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1. Introduction

It is well known that derivation is a function of an algebra which generalizes certain features of
the derivative operator. It gives an interesting insight to understand the structure and local properties
of an algebra. The concept to study the structure of ring theory and derivations though established
long back, but got stimulated after Posner in [1] described some important results on the derivations
of prime rings. A fundamental problem in the theory of derivations is to determine all the derivations
on an algebra. Over the years, many important variants of derivation have been presented. Among
these variants, Lie derivation and its generic extension is currently more interesting and attracting. Lie
centralizer is not so common but very meaningful variant. These variants are being widely discussed
now a days.

Let O be a unital algebra and the center of O is denoted by Z(0O). We denote the commutator (Lie
product) and Jordan product of x;, x; by [x1, x2] = x1x, — xx; and x; 0 X, = X1 X, + xpX; respectively
for all x;, x, € O. We say that aring O is an F-algebra (F is a field) if O is an F-vector space equipped
with a bilinear product. Let D : O — O be an additive map. We say D is a derivation (respectively
Jordan derivation) if D[x;, x,] = [D(x}), x2] + [x1, D(x,)] (respectively D(x*) = D(x)x + xD(x)), for
all x, x;, x, € O. For an element @ € O, the mapping I, : O — O given by I,(x) = xa — ax for all
x € O is called an inner derivation of O induced by a. Let ¢ : O — O be an additive map. The map &
is said to be right (left) centralizer if £(x;x;) = x1&(x2) (E(x1x2) = &(x1)xy) for all x1, x, € O. We say
that ¢ is an Jordan centralizer if ¢(x; o x2) = ¢(x1) o x; for all x1, x, € O. An additive map ¢ : O — O
is called a Lie centralizer if &[x, x,] = [£(x1), x2] for all x;, x, € O.

The characterization of Lie centralizer of quaternion algebra is given in [2]. The characterization
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of Lie centralizers and their generalizations is now widely studied on different kinds of algebras
by many authors in ( [3-7]). Fosner et al. characterised Lie centralizers of triangular tings and
nest algebras in [3]. Ashrafi et al. computed multiplicative generalized Lie n-derivations of unital
rings with idempotents and o-centralizers generalized matrix algebras in [4] and [5] respectively.
Fadaee et al. characterized Lie centralizers at the zero product of generalized matrix algebras in [6]
and Lie triple centralizers of generalized matrix algebras in [7]. In [8], Martindale described the
standard form of Lie derivation on certain primitive rings. Similar results have been discussed on
von Neumann algebras by Miers [9]. Mokhtari et al. computed Lie derivations on trivial extension
algebras in [10]. It is obvious that every Lie derivation is a generalized Lie derivation. Besides there
are two different definitions of generalized Lie derivations in literature. One is introduced by Atsushi
Nakajima [11] which is stated as: for an additive map F : O — O, we say that F is generalized
Lie derivation (also known as D-Lie derivation) if there exist a Lie derivation D : O — O such that
Flx1, x2] = [F(x1), x2] + [x1, D(x3)] for all x;, x, € D and the other is by Bojan Hvala [12] which is
stated as: for an additive map F : O — O, we say that F is generalized Lie derivation if there exist a
linear map D : O — O such that F[x, x;] = F(x1)x; — F(x2)x1 + x1D(x3) — x,D(xy) for all x1, x, € D.
Both definitions are equally being discussed by mathematicians. Hvala discussed the generalized Lie
derivations on rings and proved that every generalized Lie derivation on a prime ring can be written
as the sum of a generalized derivation and a central map. Benkovic€ [13] proved that every generalized
Lie derivation from a unital algebra onto a unitary bimodule can be written in the sum of a generalized
derivation and a central map that vanishes on the commutators of the algebra. The description of
generalized Lie derivation of Lie ideals of prime algebras and nonlinear generalized Lie derivation of
some classical triangular algebras are respectively given in [14, 15]. The generalized Lie derivations
of prime rings are discussed in [16] by using both definitions. Hvala’s definition of generalized Lie
derivation covers both generalized derivations and D-Lie derivations. On the other hand, Nakajima’s
definition is more favourable which unifies the notions of Lie derivation and Lie centralizer. We will,
in particular focus on Nakajima’s definition to compute the matrix representation of generalized Lie
derivations of algebra of Octonion. The discussion about local and 2-local derivation of Octonion
algebra have been discussed in [17]. Later, this discussion was extended to Cayley algebras in [18].

Mainly, our focus in this article is to describe the matrix representation as well as the characteriza-
tion of Lie derivation of Octonion algebras equipped with commutator product. Authors characterized
in [19], the Lie triple derivations of algebra of tensor product of some algebra T and quaternion al-
gebra. Ghahramani et al. in [20] proved results on the characterization of generalized derivation and
generalized Jordan derivation of ring of quaternion and in [21] discussed the characterization of Lie
derivation and its natural generic extension of quaternion ring.

This article is arranged in the following order: Section 2 contains some minor details of Octonion
algebras equipped with commutator product denoted by O. In Sections 3 and 4, matrix representation
of Lie derivation as well as decomposition of Lie derivation of octonion algebra in terms of Lie
derivation and Jordan derivation of L and inner derivation of O is presented. Section 5 contains the
characterization of Lie centralizer of Octonion algebras. In Section 6, the matrix representation of
generalized Lie derivation is computed.

2. The Octonion Algebra O

Let L be an arbitrary 2-torsion free unital ring. The octonion algebra (denoted by O) over L is a
class of non-associative algebra. It is a unital nonassociative algebra of dimension 8 with the basis
B = {ep, e1, €1, €3, €4, €5, €6, €7} and the product defined in the following table.
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€j
e.ej | € €] (%) (%] €4 €5 €q €7
€o €o (4] (55} (%] €4 €5 €e é7
(4] (4] —€yp és —é) €5 —€4 | —€7 €q
(%) €y | —€3 —€y (4] €6 ey —€4 | —€5
€; (%] (%] (55} —€] —€p €7 —€q €5 —é4
€4 €4 | —€5 | —€¢ | —€7 | —€p (4] (%) és
€5 €5 €4 —e7 €q —€1 | =€y | —¢€3 ér
€e €6 €7 €4 —€5 | —€) €3 —€p | —€]
€7 €7 | —€¢ €5 €4 —€3 | —€) (4] —€p
The table can be summarized as follows:
¢ if i = 0;
ei.ej=1 e, if j=0;

—0ijeo + €jvex, otherwise,

where ¢;; is the Kronecker delta and € is a completely antisymmetric tensor with value +1 when
ijk =123, 145, 176, 246, 257, 347, 365.

An octonion x is of the form x = xgey+xj€; + X202+ X363+ X4€4 + X5€5+ Xg€6 + X7€7 With real coeflicients
x;. By using the product defined in the table given above, we can have the following relations;

[e1, ex] = 2es, [e1, €3] = —2ey, [e1, ea] = 2es, [e1, es5] = —2eq, [e1, e6] = —2e7, [e1,e7] = 2es, [€2, €3] = 2ey,
[e2, e4] = 2eg, [€2, e5] = 2e7, [e2, €6] = —2eq, [e2, e7] = —2es, [e3, e4] = 2e7, [e3, e5] = —2es, [e3, €6] = 2es,
[e3, e7] = —2eu, [es, e5] = 2ey, [es, eg] = 2ea, [e4, e7] = 2e3, [e5, e6] = —2e3, [e5, e7] = 2ey, [e6, €7] = —2e;.

Using the above product on the basis as Lie product and extend it by linearity, we can equip this
product on O.

3. Lie Derivation of Octonion Algebra O
In this section, we compute matrix representation of Lie derivation of the octonion Algebra. Let

D : O — O be a Lie derivation. D admits a matrix representation with respect to the basis, which is
an 8 X 8 matrix [D] = (B; j)T whose entries are defined by

8
D(e;i-1) = Z,Bijej—l, 1<i<8. (1)
=1

Each column of [D] is an element of O.

Theorem 1. The algebra of Lie derivations of Octonions is generated by the following matrices:

B O 0 0 0 0 0 0
0 0 —Bxn —Bo4 —Bos —Bos —B —Bos
0 Bz O —B34 —Bss —Bss —B37 —Bss
(D] = 0 B P 0 —Bor + B3 —Pas—P3s Pos— P Pt P37
0 PBos Bss  Par— P 0 —Bse —Bs7 —Bss
0 P Bss PastPBss Bse 0 —B23 —PBss —Pau + P57
0 B Bsr  —Pas+ P33 Bs7 B2 + Bsg 0 —B34 — Pss
0 B Bss —Pr—P3 Bss Boa— P51 P3a+ Bss 0
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Proof. Let D be a Lie derivation of O. Then we write

8
D(ei-y) = Z,Bijej—h 1<i<8

=1

for some arbitrary ;s € L. Applying D on the identity [eg, e;] = 0 for 1 < j < 7. So, we getB;; = 0
for2<j<7.

Applying D on identities e3 = %[el, e, ez = %[e4, e7] and e; = %[66, es], we get

1
D(e3) 25(2,32263 — 2Bre — 2Brses — 2Barser + 2Pares + 2Pages + 2B3zez — 2B34en + 2B35€5

— 2Bs6e4 — 2B37€7 + 2B3ses)

=(2Bs2e6 — 2Bs3es — 2Bsseq + 2PBsse; + 2Bseer — 2Bs7e1 — 2Bsaes — 2Bs3e6 — 2Bsae7
+ 2Bsse1 + 2Bsrex + 2Psses)

=(—2B62¢7 — 2Bs3€4 + 2Bsaes + 2Bssex — 2Peces + 2Pese1 + 2B72e4 — 2B73€7 + 2B71¢6
— 23751 — 2B77€3 + 2B78€2).

Now by applying D on ¢; = 3[es, e3], €] = 3[es, es] and e; = —3[eq, e7], we get

D(ey) :%(—2&262 +2B33e1 — 2fB3se7 + 2P36e6 — 2Bares + 2P3ses — 2Panes + 2Puser + 2Pases
+ 2Base7 — 2Ba7es — 2Bages)
Z%(—Zﬁsza + 2fBs3e7 — 2Bsseq + 2fsse1 + 2Bs7e3 — 2Psger — 2Bsres — 2Bszes — 2Psaer
+ 2Bsse1 + 2Ber€2 + 2Poses)
=- %(2ﬁ72€6 — 2B73es — 2PBraes + 2PB7se3 + 2Brses — 2Brrer + 2PBsre7 + 2PBszes — 2PBsqes
— 2Bsser + 2Bsees — 2Pssen).

Now by applying D on [ey, e3], [e4, €6] and [es, e7], we get

D(ey) = - %(—Zﬂzzez +2B23e1 — 2fBrser + 2Paces — 2Bres + 2Pases + 2Pazes — 2Baser + 2Puses
— 2Buses — 2Bu7e7 + 2Puses)
:%(—2/3’5267 — 2Bs3es + 2PBsses + 2PBsser — 2Bsee; + 2Bsger — 2Bnes — 21366 — 2Beq
+ 2B76€1 + 2B772 + 2B75€3)
:%(2ﬁ62e6 = 2Be3es — 2Peaes + 2Poses + 2Beser — 2Pere1 + 2Bsrea — 2Bs3e7 + 2Psacs
— 2Bgser — 2Bgres + 2Psgen).

Similarly by applying D on all the remaining identities, we get for D(e4)
1
D(ey) = - E(_2ﬁ2264 + 2B23e7 — 2Brses + 2Prse1 + 2Pr7e3 — 2fser + 2Ps3e3 — 2Psser + 2fsses
— 2Beses — 2Bs7€7 + 2P6s€6)
1
=- 5(—2ﬁ32€7 — 2B33e4 + 2P34es + 2P3ser — 2P36e3 + 2P3se1 — 2703 + 2741 + 2f375€6

+ 2B76€7 — 2B77€4 — 2B736€5)
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1
=- 5(2ﬁ4236 — 2B43e5 — 2Bases + 2Byses + 2Puser — 2Parer + 2Bgaer — 2PBgzer + 2Psseq
— 2Bsses + 2Bgres — 2fsze4).

For D(es),

D(es) :%(2,32265 + 2Bases + 2Br4e7 — 2Pacer — 2Brrer — 2Pages + 2PBszes — 2Psaer + 2Psses
= 2Bsees — 2PBs7e7 + 2PBsses)
=- %(2ﬁ3266 — 2fB33e5 — 2B34e4 + 2PB3se3 + 2336€2 — 2PB37€1 — 2Bsaes + 2Bsaer + 2f55¢e6
+ 2Bseer — 2Bs7e4 — 2Psses)
:%(—2ﬁ4267 — 2Bazes + 2PBases + 2Baser — 2Pases + 2Pager + 2Bnex — 2B13e1 + 2B75e7
= 2B76e6 + 2Bmres — 2Bses).

For D(eg),

D(es) :%(2,82296 = 2Bres — 2Brseq + 2fBrse3 + 2Brses — 2Bxre1 + 2Bs3e3 — 2Bs4e0 + 2fBsse5
— 2Bsees — 2PBsre7 + 2PBsses)
:%(2,33265 + 2Bz + 2B3se7 — 2B3ce1 — 2B3rex — 2Baze; — 2Bsre3 + 2PBsser + 2Psseq
+ 2Bs6e7 — 2Bsre4 — 2Bsses)
=- %(—2ﬁ42€4 + 2Bu3e7 — 2Bases + 2Paser + 2Pares — 2Pager + 2Psrer — 2Pszer + 2Psser
— 2Bs6e6 + 2Beres — 2Peses).

For D(e;),

D(e7) = - %(—2[32267 — 2Breq + 2Brues + 2Brser — 2Bases + 2Baser + 2Br3e3 — 2Bruex + 2fB7ses
— 2B76es — 2Bre7 + 2B75€6)
=%(—2/332€4 + 23367 — 2B34e6 + 2PB3ser + 2f337e3 — 2P3ser — 2Beaes + 2Peaet + 2fsses
+ 2Be6e7 — 2Bsrea — 2Beses)
:%(2,34265 + 2Bazes + 2Baser — 2Puacer — 2Burer — 2Puges + 2Bsrer — 2Pszer + 2Psser
— 2fBs6e6 + 2Bs7€5 — 2fBsseq).
By comparing the coefficients, we get 8;; = Ofor2 <i < 8,8;; =0for2 < i,j < 8 withi = j and

Bji = —Pij for 2 < i, j < 8 with i # j. Specifically, B4s = 27 — B36, Bas = Bas + B3s, Par = —Pas + Bs,
Bag = —Bas — B37, Bs1 = P23 + P58, Pes = Boa — Bs7 and Brg = B34 + Bse. O

Theorem 2. Let x = Zle xiei.1 € O. Let D : O — O be a Lie derivation. Then D(x) can be written
as D(x) = x1B11e0 + (—x3023 — X424 — XsP2s5 — XefBos — X7827 — XsBag)er + (X223 — Xaf3s — X535 —
X636 — X737 — Xgf33g)ea + (Xof324 + X3B34 + X5(—PB27 + B36) + X6(—B2s — B35) + X7(B2s — Bag) + x5(Bas +
B31))es + (X225 + X335 + X4(Ba7 — B36) — X6fBs6 — X7B57 — XgBss)es + (xofas + X336 + X4(Bag + B35) +
XsBs6 + x7(—B23 — Bsg) + x3(—Bos + Bs7))es + (x2B27 + x3B37 + x4(—Bas + Bag) + xs5B57 + x6(B23 + Bsg) +
Xg(—B34 — Bse))es + (xof3og + X338 + Xa(—B2s — B37) + X5Bss + X6(Bas — Bs7) + X7(B34 + Bse))er.
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Proof. Applying D on x gives

D(x) =

1

8
xiD(ei_y).
=

Substituting the values of D(e;)"s, which is computed in matrix representation of D in above theorem
yields

D(x) =x1B11€0 + x2(Bres + Pases + Pases + Pases + Prres + Baser) + x3(—Paser
+ Bases + Bases + Bases + Bares + Bager) + xa(—Paser — Baser + (Br7 — Bs)es
+ (Bas + Bas)es + (—PBas + Bag)es + (—Pas — Bar)er) + xs(—Paser — Basea
+ (=B27 + B3s)es + Bsses + Bsres + Bsger) + Xo(—Baser — PBzsez + (—Pas — Bas)es
— Bseea + (Baz + Bss)es + (Baa — Bsr)er) + x7(=Barer — Byrea + (Bos — Bas)es
— Bsres + (P23 — Bss)es + (Bas + Bse)er) + xs(—Lager — Bagea + (Bas + Bar)es
— Bsses + (—Pas + Bs7)es + (=31 — Bso)es)-

Summarizing the above expression yields our required result. O
4. Characterizing Lie Derivation of Octonion Algebra O

Our next task is to present characterization of Lie derivations of the algebra of Octonion. In
Theorem 2.2 of [21], it is shown that if S be a 2-torsion free ring and R = H(S') be quaternion ring,
then every Lie derivation of R can be decomposed in terms of Jordan derivation and Lie derivation of
S and an inner derivation of R, for every element ¢ € R. Here, we have:

Theorem 3. Let D : O — O be a Lie derivation. Then there exist an element A in O, a Lie derivation
0 and a Jordan derivation ¥ on L such that

8
D(r) = §(x)eo + ) wlxer s + [x(1)
i=2

for every element t = Z?:l xiei_ € 0.
Proof. Since D is an additive map, we can write

8

D(e,-_l) = Zﬁijej_l, 1 <i<8. (2)

J=1

for some ﬁ;js € L. It can be easily seen that 8y, € Z(L). Next, we will fine D(se;)’s withi =0,1,...,7,
for arbitrary [ € L. Set D(le,) = Zle x;e;_1. Applying D on [le;, e;], we get

0= D[lel, el =- 2X3€3 + 2)6462 - 2)C5€5 + 2)C6€4 + 2)C7€7 - 2Xg€6 + (l 0,823)63 - (l 0ﬁ24)€2
+ (I o Bas)es — (Lo Bag)es — (1 0 Bar)er + (Lo Bog)es.

By comparing the coefficients, we get

1 1 1
X3 =§(l°ﬁ23), X4 = =(lofas), x5==(lophs),

2 2
! [ ) ! l ! l
=— (@) = — o = — [e]
X6 2( Bs), X7 2( B21), X3 2( B23),
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which implies
1 1 1
D(ley) =x1e9 + x2e1 + 5(1 o Bx)es + E(l o Bues + E(l o Brs)ey
1 1 1
+ =(loBales + —(l o Brr)es + (10 Bag)er.
2 2 2
Now, applying D on the identities le; = %[lel, e, le, = —%[lel, es], le; = %[lez, es], les = —%[lel, es],

les = %[lel, eq], leg = %[lel, eq7], leg = —%[lel, e¢] and putting x, = () where ¢ : L — L is an additive
map which is uniquely determined by D, we get

1 1 1 1
D(ley) :Elﬁ34(l)€0 +y(De; + 5(1 o fBx)er + E(l o Bes + 5(1 o Brs)e
1 1 1
+ 5(1 o Bas)es + 5(1 o Ba7)es + E(l o fBrg)er.
1 1 1 1
D(ley) = — 51ﬁ24(l)€0 - 5(1 o Bn)er + Y(Dey + 5(1 o B34)es + E(l o fB35)es
1 1 1
+ E(l o B36)es + E(l o B37)es + E(l o B3g)er.
1 1 1 1
D(les) Zilﬁn(l)eo - 5(1 o Bas)er — 5(1 o Bss)er + Y(Des + E(l o (827 — B36))es
1 1 1
+ E(l o (Bag + fB35))es — E(l o (Bas — B3s))es — 5(1 o (Ba6 + B37))e7
1 1 1 1
D(ley) = - 51,826(1)60 - 5(1 o Brs)e; — 5(1 o Brs)es — E(l o (B27 — Bas))es
1 1 1
+y(Dey + E(l o fBs¢)es + E(l o fBs7)es + E(l o fBsg)e7
1 1 1 1
D(les) zilﬁzs(l)eo - E(l o Bagler — E(l o fB36)er — E(l o (Bag + B3s))es 3)
1 1 1
- E(l o Bsg)es + Y(Des + E(l o (B3 + Bsg))es + E(l o (B — P57))
1 1 1 1
D(lee) :Elﬁzs(l)eo - 5(1 o Bar)er — E(l o B37)es + E(l o (825 — Bag))es
1 1 1
- E(l o Bs7)es — 5(1 o (B3 + Bsg))es + Y(Deg + 5(1 o (B34 + Bs6))
1 1 1 1
D(le7) = - EIﬂN(Z)eO - E(l o Bagle; — E(l o fBag)es + 5(1 o (B + B37))es
1 1 1
- 5(1 o fBsg)es — E(l o (Bas — Bs7))es — 5(1 o (B34 + Bse))es + Y(Der.

Next, let/ € L be arbitrary and put D(ley) = D(I) = x1ep+ x2e1 + X365 + X463 + X564 + Xg€5 + X7€6 + Xge7.
Applying D on [ley, e;] = 0 and using (2), we obtain

0 = Dlleg, e1] = — 2x3e3 + 2x4e5 — 2xs5€4 + 2X6e4 + 2X707 — 2xg€6 + Ip,,(es

+ 1524(1)63 + 1.325 (l)€4 + 1526(1)65 + 1527(1)66 + Iﬁzg (1)67.

By comparing the coeflicients, we get

1 1 1 1 1 1
X3 = Elﬁz4(l),x4 = —§1ﬁ23(l)’ X5 = Elﬁzo(l), X6 = _Elﬁzs(l)’x7 = _Elﬂzg(l)’xig = zlﬁﬂ(l)-

Applying D on the identities [ley, e;] where i = 2,...,7 and taking x; = 6(/) for some additive map
0 : L — L uniquely determined by D, we get

1 1 1 1
D(leo) :6(1)60 - 51534(1)61 + 51]324(1)62 - 51'823(1)63 + Elﬁ26(l)€4 (4)
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1 1 1
- Elﬁzs(l)e5 - 5][328(1)66 + 51ﬂ27(l)€7
and

~lgsy = ~lpsg = Ipsuipss
Igy = —lgs; = —Ipyp5;
gy = ~lpsy = Ipssipss
Ig,s = Iy, = —Ip\ipy, 4)
L = Iy = —Lpsipss
Ly = —lpss = Ipysepss
1,327 = _1.336 = _1,327—,336'

Replacing [ by [[;, ;] in (4), for some [;,l, € L, we infer that ¢ is a Lie derivation of L. Moreover,
applying D on the identity [/,e;, Le,] = (I} o [)e; and using the foregoing calculations, we can see
that ¢ is a Jordan derivation. Now let = Z?:l x;e;_1 € O be an arbitrary element. Using (3), (4) and
(5), we find that

8
D(1) = §(x1)eg + ) w(xei s + (1)
i=2

where

h(t) =e—2()(lﬁ34(x2) — Ip,,(x3) + Ig,, (x4) — Ip,(x5) + Ig,s(x6) + Ip,s(X7) — Ig,,(xg))
+%(—Iﬁ34(?€1) — (x3 0 B23) = (x4 0 B24) — (x5 0 B25) — (X6 © B2g) — (X7 © B27)
—(x3 0 B23))
+e_22(1,324x1 + (2 0 B23) = (x4 0 B34) — (X5 0 B35) — (X6 © B36) — (x7 © B37)
—(x3 0 B33))
+%3(—1,323x1 + (X2 0 Bosg) + (x3 0 B34) — (x5 0 (B27 — B3s)) — (X6 © (Bag + B35))
+(x7 0 (Bas — B3s)) + (x5 © (Bas + B37)))
+%(1526x1 + (X2 0 f25) + (x3 0 B35) + (x4 © (B27 — B36)) — (X6 © Bs6) — (X7 © Bs7)
—(x3 0 Bs3))
+%5(—1,325(X1) + (X2 0 Ba26) + (x3 0 B3g) + (x4 © (Bag + B3s)) + (X5 © Bse)

—(x7 0 (B23 + Bss)) — (x5 © (Bas — Bs57)))

+%(_Iﬁ23xl + (X2 0 B27) + (x3 0 B37) — (x4 © (B25 — B33)) + (x5 © B57)
+(x6 © (B3 + Bss)) — (x5 © (B3a + Bse)))

+%(1527X1 + (X2 0 Bag) + (x3 0 B3g) — (x4 © (Bag + B37)) + (x5 0 B58)
+(x6 © (B24 — B57)) + (X7 © (B3a © +B56)))-

It can be easily verified that h(t) = I4(¢) where ¢ = Z?zl x;e;_ and

1
A= 5(—53461 + Boser — Brzes + Pases — Pases — Pages + Barer).
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Consequently,

8
D(1) = §(x)eg + ) wlxer s + La(0).

i=2

5. Lie Centralizer of Octonion Algebra O

This section contains the characterization of Lie centralizer of octonion algebra. In Theorem 2.1
of [2], it is shown that if S is a 2-torsion free unital ring and R = H(S) is quaternion ring. Then every
Lie centralizer of R can be represented in terms of a Lie centralizer and Jordan centralizer of S. Here,
we have:

Theorem 4. Let & : O — O be a Lie centralizer. Then there exists a Lie centralizer a and a Jordan
centralizer ¢ on L such that

8
£(1) = alx)ey + ) g(xeiy
i=2

for every element t = 2?21 x;e;_1 € O.

Proof. We have already assumed the form

8
f(ei—l):Z,Bijej—l, 1<i<8

=1

for some g};s € L. Since £ is a Lie centralizer, we have

1 1 1
é(e3) = Ef[el, er] = E['f(el)a es] =§(2ﬂ22€3 — 2[Base) — 2Brses — 2Prse7 + 2Br7es + 2P03e5)
= — Bue; + Bres + Pares + Pages — Pases — Parser.

Furthermore,

1 1
&(ey) = 55[62, e3] = E[f(ez), e3] =B3ze1 — Ber + Biges — Bires + Bases — Paser.

By comparing the coeflicients, we have 81 = By = Bao = Ba1 = Baz = 0, Boo = B3z = Puaa,
Bos = Bag = —P47, Pas = —B37 = —Puas, B = PB3s = Pas, Pas = —P3s = PBas, which reduces £(e;) and
&(es3) to

E(e)) =Bne; + Bazes + Pases + Pases + Prres + Pager
&(e3) =Prnes + Parres + Pages — Poses — Pager.

Applying & on the identities e, = 3[es, €], es = 3[es, 1], es = 3leq, es], €6 = 3ler, 7], €7 = 3les, €1],
we get

&(e2) =Barer + Pases — Bares + Bases — Paser
&(eq) =Paser + Bares + Prnes + Brer

&(es) = — Baser — Bares + Poges + Bres + Pazes
&(es) = — Brrer + Basea + Pases — Brzes + Pares
&(e7) =Baser — Bases — Bazes + Brer.
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Now assume that, £(eg) =t = Zle x;e;i_1. We have 0 = £[eg, t] = teg — ept = —2x3e3 + 2x4€7 — 2X5€5 +
2x¢e4 + 2x7€7 — 2xgeq, Which implies x3 = x4 = x5 = x¢ = x; = xg = 0. Application of £ on the
identity [eg, e;] gives x, = 0, which implies &(eg) = xje9 = x; € L. Let s € L be an arbitrary then
0 = £leg, seq] = [E(ep), se1] = (x15 — sx;). From this we get, x; = &(ep) € Z(L).

Let [ € L and set &(ley) = Z?:l x;e;i_1. Applying & on [le,e1] = 0, we get x3 = x4 = X5 = Xg = X7 =
xg = 0, which reduces &(ley) to £(ley) = xje9 + xpe1. Now applying & on the identities /e = %[lel, e],
l€2 = %[163,81], l€1 = %[162,6‘3], l€5 = %[181,64], l€4 = %[16’5,61], l€6 = %[161,67], l€7 = %[166,81] and
taking x, = ¢(l), where ¢ : L — L is an additive map which is uniquely determined by &, we get

E(ler) = p(Der,  &(ler) = p(Dey,  E(les) = p(Des,

E(les) = p(Des,  E(les) = p(Des,  &(les) = (Des, (6)

&(ler) = e(Deq
Our next goal is to calculate &£(ley) for arbitrary [ € L. Set (/) = Z?:] x;e;_1. Applying £ on [, e;] =0
and [/,e;] = O and putting x; = «a(l), where @ : L — L is an additive map which is uniquely
determined by &, we get

&) = a(l). (7)

Since ¢ is a Lie centralizer, (7) implies that « is a Lie centralizer on L. Let /;,/, € L. Applying € on
the identity [/ ey, hes] = (11 o [r)es and using (6) and (7), we get ¢(l; o [) = ¢(ly) o [, shows that ¢ is
a Jordan centralizer on L. Now let r = Z?:l x;e;_1 be an arbitrary element in L. By (6) and (7), we get
(1) = a(xy)eg + Z?:z ¢(x;)e;_1, which completes the proof. O

6. Generalized Lie Derivation of Octonion Algebra O

Generalized derivation is an extension of natural derivation. It has many applications in the lit-
erature since it is quite helpful in the geometric classification of rings and algebras. In this section,
we compute the matrix representation of generalized Lie derivation of the octonion algebra. Let
F : O — O be a generalized Lie derivation. F admits a matrix representation with respect to the
basis, which is an 8 X 8 matrix [F] = (y,-‘,)T whose entries are defined by

8
F(ei-y) = Z’)’ijej_l, 1<i<8. (8)
=1
Each column of [F] is an element of O.

Theorem 5. Let F : O — O be a generalized Lie derivation of O and B be the basis of O. Then the
matrix representation of F is as follows

Y11 —ﬁ“ 0 0 0 0 0 0 0

0 3, 0 0 0 0 0 0

0 0O v» 0 0 O 0 O

Fo| 0 0 0 y» 0 0 0 0
0 0 0 0 9%, O O O

0 0 0 0 0 y» 0 0

0 0 0 0 0 0 y» O

0 O 0 0 0 0 0 yx»
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By 0 O 0 0 0 0 0
0 0 -Bxn —24 —Pas —Pas —B27 —f2s
0 Bz O —Baa —Bss —Bss —B37 —Bss
" 0 P B 0 —B27+ P36 —Pas—P3s Pas— P Past+ B3
0 pBos PBss P =P 0 —Bse —Bs7 —Bss
0 B PBss P+ Bss Bse 0 —B23 —Pss —Pau + P57
0 P27 Bsr  —Pas+P3s Bs7 B3 + Bss 0 —B34 — Bse
0 B Bss —Pr—P3 Bss Bra—PBs1 P3a+ Bss 0

Proof. Let F be a generalized Lie derivation of O, then
Flei, ej] = [F(e), e;] + [e;, D(ej)] )

where D is the derivation of the octonion algebra.

Puti = 0, then Fley, e;] = [F(ey), e;] + [eg, D(e;)] = 0 for 1 < j < 7. So, by using the equation(8), we
gety;j=0for2<j<7.

Unlike the procedure of finding the Lie derivation of O, we don’t need to verify equation (9) for the
products between the octonionic units to compute the matrix representation of F. Hence generalized
Lie derivation is much easier to compute once a Lie derivation is obtained.

Suppose that

8
F(ei.1) = Z%jej—l, 1 <i<8.
=

Applying F on the identity [e;, e;] for i = j and comparing the coefficients, we get y;; = B;; for
2<i,j<8withi#j.
By using the same technique proposed in the previous theorem, we get, for F(e;)
F(er) :%(—2)’3262 + 2y33e1 — 2y3ser + 2yzeec — 2y3res + 2ysses — 2Bmes + 2Puer + 2Pases
+ 2fB46€7 — 2Bares — 2Bages)
:%(—2)’5264 + 2ys3e7 — 2ysaeq + 2ysser + 2ysye3 — 2ysger — 2Beres — 2Bezec — 2Peaeq
+2B6c€1 + 2Be7€2 + 2Peses)
=— %(2’)/7266 — 2y73es5 — 2y4e4 + 2yi5e3 + 2yi6€2 — 27761 + 2PBsr07 + 2Bs3eq — 2PBsqes
— 2f3sse2 + 2363 — 2fBsse1).
For F(e,)

F(ey) = - %(—2)’2262 +2yxe1 — 2yaser + 2yaceq — 2yxes + 2yxes + 2Bazes — 2Baser + 2Pases
— 2Buses — 2Bure7 + 2Pases)
=%(—2)’52€7 — 2ys3eq + 2ysqes + 2ysser — 2ysee; + 2ysser — 2Bnes — 2Braes — 2Bque7
+2B76e1 + 2Bmer + 2B75e3)
:%(276266 — 2ye3es — 2¥eaes + 2¥65€3 + 2y66€2 — 2Y67€1 + 2fs8204 — 2Ps3€7 + 2fsa¢6
— 2Bsser — 2PBgres + 2Bssen).
For F(e3)

1
F(e3) 25(272263 — 2y24e1 — 2256 — 2y26€7 + 2y27€4 + 2yage5 + 2f33€3 — 23347 + 2B35€5
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— 2B36es — 2PB37€7 + 2PBases)

:%(275266 — 2ys3es — 2ysaeq + 2ysse; + 2yseer — 2yszer — 2Pgres — 2Pgzeq — 2Psaer
+ 2Bs6e1 + 2PBsren + 2Bsse3)

=- %(_276237 — 2y¢3€4 + 2y6aes5 + 2652 — 2yee€3 + 2Yese1 + 2Bmes — 27367 + 2Bae6
— 2fB75€1 — 2B77e3 + 2B75€2).

For F(ey4)

F(e4) = — %(—2)’2264 + 2y23€7 — 2yneq + 2yrser + 2yne; — 2yaser + 2Bs3e3 — 2Beaer + 2Peses
— 2fBees — 2Be7€7 + 2Boses)
=- %(—2)’3267 — 2y33e4 + 2yaes + 2y3ses — 2ysees + 2ysge; — 2fes + 2Braer + 2fB7s5e6
+ 2B76€7 — 2B77€4 — 2PB73865)
=— %(2)/4266 — 2y43e5 — 2Ya4e4 + 2ysses + 2yases — 2ya7e1 + 2Bsre0 — 2Pg3eq + 2PBgseq
— 2Bs6e6 + 2Bsres — 2Bsseq).

For F(es)

F(es) :%(272265 + 2y23e6 + 2y2e7 — 2yxer — 2yxer — 2yages + 2fs3es — 2Psaer + 2Psses
— 2Bs6es — 2PBs7€7 + 2Bss€6)
=- %(2)’3266 — 2y33es — 2yzses + 2ysses + 2ysger — 2yzre; — 2Bsres + 2Bgaer + 2Psses
+ 2Bs6e7 — 2Bsreq — 2Bsses)
:%(—2’)/4267 — 2y43€4 + 2Ya4es5 + 2ysses — 2yaces + 2yager + 2Bnex — 2B73e1 + 2B75¢7
— 2B76e6 + 2Brres — 2B75€4).

For F(eg)

F(ee) :%(2'}’2266 — 2ya3es — 2yaes + 2yrse3 + 2yaser — 2yarer + 2Bsze3 — 2Bgaer + 2Bsses
— 2Bs6es — 2PBsre7 + 2Psse6)
:%(273265 + 2y33€6 + 2y34e7 — 2y36€1 — 23782 — 2y38€3 — 2Bs0€3 + 2fsae1 + 2fss5¢6
+ 2Bse7 — 2Bs7e4 — 2Bsses)
=- %(—2)’4264 + 2y43e7 — 2yases + 2ysser + 2yanes — 2yaiger + 2Bsrer — 2Bszer + 2Bsser
— 2B6e6 + 2Beres — 2Beses).

For F(ey)

1
F(e7) = — 5(—272267 — 2y23e4 + 2yaes + 2ypses — 2yrees + 2yager + 2B3e3 — 2B74e5 + 2B75€5
— 2B76e4 — 2B77€7 + 2fB73¢€6)

1
25(—273264 + 2y33e7 — 2y3ae6 + 2y35€1 + 2y37e3 — 2y3ger — 2Pres + 2Psser + 2Beses

Ars Combinatoria Volume 157, 23-37



On Lie Derivations, Generalized Lie Derivations and Lie Centralizers of Octonion Algebras 35
+2Bece7 — 2Bere4 — 2Peses)

1
25(274265 + 2Ya3e6 + 2ysaer — 2yaser — 2yarer — 2yages + 2Psrer — 2Bszer + 2Psse;
— 2Bsees + 2Bs7es — 2Psges).
By comparing the coefficients, we get y;; = 0 for 2 <i < 8 and y2 = ¥33 = Ya4 = V55 = Y66 = Y77 =
Yss- O

Theorem 6. Let x = xjey + x2e; + X367 + Xa€3 + X5€4 + Xg€5 + X766 + X3¢7 € O. Let F : O — O be
a generalized Lie derivation with respect to D then F(x) can be written as F(x) = x1y11e9 + (x2y2 —
X3f323 — X4fB24 — Xs5f325 — X626 — X7327 — XsBas )€1 + (X2f323 + X3¥22 — X334 — X535 — X6B36 — X7337 — XsB3g)en +
(2824 + X3B34 + Xay22 + X5(—B27 + B36) + X6(—B2sg — B3s) + x7(Bas — B3g) + xg(Bas + B37))es + (x2f25 +
X335 + X4(B27 — B3e) + X522 — X6PBs6 — X7857 — XgBsg)es + (X226 + X3B36 + X4(Bog + Bas) + XsBs6 + X6y +
X7(=B23 — Bss) + xg(—Pa4 + Bs7))es + (xofa7 + X3B37 + Xa(—Pas + B3g) + X5B57 + Xe(Ba3 + Bsg) + X7y +
X3(—34 — Ps6))es + (x2f2s + X338 + X4(—Bas — B37) + X5Bs8 + X6(Boa — Bs7) + x7(B3s + Bse) + xgy)er.

Proof. Applying F on x gives
F(x) = x1F(ep) + x2F (e1) + x3F(e2) + x4F(e3) + xs5F(es4) + xF (es5) + x7F (e6) + x3F (e7).

Substituting the values of F(e;)"s, which is computed in matrix representation of F' in above theorem
yields

F(x) =x1y11€0 + X2(y22€1 + Brzes + Praes + Poses + Pases + Prres + Paser) + x3(—Paen
+ ynes + Bases + Bases + Bases + Bares + Bager) + xa(—Brer — Baser + yne3
+ (B27 — Bas)ea + (Bas + B3s)es + (—Pas + Bis)es + (B — B3r)er) + xs(—Paser — Baser
+ (=27 + Bre)es + ynes + Bsees + Bsres + Psser) + Xo(—Paser — Prser + (—Pas — Pas)es
— Bsees + yues + (Baz + Bsg)es + (Baa — Bs1)er) + x7(=Parer — Brex + (Bas — B3g)es
— Bs1€s + (=Bas — Bss)es + ynes + (Baa + Pso)er) + xs(—Paser — Pager + (Bas + P37)es
— Bsses + (—=Pas + Ps7)es + (—f3a — Bso)es + yazer).

Summarizing the above expression yields our required result. m|

Example 1. Let an arbitrary element x = Y5 | xiei.; € O. Let B3 = 1, Bog = 1, B3 = 1, Bsg = 1 and
Bi; = 0 otherwise in Lie derivation of O then D will be

D(x) =(=x3 — xp)e; + (x2 — x7)ex + 2xge3 — xge4 + (X2 — 2x7)es (10)

+ (X3 + 2x6)e6 + (—2X4 + X5)€7.
Select vy = 1 and yy, = 1 in the generalized Lie derivation, then

F(x) =x1e9 + (x2 — x3 — Xg)ey + (x2 + x3 — x7)ez + (x4 + 2xg)e; + (x5 — xg)ey (1T)

+ (X0 + xg — 2x7)es + (x5 + 2x6 + X7)eg + (—2X4 + X5 + Xg)e.
Puti=1, j="Tin Fle;,e;] = [F(e),e;] + [e;, D(e})], we get
Fley, e7] =[F(e1), e7] + [e1, D(e7)].
The left hand side of the above equation will be
Fleq,e7] =2F(eg) = —2e, — des + 2eg.

By using (11), we get F(ey) = e| + e + es and using (10), we get D(e7) = 2e5 — ey.
Then by direct calculation the right hand side will be 2eq — 4es — 2es.
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7. Conclusion

Lie algebras of derivations and its variants explore the nature of given algebras. In this research
article, we have described of matrix representation as well as the characterization of Lie derivation of
Octonion algebra. The characterization of Lie centralizer of Octonion algebra is also presented. We
have also computed the matrix representation of generalized Lie derivations of Octonion algebras.
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