. Li, L. Kang, E. Shan and Y. Dong, The finite projective plane and the 5-Uniform linear intersecting hypergraphs with domination number four, Graphs and 34 Combinatorics (2018), no. 5, 931-945.] proved that every intersecting linear system of rank 5 satisfying $\gamma(P, \mathcal{L})=4$ can be constructed from a 4 -uniform intersecting linear subsystem ($P^{\prime}, \mathcal{L}^{\prime}$) of the projective plane of order 3 satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$, where $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is the transversal number of $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$. In this paper, we give an alternative proof of this result given by Li et al., giving a complete characterization of these 4 -uniform intersecting linear subsystems. Moreover, we prove a general case, that is, we prove if q is an odd prime power and (P, \mathcal{L}) is an intersecting linear system of rank $(q+2)$ satisfying $\gamma(P, \mathcal{L})=q+1$, then this linear system can be constructed from a spanning $(q+1)$-uniform intersecting linear subsystem $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of the projective plane of order q satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$.

Keywords: Linear systems, Domination number, Transversal number, 2-packing number, Projective plane
Mathematics Subject Classification: 05C65, 05C69

1. Introduction

A set system is a pair (X, \mathcal{F}) where \mathcal{F} is a finite family of subsets on a finite ground set X. A set system can be also thought of as a hypergraph, where the elements of X and \mathcal{F} are called vertices and hyperedges, respectively. The set system (X, \mathcal{F}) is intersecting if $E \cap F \neq \emptyset$, for for every pair of distinct subsets $E, F \in \mathcal{F}$. On the other hand, the set $\operatorname{system}(X, \mathcal{F})$ is a linear system if it satisfies $|E \cap F| \leq 1$, for every pair of distinct subsets $E, F \in \mathcal{F}$; and it is denoted by (P, \mathcal{L}). The elements of P and \mathcal{L} are called points and lines respectively. In this paper, we only consider linear systems, and the most of following definitions can be generalized for set systems.

The rank of a linear system (P, \mathcal{L}) is the maximum size of a line of \mathcal{L}. An r-uniform linear system (P, \mathcal{L}) is a linear system such that every line contains exactly r points. Hence, a (simple) graph is a 2-uniform linear system. In this paper we only consider linear systems of rank $r \geq 2$.

Let (P, \mathcal{L}) be a linear system and $p \in P$ be a point. The degree of p is the number of lines containing p and it is denoted by $\operatorname{deg}(p)$. The maximum degree overall points of the linear systems is denoted by $\Delta(P, \mathcal{L})$. A point of degree 2 and 3 is called double point and triple point, respectively. Two points p and q in (P, \mathcal{L}) are adjacent if there is a line $l \in \mathcal{L}$ such that $p, q \in l$.

A linear subsystem $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of a linear system (P, \mathcal{L}) satisfies that for any line $l^{\prime} \in \mathcal{L}^{\prime}$ there exists a line $l \in \mathcal{L}$ such that $l^{\prime}=l \cap P^{\prime}$. The linear subsystem induced by a set of lines $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ is the linear subsystem ($P^{\prime}, \mathcal{L}^{\prime}$) where $P^{\prime}=\bigcup_{t \in \mathcal{L}^{\prime}} l$. The linear subsystem $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of (P, \mathcal{L}) is called spanning linear subsystem if $P^{\prime}=P$. Given a linear system (P, \mathcal{L}), and a point $p \in P$, the linear system obtained from (P, \mathcal{L}) by deleting the point p is the linear system $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ induced by $\mathcal{L}^{\prime}=\{l \backslash\{p\}: l \in \mathcal{L}\}$. Given a linear system (P, \mathcal{L}) and a line $l \in \mathcal{L}$, the linear system obtained from (P, \mathcal{L}) by deleting the line l is the linear system $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ induced by $\mathcal{L}^{\prime}=\mathcal{L} \backslash\{l\}$. Let $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ and (P, \mathcal{L}) be two linear systems. The linear systems $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ and (P, \mathcal{L}) are isomorphic, denoted by $\left(P^{\prime}, \mathcal{L}^{\prime}\right) \simeq(P, \mathcal{L})$, if after deleting points of degree 1 or 0 from both, the systems $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ and (P, \mathcal{L}) are isomorphic as hypergraphs, see [1].

A subset D of points of a linear system (P, \mathcal{L}) is a dominating set of (P, \mathcal{L}) if for every $p \in P \backslash D$ there exists $q \in D$ such that p and q are adjacent. The minimum cardinality of a dominating set of a linear system (P, \mathcal{L}) is called domination number, denoted by $\gamma(P, \mathcal{L})$. Domination in set systems (hypergraphs) was introduced by Acharya [2] and studied further in [3-7].

A subset T of points of a linear system (P, \mathcal{L}) is a transversal of (P, \mathcal{L}) (also called vertex cover or hitting set) if $T \cap l \neq \emptyset$, for every line $l \in \mathcal{L}$. The minimum cardinality of a transversal of a linear system (P, \mathcal{L}) is called transversal number, denoted by $\tau(P, \mathcal{L})$. Since any transversal of a linear system (P, \mathcal{L}) is a dominating set, then $\gamma(P, \mathcal{L}) \leq \tau(P, \mathcal{L})$.

A subset R of lines of a linear system (P, \mathcal{L}) is a 2 -packing of (P, \mathcal{L}) if the elements of R are triplewise disjoint, that is, if any three elements are chosen in R then they are not incidents in a common point. The 2 -packing number of (P, \mathcal{L}) is the maximum cardinality of a 2-packing of (P, \mathcal{L}), denoted by $\nu_{2}(P, \mathcal{L})$. There are some works related on transversal and 2-packing numbers in linear systems, see for example [1,8-11].

Kang et al. [12] proved if (P, \mathcal{L}) is an intersecting linear system of $\operatorname{rank} r \geq 2$, then $\gamma(P, \mathcal{L}) \leq r-1$. Shan et al. [13] gave a characterization of set systems (X, \mathcal{F}) holding the equality when $r=3$. On the other hand, Dong et al. [6] shown all intersecting linear systems (P, \mathcal{L}) of rank 4 , satisfying $\gamma(P, \mathcal{L})=3$, can be constructed by the Fano plane. In this paper, we prove that if (P, \mathcal{L}) is an intersecting linear system of rank 5 satisfying $\gamma(P, \mathcal{L})=4$, then this linear system can be constructed from an 4-uniform intersecting linear subsystem ($P^{\prime}, \mathcal{L}^{\prime}$) of the projective plane of order 3 satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$, and we give a complete characterization of this 4 -uniform intersecting linear subsystems. The result was also obtained by Li et al. [14]. Furthermore, we prove that if q is an odd prime power and if (P, \mathcal{L}) is an intersecting linear system of rank $(q+2)$ satisfying $\gamma(P, \mathcal{L})=q+1$ then, this linear system can be constructed from a spanning $(q+1)$-uniform intersecting linear subsystem $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of the projective plane of order q satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$.

2. Previous Results

Let \mathcal{I}_{r} be the family of intersecting linear systems (P, \mathcal{L}) of rank r with $\gamma(P, \mathcal{L})=r-1$. To better understand this paper, we need the following results:

Lemma 1 (Lemma 2.1 in [6]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_{r}$, there exists a spanning intersecting r-uniform linear subsystem $\left(P^{*}, \mathcal{L}^{*}\right)$ of (P, \mathcal{L}) such that every line in \mathcal{L}^{*} contains one point of degree one.

Let $\left(P^{*}, \mathcal{L}^{*}\right)$ be the spanning intersecting r-uniformlinear subsystem obtained from Lemma 1 . Furthermore, let $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ be the intersecting $(r-1)$-uniform linear subsystem obtained from $\left(P^{*}, \mathcal{L}^{*}\right)$ by deleting the point of degree one of each line of \mathcal{L}^{*}, see [6].

Lemma 2 (Lemma 2.2 in [6]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_{r}$ it satisfies

$$
\gamma(P, \mathcal{L})=\gamma\left(P^{*}, \mathcal{L}^{*}\right)=\tau\left(P^{*}, \mathcal{L}^{*}\right)=\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=r-1 .
$$

Lemma 3 (Lemma 2.4 in [6]). Let $(P, \mathcal{L}) \in I_{r}(r \geq 3)$, then every line of $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ has at most one point of degree 2 and $\Delta\left(P^{\prime}, \mathcal{L}^{\prime}\right)=r-1$.
Lemma 4 (Lemma 2.5 in [6]). Let $(P, \mathcal{L}) \in \mathcal{I}_{r}(r \geq 3)$, then

$$
3(r-2) \leq\left|\mathcal{L}^{\prime}\right| \leq(r-1)^{2}-(r-1)+1 \text { and }\left|P^{\prime}\right|=(r-1)^{2}-(r-1)+1 \text {, }
$$

and so $\gamma\left(P^{\prime}, \mathcal{L}^{\prime}\right)=1$.
Proposition 1 (Proposition 2.1 and Proposition 2.2 in [1]). Let (P, \mathcal{L}) be a linear system with $|\mathcal{L}|>$ $v_{2}(P, \mathcal{L})$. If $v_{2}(P, \mathcal{L}) \in\{2,3\}$, then $\tau(P, \mathcal{L}) \leq v_{2}(P, \mathcal{L})-1$.

Theorem 1 (Theorem 2.1 in [8]). Let (P, \mathcal{L}) be a linear system and $p, q \in P$ be two points such that $\operatorname{deg}(p)=\Delta(P, \mathcal{L})$ and $\operatorname{deg}(q)=\max \{\operatorname{deg}(x): x \in P \backslash\{p\}\}$. If $|\mathcal{L}| \leq \operatorname{deg}(p)+\operatorname{deg}(q)+v_{2}(P, \mathcal{L})-3$, then $\tau(P, \mathcal{L}) \leq v_{2}(P, \mathcal{L})-1$.

Lemma 5. Let (P, \mathcal{L}) be an r-uniform intersecting linear system with $r \geq 2$ be an even integer. If $v_{2}(P, \mathcal{L})=r+1$ then $\tau(P, \mathcal{L})=\frac{r+2}{2}$.
Proof. Let (P, \mathcal{L}) be a r-uniform intersecting linear system with $v_{2}(P, \mathcal{L})=r+1$, where $r \geq 2$ is an even integer. Let $R=\left\{l_{1}, \ldots, l_{r+1}\right\}$ be a maximum 2-packing of (P, \mathcal{L}). Since (P, \mathcal{L}) is an intersecting linear system then $l_{i} \cap l_{j} \neq \emptyset$, for $1 \leq i<j \leq r+1$, hence $\left|l_{i}\right|=r$, for $i=1, \ldots, r+1$. Let $l \in \mathcal{L} \backslash R$. Since (P, \mathcal{L}) is an intersecting linear system it satisfies $l \cap l_{i}=l \cap l_{i} \cap l_{j_{i}} \neq \emptyset$, for $i=1, \ldots, r+1$ and for some $j_{i} \in\{1, \ldots, r+1\} \backslash\{i\}$, however, by the pigeonhole principle there are a line $l_{s} \in R$ such that $l \cap l_{s}=\emptyset$, since there are an odd number of lines in R and by linearity of (P, \mathcal{L}). Therefore $|\mathcal{L}|=|R|$ and $\tau(P, \mathcal{L})=\left\lceil\nu_{2} / 2\right\rceil=\frac{r+2}{2}($ see [9] $)$.

3. Intersecting Linear $\operatorname{Systems}(P, \mathcal{L})$ of Rank 5 with $\gamma(P, \mathcal{L})=4$

In this section, we give a complete characterization of the linear systems $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of $(P, \mathcal{L}) \in I_{5}$.
Notice that any line $l \in \mathcal{L}^{\prime}$ satisfies $|l| \geq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)-1$ (since $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is intersecting), which implies that. $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq r$. It is clear, by Lemma 2 and Proposition 1, for every $(P, \mathcal{L}) \in \mathcal{I}_{5}$ satisfies $4 \leq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq 5$. In fact, by the following lemma, Lemma 6 , it implies that $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$.

Lemma 6. Any $(P, \mathcal{L}) \in \mathcal{I}_{5}$ satisfies $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$.
Proof. Let $(P, \mathcal{L}) \in I_{5}$ and suppose that $v_{2}(P, \mathcal{L})=5$. Then, by Lemma 5 it satisfies $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=3$, a contradiction since $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$. Therefore $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=4$.

Hence, by the following Theorem 2, if $(P, \mathcal{L}) \in \mathcal{I}_{5}$ then $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is a linear subsystem of the projective plane of order 3 .

A finite projective plane (or merely projective plane) is an uniform linear system satisfying that any pair of points have a common line, any pair of lines have a common point and there exist four points in general position (there are not three collinear points). It is well known that if (P, \mathcal{L}) is a projective plane then there exists a number $q \in \mathbb{N}$, called order of projective plane, such that every point (line, respectively) of (P, \mathcal{L}) is incident to exactly $q+1$ lines (points, respectively), and (P, \mathcal{L}) contains exactly $q^{2}+q+1$ points (lines, respectively). In addition to this, it is well known that projective planes of order q, denoted by Π_{q}, exist when q is a power prime. For more information about the existence and the unicity of projective planes see, for instance, [15, 16].

Theorem 2 (Theorem 2.1 in [1]). Let (P, \mathcal{L}) be a linear system with $|\mathcal{L}|>4$. If $v_{2}(P, \mathcal{L})=4$, then $\tau(P, \mathcal{L}) \leq 4$. Moreover, if $\tau(P, \mathcal{L})=v_{2}(P, \mathcal{L})=4$, then (P, \mathcal{L}) is a linear subsystem of Π_{3}.

Figure 1. (a) Projective Plane of Order $3, \Pi_{3}$ and (b) Linear System Obtained from Π_{3} by Deleting the Lines of the Triangle \mathcal{T}. Figure obtained from [8]

Araujo-Pardo et al. [1] proved that the linear system (P, \mathcal{L}) with $|\mathcal{L}|>4$ satisfying $\tau(P, \mathcal{L})=$ $v_{2}(P, \mathcal{L})=4$ are a special family of linear subsystems of Π_{3}.

Given a linear system (P, \mathcal{L}), a triangle \mathcal{T} of (P, \mathcal{L}), is the linear subsystem of (P, \mathcal{L}) induced by three points in general position (non collinear) and the three lines induced by them. Consider the projective plane Π_{3} and a triangle \mathcal{T} of Π_{3} (see (a) of Figure 1). Araujo-Pardo et al. [1] defined the intersecting 4-uniform linear system $\hat{\mathcal{C}}=\left(P_{\hat{\mathcal{C}}}, \mathcal{L}_{\hat{\mathcal{C}}}\right)$ induced by $\mathcal{L}_{\hat{\mathcal{C}}}=\mathcal{L} \backslash \mathcal{T}$ (see (b) of Figure 1). The linear system \hat{C} just defined has thirteen points and ten lines. In the same paper, [1], it was defined $\hat{\mathcal{C}}_{4,4}$ to be the family of spanning intersecting 4 -uniform linear systems (P, \mathcal{L}) such that:
i) \hat{C} is a linear subsystem of (P, \mathcal{L}); and
ii) (P, \mathcal{L}) is a linear subsystem of Π_{3},

Proposition 2 (Proposition 4.1 in [1]). If $(P, \mathcal{L}) \in \hat{\mathcal{C}}_{4,4}$ then $\tau(P, \mathcal{L})=v_{2}(P, \mathcal{L})=4$.
It is easy to check that if $(P, \mathcal{L}) \in \hat{\mathcal{C}}_{4,4}$ then any point p of degree 4 of (P, \mathcal{L}) is a minimum dominating set, which implies $\gamma(P, \mathcal{L})=1$. Therefore

Corollary 1. If $(P, \mathcal{L}) \in \mathcal{I}_{5}$ then $\left(P^{\prime}, \mathcal{L}^{\prime}\right) \in \hat{C}_{4,4}$.

4. Intersecting Linear $\operatorname{Systems}(P, \mathcal{L})$ of $\operatorname{Rank} q+2$ with $\gamma(P, \mathcal{L})=q+1$

In this section, we prove if q is an odd prime power and (P, \mathcal{L}) is an intersecting linear system of rank $(q+2)$ satisfying $\gamma(P, \mathcal{L})=q+1$, then this linear system can be constructed from a spanning $(q+1)$-uniform intersecting linear subsystem $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ of the projective plane of order q, Π_{q}, satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$.

Araujo-Pardo et al. [1] proved if q is an even prime power then $\tau\left(\Pi_{q}\right) \leq v_{2}\left(\Pi_{q}\right)-1=q+1$, however, if q is an odd prime power then $\tau\left(\Pi_{q}\right)=v_{2}\left(\Pi_{q}\right)=q+1$.

Lemma 7. Let q be an odd integer. For every $(P, \mathcal{L}) \in I_{q+2}$ it satisfies $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$.
Proof. Since $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is an intersecting $(q+1)$-uniform linear system then $\left|l^{\prime}\right| \geq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)-1$, for any line $l^{\prime} \in \mathcal{L}^{\prime}$. Hence $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq q+2$. On the other hand, if $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+2$ then by Lemma 5 it follows that $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=\frac{q+3}{2}$, which is a contradiction, since $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$. Therefore $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq$ $q+1$. On the other hand, let $p \in P^{\prime}$ be a point such that $\operatorname{deg}(p)=\Delta\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ and $\Delta^{\prime}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=$ $\max \left\{\operatorname{deg}(x): x \in P^{\prime} \backslash\{p\}\right\}$. By Theorem 1 if $\left|\mathcal{L}^{\prime}\right| \leq \Delta\left(P^{\prime}, \mathcal{L}^{\prime}\right)+\Delta^{\prime}\left(P^{\prime}, \mathcal{L}^{\prime}\right)+v_{2}(P, \mathcal{L})-3 \leq 3 q$ then $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)-1$, which implies $q+2 \leq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)$, a contradiction, since $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \leq q+1$. Hence, if $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right) \geq v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ then $\left|\mathcal{L}^{\prime}\right| \geq \Delta\left(P^{\prime}, \mathcal{L}^{\prime}\right)+\Delta^{\prime}\left(P^{\prime}, \mathcal{L}^{\prime}\right)+v_{2}(P, \mathcal{L})-2 \geq 3 q+1$, which implies $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right) \geq q+1$. Hence $v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$.

Theorem 3. Let q be an odd prime power. For every $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$, the linear system $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is a spanning $(q+1)$-uniform linear subsystem of Π_{q} such that $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$ with $\left|\mathcal{L}^{\prime}\right| \geq 3 q+1$.

Proof. Let $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$. Then $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is an $(q+1)$-uniform intersecting linear system with $\left|P^{\prime}\right|=$ $q^{2}+q+1$ (by Lemma 4). Furthermore, If $\left|\mathcal{L}^{\prime}\right|=q^{2}+q+1$ then all points of $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ have degree $q+1$ (it is a consequence of Lemma 4, see [6]). Since projective planes are dual systems, the 2packing number coincides with the cardinality of an oval, which is the maximum number of points in general position (no three of them collinear), and it is equal to $q+1=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ (Lemma 7), when q is odd, see for example [16]. Hence, the linear system $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is a projective plane of order q, Π_{q}. Therefore, if $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$ then $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ is a spanning linear subsystem of Π_{q} satisfying $\tau\left(P^{\prime}, \mathcal{L}^{\prime}\right)=v_{2}\left(P^{\prime}, \mathcal{L}^{\prime}\right)=q+1$ with $\left|\mathcal{L}^{\prime}\right| \geq 3 q+1$ (see proof of Lemma 7).

Acknowledgment

Research was partially supported by SNI and CONACyT.

Conflict of Interest

The author declares no conflict of interest.

References

1. Araujo-Pardo, G., Montejano, A., Montejano, L. and Vázquez-Àvila, A., 2017. On transversal and 2-packing numbers in straight line systems on \mathbb{R}^{2}. Utilitas Mathematica, 105(2017), pp.317-336.
2. Acharya, B. D., 2007. Domination in hypergraphs. AKCE International Journal of Graphs and Combinatorics, 4(2), pp.117-126.
3. Acharya, B. D., 2008. Domination in hypergraphs II. New directions. In Proc. Int. Conf.-ICDM 2008, Mysore, India, (pp. 1-16).
4. Arumugam, S., Jose, B., Bujtás, Cs. and Tuza, Zs., 2013. Equality of domination and transversal numbers in hypergraphs. Discrete Applied Mathematics, 161, pp.1859-1867.
5. Bujtás, Cs., Henning, M. A. and Tuza, Zs., 2013. Transversals of domination in uniform hypergraphs. Discrete Applied Mathematics, 161, pp.1859-1867.
6. Dong, Y., Shan, E., Li, S. and Kang, L., 2018. Domination in intersecting hypergraphs. Discrete Applied Mathematics, 251, pp.155-159.
7. Jose, B. K. and Tuza, Zs., 2009. Hypergraph domination and strong independence. Applicable Analysis and Discrete Mathematics, 3, pp.237-358.
8. Alfaro, C., Araujo-Pardo, G., Rubio-Montiel, C. and Vázquez-Ávila, A., 2020. On transversal and 2-packing numbers in uniform linear systems. AKCE International Journal of Graphs and Combinatorics, 17(1), pp.335-3341.
9. Alfaro, C. and Vázquez-Ávila, A., 2020. A note on a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed. Discrete Mathematics Letters, 3, 61-66.
10. Vázquez-Ávila, A., 2022. On intersecting straight line systems. Journal of Discrete Mathematical Sciences and Cryptography, 25(6), pp.1931-1936.
11. Vázquez-Ávila, A., 2021. On transversal numbers of intersecting straight line systems and intersecting segment systems. Boletín de la Sociedad Matemática Mexicana, 27(3), pp. 64.
12. Kang, L., Li, S., Dong, Y. and Shan, E., 2017. Matching and domination numbers in r-uniform hypergraphs. Journal of Combinatorial Optimization, 34, pp.656-659.
13. Shan, E., Dong, Y., Kang, L. and Li, S., 2018. Extremal hypergraphs for matching number and domination number. Discrete Applied Mathematics, 236, pp.415-421.
14. Li, S., Kang, L., Shan, E. and Dong, Y., 2018. The finite projective plane and the 5-Uniform linear intersecting hypergraphs with domination number four. Graphs and Combinatorics, 34(5), pp.931-945.
15. Batten, L. M., 1986. Combinatorics of Finite Geometries. Cambridge University Press, Cambridge.
16. Buekenhout, F., 1995. Handbook of Incidence Geometry: Buildings and Foundations. Elsevier.
© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
