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Abstract: Let G = (V, E) be a simple graph with vertex set V(G) and edge set E(G). The Lanzhou
index of a graph G is defined by Lz(G) =

∑
u∈V(G)

d2
udu, where du (du resp.) denotes the degree of the

vertex u in G (G, the complement graph of G resp.). It has predictive powers to provide insights of
chemical relevant properties of chemical graph structures. In this paper we discuss some properties
of Lanzhou index. Several inequalities having lower and upper bound for the Lanzhou index in terms
of first, second and third Zagreb indices, radius of graph, eccentric connectivity index, Schultz index,
inverse sum indeg index and symmetric division deg index, are discussed. At the end the Lanzhou
index of corona and join of graphs have been derived.
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1. Introduction and Motivation

Throughout the paper we consider simple, undirected, unweighted graphs only unless it is spec-
ified. Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). The number of vertices
and edges are denoted by |V(G)| and |E(G)|, respectively. The degree of a vertex u ∈ V(G), denoted
by dG(u) (simply du whenever understood) is the number of adjacent vertices to u in G. The distance
between any two vertices u and v, denoted by d(u, v) is defined as the length of shortest path between
u and v in G. The complement graph G of a graph G is the graph with the same vertex set V(G) and
the vertices are adjacent in G if and only if they are not adjacent in G.

The Zagreb indices were first introduced by Gutman and Trinajstić [1], they are important molec-
ular descriptors and have been closely correlated with many chemical properties [2]. The first Zagreb
index M1(G) of a graph G is defined as

M1(G) =
∑

u∈V(G)

d2
u =

∑
uv∈E(G)

(du + dv).

while the second Zagreb index M2(G) is defined as

M2(G) =
∑

uv∈E(G)

dudv.
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Furtula and Gutman [3] introduced forgotten topological index (also called F-index) which is defined
as

F(G) =
∑

u∈V(G)

d3
u =

∑
uv∈E(G)

(d2
u + d2

v ).

In [4], Vukičević et al. considered a linear combination of M1(G) and F(G) of the form M1(G) +
λF(G), where λ was a free parameter ranging from −20 to 20. From the above linear combination,
Vukičević et al. introduced in the same paper a new topological index named as Lanzhou index. It is
denoted by Lz(G) and defined by

Lz(G) =
∑

u∈V(G)

d2
udu,

where du is the degree of the vertex u in G. For its mathematical properties see the paper [4]. For
self complimentary graphs, du = du, implying that the Lanzhou index is same as forgotten topological
index. In chemical graph theory, many vertex degree based topological indices and their properties
have been investigated in [5–18].

In this paper we first discuss some properties of Lanzhou index in Section 2. An upper bound of
Lanzhou index for unicyclic graphs has been obtained. The relationships between Lanzhou index and
other topological indices such as graph radius, eccentric connectivity index, Schultz index, inverse
sum indeg index and symmetric division deg index are derived in Section 3. At the end in Section 4
the Lanzhou index of the join and corona of graphs are provided.

2. Some properties of Lanzhou index

In this section we discuss the properties of the Lanzhou index.

Proposition 1. For a graph G, Lz(G) =
∑

uv∈E(G)
(dudu + dvdv).

Proof. We have

Lz(G) =
∑

u∈V(G)

d2
u(n − 1 − du)

=
∑

uv∈E(G)

(
du(n − 1 − du) + dv(n − 1 − dv)

)
=

∑
uv∈E(G)

(dudu + dvdv).

□

From the definition of Lanzhou index it is clear that the value of Lz(G) is a positive integer. The next
result shows that the Lanzhou index of a graph is a positive even integer.

Theorem 1. For any graph G, the Lanzhou index Lz(G) is even.

Proof. Let G be a graph with n vertices. By definition of Lanzhou index we have

Lz(G) =
∑

u∈V(G)

d2
udu =

∑
u ∈ V(G),
du is even

d2
udu +

∑
u ∈ V(G),
du is odd

d2
udu. (1)

It is clear to see that the first term of the sum in (1) is even. For the second term of the sum in (1) we
have the following two cases:
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Case 1 : n is even. Since du is odd, we have du = n − 1 − du is even. And in this case d2
udu is even.

Therefore the second term of the sum in (1) is even.

Case 2 : n is odd. Since du is odd, we have du = n − 1 − du is odd. And in this case d2
udu is odd. It is

well known that the number of odd degree vertices in a graph is even. Using the fact that the sum of
even number of odd numbers is even, it implies that the second term of the sum in (1) is even.

Hence, for any graph, the Lanzhou index Lz(G) is even. □

The union of two graphs G and H denoted by G ∪ H is the graph with vertex set V(G) ∪ V(H) and
edge set E(G) ∪ E(H). We know that complete graphs and null graphs (graphs with isolated vertices)
are the only example of graphs with minimum Lanzhou index 0. Likewise, the path of length 2 and
K2 ∪ K1 are the graphs with second minimum Lanzhou index 2.

Proposition 2. For any graph G, Lz(G) = 2 if and only if G � P3 or G � K2 ∪ K1.

Proof. For G � P3 or G � K2 ∪ K1, we have Lz(G) = 2. Moreover, Lz(Kn) = 0 = Lz(Kn). Otherwise,
we have n ≥ 4 and there exist two vertices v and w in G such that 1 ≤ dv ≤ n − 2 and 1 ≤ dw ≤ n − 2.
Then

Lz(G) =
∑

u∈V(G)

d2
u(n − 1 − du) ≥ d2

v (n − 1 − dv) + d2
w(n − 1 − dw) > 2 as n ≥ 4.

This completes the proof. □

The bound for Lanzhou index of any graph is provided and the graph with extremal value have been
characterized in [4].

Proposition 3. [4] Let G be any graph with n vertices. Then

0 ≤ Lz(G) ≤
4

27
n(n − 1)3.

In the following we give some lower and upper bounds for any graph with n vertices and m edges
having minimum degree δ and maximum degree ∆.

Theorem 2. Let G be a connected graph with n vertices and m edges having minimum degree δ and
maximum degree ∆. Then

(n − 1)δ − ∆2 ≤
Lz(G)

2m
≤ (n − 1)∆ − δ2

with both equalities hold if and only if G is a regular graph.

Proof. Since δ ≤ du ≤ ∆, by definition of Lanzhou index, we have

Lz(G) =
∑

uv∈E(G)

(dudu + dvdv)

=
∑

uv∈E(G)

(
(n − 1)(du + dv) − (d2

u + d2
v )
)

≥
∑

uv∈E(G)

(
(n − 1)2δ − 2∆2

)
= 2m

(
(n − 1)δ − ∆2

)
.

From the above result, we get the lower bound. Moreover, the equality holds in the lower bound if
and only if du = dv = δ = ∆ for any edge uv ∈ E(G), that is, if and only if G is a regular graph. Again
since δ ≤ du ≤ ∆, similarly, we can get the upper bound on the Lanzhou index of graph G. Moreover,
the right equality holds if and only if G is a regular graph. □
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Theorem 3. Let G be a graph of order n with m edges. Then

Lz(G) + Lz(G) = (n − 1)
∑

u∈V(G)

dudu = (n − 1)
[
2(n − 1)m − M1(G)

]
,

where M1(G) is the first Zagreb index of graph G.

Proof. We have

Lz(G) + Lz(G) =
∑

u∈V(G)

d2
u(n − 1 − du) +

∑
u∈V(G)

d
2
u(n − 1 − du)

=
∑

u∈V(G)

d2
u(n − 1 − du) +

∑
u∈V(G)

(n − 1 − du)2du

=
∑

u∈V(G)

(n − 1 − du)du

(
(n − 1 − du) + du

)
= (n − 1)

∑
u∈V(G)

[
(n − 1) du − d2

u

]
= (n − 1)

[
2(n − 1)m − M1(G)

]
.

□

Corollary 1. For self complementary graph G, Lz(G) + Lz(G) = (n − 1)M1(G).

Theorem 4. Let G be a graph with n vertices and e = uv be an edge in G. If H = G − e, then

Lz(G) − Lz(H) = (2n + 1)(du + dv) − 3(d2
u + d2

v ) − 2n.

Proof. By the definition of Lanzhou index, we have

Lz(G) =
∑

x∈V(G)\{u, v}

d2
x(n − 1 − dx) + d2

u(n − 1 − du) + d2
v (n − 1 − dv),

Lz(H) =
∑

x∈V(G)\{u, v}

d2
x(n − 1 − dx) + (du − 1)2(n − du) + (dv − 1)2(n − dv).

Therefore we have

Lz(G) − Lz(H) = −(d2
u + d2

v ) + (2du − 1)(n − du) + (2dv − 1)(n − dv)
= (2n + 1)(du + dv) − 3(d2

u + d2
v ) − 2n.

This completes the proof of the theorem. □

Let Tn be a tree with n vertices and T∆n denotes the set of all trees on n vertices with maximum
degree at most ∆. Vukičević et al. [4] obtained the following result:

Proposition 4. [4] Let n ≥ 8 be an integer and Tn ∈ T 4
n . Then

4n2 − 18n + 20 ≤ Lz(Tn) ≤ 6n2 + O(n).

Theorem 5. Let G be a unicyclic graph with n (≥ 8) vertices and ∆(G) = 4. Then

Lz(G) ≤ 6n2 + O(n).
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Proof. Let e = uv be an edge in G such that H = G − e, where H is a tree of order n. Then by
Theorem 4, we see that

Lz(G) ≤ Lz(H) + (2n + 1)(du + dv),

where du and dv are the degrees of u and v, respectively.
Since du, dv ≤ 4, from the above result, we have

Lz(G) ≤ Lz(H) + 8(2n + 1).

Since H is a tree, by Proposition 4, we obtain

Lz(G) ≤ 6n2 + O(n).

This completes the proof of the theorem. □

3. Relationships between Lanzhou index and other topological indices

The eccentricity of a vertex v in a graph G is defined as eccG(v) = max
{
dG(v, u) | u ∈ V(G)

}
. The

radius of a graph G, denoted by r(G) is

r(G) = min
{
eccG(v) | v ∈ V(G)

}
.

Lemma 1. [19] Let G be a nontrivial connected graph of order n. For each vertex v in G, it holds

eccG(v) ≤ n − dv.

Moreover, the above equality holds together for all vertices in G if and only if G � P4 or G � Kn− iK2

(0 ≤ i ≤
⌊

n
2

⌋
), where Kn − iK2 denotes the graph obtained by removing i independent edges from Kn.

We now give a relation between Lz and M1.

Theorem 6. For any graph G,
Lz(G) ≥

(
r(G) − 1

)
M1(G). (2)

Moreover, the equality holds in (2) if and only if G � Kn or G � Kn −
n
2 K2 (n is even).

Proof. For any vertex v in G we have n − dv ≥ eccG(v) ≥ r(G). Now by the definition of Lanzhou
index, we have

Lz(G) =
∑

uv∈E(G)

(
du(n − 1 − du) + dv(n − 1 − dv)

)
≥

∑
uv∈E(G)

(
r(G) − 1

)
(du + dv)

=
(
r(G) − 1

) ∑
uv∈E(G)

(du + dv)

=
(
r(G) − 1

)
M1(G).

Suppose that equality holds in (2). Then we have n − dv = eccG(v) = r(G) for all v ∈ V(G). This
implies that G is self-centered graph. By Lemma 1, we have G � Kn − iK2 (0 ≤ i ≤ ⌊n

2⌋). Hence
G � Kn or G � Kn −

n
2 K2 (n is even).

Conversely, one can easily see that the equality holds in (2) for Kn or for Kn −
n
2 K2 (n is even). □

Here we give a relation between Lz, M1 and M2.
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Theorem 7. Let G be a graph of order n. If du + dv ≥ n for each edge uv ∈ E(G), then

Lz(G) ≤ 2M2(G) − M1(G).

Proof. From the definition of Lanzhou index with the given condition, we have

Lz(G) =
∑

uv∈E(G)

(
du(n − 1 − du) + dv(n − 1 − dv)

)
≤

∑
uv∈E(G)

(
du(dv − 1) + dv(du − 1)

)
= 2

∑
uv∈E(G)

dudv −
∑

uv∈E(G)

(du + dv)

= 2 M2(G) − M1(G).

□

We now mention two more relations between Lz, M1 and M2.

Theorem 8. Let G be a graph of order n. Then

Lz(G) ≤ (n − 1) M1(G) − 2M2(G)

with equality holding if and only if each connected component of G is regular. Moreover,

(n − 1 − ∆) M1(G) ≤ Lz(G) ≤ (n − 1 − δ) M1(G)

with both equalities hold if and only if G is a regular graph.

Proof. One can easily see that F(G) ≥ 2M2(G) with equality holding if and only if each connected
component of G is regular, and δM1(G) ≤ F(G) ≤ ∆M1(G) with both equalities hold if and only if G
is a regular graph. Since Lz(G) = (n − 1) M1(G) − F(G), using the above results, we get the required
results. This completes the proof of the theorem. □

The eccentric connectivity index [18] of a graph G, denoted by ξc(G) is defined as

ξc(G) =
∑

u∈V(G)

du eccG(u).

Here we give a relation between Lz, M1 and ξc.

Theorem 9. Let G be a graph of order n and minimum degree δ. Then

Lz(G) ≥ δ ξc(G) − M1(G)

with equality holding if and only if G � Kn or G � Kn −
n
2 K2 (n is even).

Proof. From the definition of Lanzhou index, we have

Lz(G) =
∑

uv∈E(G)

(
du(n − 1 − du) + dv(n − 1 − dv)

)
≥

∑
uv∈E(G)

(
du(eccG(u) − 1) + dv(eccG(v) − 1)

)
=

∑
uv∈E(G)

(
du eccG(u) + dv eccG(v)

)
−

∑
uv∈E(G)

(du + dv)
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≥ δ
∑

u∈V(G)

du eccG(u) − M1(G) = δ ξc(G) − M1(G).

By the proof of the Theorem 6, one can easily see that the equality holds if and only if G � Kn or
G � Kn −

n
2 K2 (n is even). □

We now give a relation between Lz and M2.

Theorem 10. Let G be a connected graph with n vertices and minimum degree δ. Then

2(n − 2)
∆

M2(G) ≤ Lz(G) ≤
2(n − 2)
δ

M2(G) (3)

with both equalities hold if and only if G is a regular graph.

Proof. We construct an auxiliary real valued function of two variables x and y as

g(x, y) =
(n − 1)(x + y) − (x2 + y2)

xy

= (n − 1)
(
1
y
+

1
x

)
−

(
x
y
+

y
x

)
, where δ ≤ x ≤ y ≤ ∆ ≤ n − 1.

Now,

∂g(x, y)
∂x

= (n − 1)
(
−

1
x2

)
−

(
1
y
−

y
x2

)

= −
1
x2 (n − 1 − y) −

1
y
< 0, for δ ≤ x ≤ y ≤ ∆ ≤ n − 1.

Therefore, g(x, y) is monotonically decreasing in the variable x. Since the function g(x, y) is symmet-
ric in both x and y, it is also monotonically decreasing in the variable y. Thus we have g(x, y) attains
its maximum value at (δ, δ) and the minimum value at (∆, ∆). Hence

g(δ, δ) ≤
2(n − 2)
δ

and g(∆, ∆) ≥
2(n − 2)
∆

.

This implies that

(n − 1)(du + dv) − (d2
u + d2

v ) ≥
2(n − 2)
∆

dudv

and
(n − 1)(du + dv) − (d2

u + d2
v ) ≤

2(n − 2)
δ

dudv.

Using the above results with the definition of the Lanzhou index, we have

Lz(G) =
∑

uv∈E(G)

(
(n − 1)(du + dv) − (d2

u + d2
v )
)

≥
∑

uv∈E(G)

2(n − 2)
∆

dudv =
2(n − 2)
∆

M2(G)

and
Lz(G) =

∑
uv∈E(G)

(
(n − 1)(du + dv) − (d2

u + d2
v )
)
≤

2(n − 2)
δ

M2(G)

Moreover, both equalities hold in (3) if and only if du = dv = δ or du = dv = ∆ for any edge uv ∈ E(G).
Since G is connected, both equalities hold in (3) if and only if G is a regular graph. □
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The irregularity of a graph G, denoted by irr(G) is defined as

irr(G) =
∑

uv∈E(G)

|du − dv|.

It is also called third Zagreb index of graph. More results on irregularity, one can find in [20–22].
Here we give a relation between Lz with M1(G), M2(G), irr(G) and F(G) of graph G.

Theorem 11. Let G be a connected graph with n vertices. Then

(n − 1)M1(G) ≤ irr(G)2 + Lz(G) + 2M2(G) ≤ (n − 1)M1(G) + 2
(
m
2

)
(∆ − δ)2,

with left (right) equality holding if and only if G is a regular graph (G is a regular graph or a bipartite
semiregular graph).

Proof. From the definition of irregularity, we have

irr(G)2 =
( ∑

uv∈E(G)

|du − dv|
)2

=
∑

uv∈E(G)

(du − dv)2 + 2
∑

uv, xy∈E(G)
uv,xy

|du − dv| |dx − dy|

≤
∑

uv∈E(G)

(d2
u + d2

v ) − 2
∑

uv∈E(G)

du dv + 2
(
m
2

)
(∆ − δ)2

= (n − 1)M1(G) − Lz(G) − 2M2(G) + 2
(
m
2

)
(∆ − δ)2

as Lz(G) = (n − 1)M1(G) − F(G). Hence we get the right inequality. Moreover, the equality holds if
and only if |du − dv| = ∆ − δ for all uv ∈ E(G), that is, if and only if G is a regular graph or a bipartite
semiregular graph as G is connected.

Now,

irr(G)2 =
( ∑

uv∈E(G)

|du − dv|
)2

≥
∑

uv∈E(G)

(du − dv)2

=
∑

uv∈E(G)

(d2
u + d2

v ) − 2
∑

uv∈E(G)

du.dv

= F(G) − 2M2(G)

= (n − 1)M1(G) − Lz(G) − 2M2(G)

as Lz(G) = (n − 1)M1(G) − F(G). Hence we get the left inequality. Moreover, the left equality holds
if and only if du = dv for all edges uv ∈ E(G), that is, if and only if G is a regular graph as G is
connected. □

The Schultz index of a molecular graph G, introduced by Schultz [23], is defined as

S I(G) =
1
2

∑
{u,v}⊆V(G)

(du + dv)d(u, v),
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where d(u, v) denotes the distance between the vertices u and v. The Schultz indices have been shown
as useful descriptor for molecular design and characterization with desired properties in [2, 24].

The join G∨H of two simple graphs G and H is the graph with the vertex set V(G∨H) = V(G)∪V(H)
and the edge set E(G∨H) = E(G)∪E(H)∪

{
uv : u ∈ V(G), v ∈ V(H)

}
. The following theorem gives

a relation between Schultz index and Lanzhou index.

Theorem 12. Let G be a connected graph of order n. Then

S I(G) ≥
1

2(n − 1)

(
Lz(G) + F(G)

)
+

(
n(n − 1) − 2m

)
δ

with equality holding if and only if G � Kn or G � Kδ ∨ (n− δ) K1 (δ < n− 1) or G is a regular graph
with diameter 2.

Proof. By definition of Schultz index we have

S I(G) =
1
2

∑
{u,v}⊆V(G)

(du + dv) d(u, v)

=
1
2

∑
uv∈E(G)

(du + dv) +
1
2

∑
{u,v}⊆V(G), d(u, v)≥2

(du + dv) d(u, v)

≥
1
2

M1(G) +
∑

{u,v}⊆V(G), d(u, v)≥2

(du + dv)

≥
1
2

M1(G) + 2
((

n
2

)
− m

)
δ

=
1

2(n − 1)

(
Lz(G) + F(G)

)
+

(
n(n − 1) − 2m

)
δ.

The first part of the proof is done.

Suppose that equality holds. Then d(u, v) = 1 or 2 for any pair of vertices (u, v). Moreover,
du = dv = δ when d(u, v) = 2 for any pair of vertices (u, v), that is, all the vertices in G have degree
either n − 1 or δ. If ∆ = n − 1, then G � Kn or G � Kδ ∨ (n − δ) K1 (δ < n − 1). Otherwise, ∆ < n − 1.
Then all the vertices in G are of degree δ. Hence G is a regular graph with diameter 2.

Conversely, let G � Kn. Then Lz(G) = 0, F(G) = n(n − 1)3 and S I(G) = n(n − 1)2/2. Hence the
equality holds.

Let G � Kδ ∨ (n − δ) K1 (δ < n − 1). Then d1 = d2 = · · · = dδ = n − 1 and dδ+1 = dδ+2 = · · · = dn = δ.
Then

Lz(G) + F(G) = (n − 1)3 δ + (n − 1)(n − δ)δ2, 2m = δ (n − 1) + (n − δ) δ

and
S I(G) =

δ(δ − 1)(n − 1)
2

+ (n − δ)(n − δ − 1)δ +
δ(n − δ)(n − 1 + δ)

2
.

Now,

1
2(n − 1)

(
Lz(G) + F(G)

)
+

(
n(n − 1) − 2m

)
δ

=
δ (n − 1)2 + (n − δ) δ2

2
+

(
n(n − 1) − δ (n − 1) − (n − δ) δ

)
δ

=
δ(δ − 1)(n − 1)

2
+ (n − δ)(n − δ − 1)δ +

δ(n − δ)(n − 1 + δ)
2
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= S I(G).

Let G be a regular graph with diameter 2. Then d1 = d2 = · · · = dn = δ. Then

Lz(G) + F(G) = (n − 1)n δ2, 2m = n δ and S I(G) = δ
[
m +

(
n(n − 1)

2
− m

)
2
]
.

Now,

1
2(n − 1)

(
Lz(G) + F(G)

)
+

(
n(n − 1) − 2m

)
δ

=
n δ2

2
+

(
n(n − 1) − n δ

)
δ

= S I(G).

This completes the proof of the theorem. □

The inverse sum indeg (ISI) index [16] is used as a significant predictor of total surface area for octane
isomers. The ISI index is defined as

IS I(G) =
∑

uv∈E(G)

1
1
du
+ 1

dv

.

Theorem 13. Let G be a graph with n vertices and maximum degree ∆. Then

Lz(G) ≥ 4(n − 1 − ∆)IS I(G)

with equality holding if and only if G is a regular graph.

Proof. Since ∆ is the maximum degree in G, we have

du(∆ − du) + dv(∆ − dv) ≥ 0, that is,
d2

u + d2
v

du + dv
≤ ∆

with equality holding if and only if du = dv = ∆.

One can easily see that

(du − dv)2 ≥ 0, that is, (du + dv)2 ≥ 4dudv, that is, (du + dv) ≥
4dudv

du + dv
=

4
1
du
+ 1

dv

with equality holding if and only if du = dv.

Using the above results with the definition of the Lanzhou index, we have

Lz(G) =
∑

uv∈E(G)

(
(n − 1)(du + dv) − (d2

u + d2
v )
)

=
∑

uv∈E(G)

(du + dv)
(
n − 1 −

d2
u + d2

v

du + dv

)

≥
∑

uv∈E(G)

(du + dv) (n − 1 − ∆)

≥ 4(n − 1 − ∆)
∑

uv∈E(G)

1
1
du
+ 1

dv
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= 4(n − 1 − ∆)IS I(G).

Moreover, the equality holds if and only if du = dv = ∆ for any edge uv ∈ E(G), that is, if and only if
G is a regular graph. □

Corollary 2. Let G be a graph with n vertices, m edges and maximum degree ∆. Then

Lz(G) ≥
4m2 (n − 1 − ∆)

n

with equality holding if and only if G is a regular graph.

Proof. Since IS I(G) ≥ m2

n , from Theorem 13, we obtain the required result. Moreover, the equality
holds if and only if G is a regular graph. □

The symmetric division deg index, S DD, was defined in [17] as

S DD(G) =
∑

uv∈E(G)

d2
u + d2

v

dudv
.

For recent results on S DD(G) see the papers [25–29] and the references cited therein. Here we give a
relation between Lz and S DD.

Theorem 14. Let G be a graph with n vertices and maximum degree ∆. Then

Lz(G) ≤ ∆2
(
n(n − 1) − S DD(G)

)
with equality holding if and only if G is a regular graph.

Proof. Let G � H ∪ p K1 (p ≥ 0), where H is a graph of order n − p. Since n − 1 − du ≥ 0 for all
u ∈ V(G), by the definition of Lanzhou index, we obtain

Lz(G) =
∑

uv∈E(G)

[
(n − 1)(du + dv) − (d2

u + d2
v )
]

=
∑

uv∈E(G)

dudv
(n − 1)(du + dv) − (d2

u + d2
v )

dudv

≤ ∆2
∑

uv∈E(G)

( (n − 1)(du + dv)
dudv

−
d2

u + d2
v

dudv

)
= ∆2

[
(n − 1)

∑
uv∈E(G)

( 1
du
+

1
dv

)
−

∑
uv∈E(G)

d2
u + d2

v

dudv

]
= ∆2

(
(n − p)(n − 1) − S DD(G)

)
≤ ∆2

(
n(n − 1) − S DD(G)

)
.

The first part of the proof is done.

The equality holds if and only if du = dv = ∆ for any edge uv ∈ E(H) and p = 0, that is, if and only if
G is a regular graph. □
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4. The join and corona of graphs

The following theorem provides the formula to find the Lanzhou index of the join of two graphs.

Theorem 15. Let G and H be two graphs. Then

Lz(G ∨ H) = Lz(G) + Lz(H) + 4n2(n1 − 1)|E(G)| + 4n1(n2 − 1)|E(H)| − 2n2 M1(G)
−2n1 M1(H) + n1n2(2n1n2 − n) − 2n2

2|E(G)| − 2n2
1|E(H)|.

Proof. Let G and H be two graphs with n1 and n2 vertices. Then G ∨ H has n1 + n2 vertices. We have
dG∨H(u) = dG(u) + n2, for u ∈ V(G) and dG∨H(u) = dH(u) + n1, for u ∈ V(H). By the definition of
Lanzhou index, we obtain

Lz(G ∨ H) =
∑

u∈V(G∨H)

d2
u(n1 + n2 − 1 − du)

=
∑

u∈V(G)

dG∨H(u)2(n1 + n2 − 1 − dG∨H(u))

+
∑

u∈V(H)

dG∨H(u)2(n1 + n2 − 1 − dG∨H(u)).

Now, ∑
u∈V(G)

dG∨H(u)2
(
n1 + n2 − 1 − dG∨H(u)

)
=

∑
u∈V(G)

(
dG(u) + n2

)2(
n1 − 1 − dG(u)

)
=

∑
u∈V(G)

dG(u)2dG(u) + 2n2

∑
u∈V(G)

dG(u)
(
n1 − 1 − dG(u)

)
+ n2

2

∑
u∈V(G)

(n1 − 1 − dG(u))

= Lz(G) + 4n2(n1 − 1)|E(G)| − 2n2 M1(G) + n2
2

(
n1(n1 − 1) − 2|E(G)|

)
.

Similarly, we obtain ∑
u∈V(H)

dG∨H(u)2
(
n1 + n2 − 1 − dG∨H(u)

)
= Lz(H) + 4n1(n2 − 1)|E(H)| − 2n1 M1(H) + n2

1

(
n2(n2 − 1) − 2|E(H)|

)
Combining two above results, we get the required result. □

The corona product G ◦ H of two graphs G and H is defined to be the graph Γ obtained by taking one
copy of G (which has n1 vertices) and n1 copies of H (which has n2 vertices), and then joining the
i-th vertex of G to every vertex in the i-th copy of H, i = 1, 2, . . . , n1. The next theorem provides the
Lanzhou index of the corona product of two graphs G and H.

Theorem 16. Let G and H be two graphs of order n1 and n2, respectively. Then
Lz(G ◦ H) = Lz(G) + n1Lz(H) + A + n1B,

where
A = 2n2(2n1n2 + 2n1 − 3n2 − 2)|E(G)| − 3n2 M1(G) + n1n2

2(n1 − 1)(n2 + 1)
and
B = 2(2n1n2 + 2n1 − 5)|E(H)| − 3M1(H) + n2(n1n2 + n1 − 2).

Proof. For any vertex u ∈ V(G), we have dG◦H(u) = dG(u) + n2 and for any vertex u ∈ V(H), we have
dG◦H(u) = dH(u) + 1. Now,∑

u∈V(G)

(
dG◦H(u)

)2(
n1n2 + n1 − 1 − dG◦H(u)

)
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=
∑

u∈V(G)

(
dG(u) + n2

)2(
n1n2 + n1 − 1 − dG(u) − n2

)
=

∑
u∈V(G)

[
dG(u)2dG(u) − 3n2dG(u)2 + n2 (2n1n2 + 2n1 − 3n2 − 2) dG(u)

+ n2
2(n1 − 1)(n2 + 1)

]
= Lz(G) − 3n2 M1(G) + 2n2(2n1n2 + 2n1 − 3n2 − 2)|E(G)| + n1n2

2(n1 − 1)(n2 + 1)

and ∑
u∈V(H)

(
dG◦H(u)

)2(
n1n2 + n1 − 1 − dG◦H(u)

)
=

∑
u∈V(H)

(
dH(u) + 1

)2(
n1n2 + n1 − 2 − dH(u)

)
=

∑
u∈V(H)

[
dH(u)2dH(u) − 3 dH(u)2 + (2n1n2 + 2n1 − 5)dH(u) + n1n2 + n1 − 2

]
= Lz(H) − 3M1(H) + 2(2n1n2 + 2n1 − 5)|E(H)| + n2(n1n2 + n1 − 2).

Using the above results, we obtain

Lz(G ◦ H) =
∑

u∈V(G◦H)

(
dG◦H(u)

)2(
n1n2 + n1 − 1 − dG◦H(u)

)
=

∑
u∈V(G)

(
dG(u) + n2

)2(
n1n2 + n1 − 1 − dG(u) − n2

)
+

∑
u∈V(G)

∑
v∈V(H)

(
dH(v) + 1

)2(
n1n2 + n1 − 2 − dH(v)

)
= Lz(G) + n1Lz(H) + A + n1B,

where
A = 2n2(2n1n2 + 2n1 − 3n2 − 2)|E(G)| − 3n2 M1(G) + n1n2

2(n1 − 1)(n2 + 1)
and
B = 2(2n1n2+2n1−5)|E(H)|−3M1(H)+n2(n1n2+n1−2). This completes the proof of the theorem. □
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