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Abstract: Consider a total labeling ξ of a graph G. For every two different edges e and f of G, let
wt(e) , wt( f ) where weight of e = xy is defined as wt(e) = |ξ(e) − ξ(x) − ξ(y)|. Then ξ is called
edge irregular total absolute difference k-labeling of G. Let k be the minimum integer for which there
is a graph G with edge irregular total absolute difference labeling. This k is called the total absolute
difference edge irregularity strength of the graph G, denoted tades(G). We compute tades of S Cn,
disjoint union of grid and zigzag graph.
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1. Introduction and Motivation

Chartrand et al. [1] introduced irregularity strength and irregular assignments of a graph in 1988.
The other kind of total labeling the total edge irregularity strength of a graph was studied by Baca et
al. [2]: Consider a graph G = (V, E). A labeling ξ : V

⋃
E → {1, 2, · · · , k} is called an edge irregular

total k-labeling if for every pair of distinct edges uv and xy, ξ(u) + ξ(v) + ξ(uv) , ξ(x) + ξ(y) + ξ(xy).
If a graph G admits an edge irregular total k-labeling and k is minimum then G is said to have a total
edge irrgularity strength denoted by tes(G). The results about the tes(G) can be found in [3–10].

Ramalakshmi and Kathiresan introduced the total absolute difference edge irregularity strength of
graphs to lower edge weights, using tes(G) and graceful labeling. Consider a total labeling ξ of a
graph G. For every two different edges e and f of G, let wt(e) , wt( f ) where weight of e = xy
is defined as wt(e) = |ξ(e) − ξ(x) − ξ(y)|. Then ξ is called edge irregular total absolute difference
k-labeling of G. Let k be the minimum integer for which there is a graph G with edge irregular total
absolute difference labeling. This k is called the total absolute difference edge irregularity strength of
the graph G, denoted tades(G).

Lourdusamy et al. [11] determined the total absolute difference edge irregular strength for snake
related graphs, wheel related graphs, lotus inside the circle and double fan graph. Also, they obtained
the tades of Tp-tree related graphs [12]. Lourdusamy et al. [13] discussed the tades of super subdi-
vision of certain families of graphs and corona graphs. Also, they obtained the tades of transformed
tree and path related graphs [14]. Here, we discuss the tades of staircase graph, disjoint union of
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zigzag and grid graphs.

Theorem 1. [?] For a graph G = (V, E), we have
⌈
|E|
2

⌉
≤ tades(G) ≤ |E| + 1.

2. Main Results

In this section, we compute the exact value of total absolute difference edge irregularity strength
of staircase graph.

Theorem 2. For S Cn, the total absolute difference edge irregularity strength is tades(S Cn) =
⌈

n(n+3)
2

⌉
.

Proof. Let k =
⌈

n(n+3)
2

⌉
. Let V(S Cn) = {ar,s : r = 0, 1, 0 ≤ s ≤ n} ∪ {ar,s : 2 ≤ r ≤ n, r − 1 ≤ s ≤ n}

and E(S Cn) = {ar,sar+1,s : r = 0, 0 ≤ s ≤ n} ∪ {ar,sar+1,s : 1 ≤ r ≤ n − 1, r ≤ s ≤ n} ∪ {ar,sar,s+1 : r =
0, 1, 0 ≤ s ≤ n− 1} ∪ {ar,sar,s+1 : 2 ≤ r ≤ n, r− 1 ≤ s ≤ n− 1}. Note that |V(S Cn)| = 1

2 (n+ 1)(n+ 2)+ n
and |E(S Cn)| = n(n + 3). From Theorem 1.1, tades(S Cn) ≥ k. To complete the proof we show that

Figure 1. S C4

tades(S Cn) ≤ k. We define a, k-labeling ξ : V(S Cn) ∪ E(S Cn)→ {1, 2, · · · k} as follows:
ξ(ar,0) = 1, r = 0, 1;

For 1 ≤ s ≤ n
ξ(a0,s) =

⌈
s2+3s

2

⌉
−
⌊

s
2

⌋
;

Case 1. s is odd
Let 1 ≤ s ≤ n and s is odd .

Fix ξ(a1,s) =
⌈

s2+3s
2

⌉
−
⌊

s
2

⌋
.

Let 2 ≤ r ≤ n, r − 1 ≤ s ≤ n and s is odd.

Fix ξ(ar,s) =


⌈

s2+3s
2

⌉
−
⌊

s
2

⌋
+ r−1

2 if r is odd⌈
s2+3s

2

⌉
−
⌊

s
2

⌋
+ r

2 if r is even ;
Case 2. s is even
Let 1 ≤ s ≤ n and s is even.

Fix ξ(a1,s) =
⌈

s2+3s
2

⌉
−
⌊

s
2

⌋
+ 1.

Let 2 ≤ r ≤ n, r − 1 ≤ s ≤ n and s is even.

Fix ξ(ar,s) =


⌈

s2+3s
2

⌉
−
⌊

s
2

⌋
+ r+1

2 if r is odd⌈
s2+3s

2

⌉
−
⌊

s
2

⌋
+ r

2 if r is even .
We fix the edge labels as follows:

ξ(a0,0a1,0) = 2;
ξ(a0,0a0,1) = 2;
ξ(a1,0a1,1) = 1;
ξ(a0,sa1,s) = 1 , for 1 ≤ s ≤ n;
ξ(ar,sar+1,s) = 1, for 1 ≤ r ≤ n − 1 and r ≤ s ≤ n;
ξ(ar,sar,s+1) = 1, for r = 0, 1 and 1 ≤ s ≤ n − 1;
ξ(ar,sar,s+1) = 1, for 2 ≤ r ≤ n and r − 1 ≤ s ≤ n − 1.
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We then have the weight of the edges as follows:
wt(a0,0a1,0) = 0;
wt(a0,0a0,1) = 1;
wt(a1,0a1,1) = 2;
wt(a0,sa1,s) = s2 + 2s for 1 ≤ s ≤ n;
wt(ar,sar+1,s) = s2 + 2s + r, for 1 ≤ r ≤ n − 1 and r ≤ s ≤ n;
wt(ar,sar,s+1) = s2 + 3s + 1, for r = 0, 1 and 1 ≤ s ≤ n − 1;
wt(ar,sar,s+1) = s2 + 3s + r + 1, for 2 ≤ r ≤ n and r − 1 ≤ s ≤ n − 1.

Hence ξ is total absolute difference edge irregular k-labeling with k =
⌈

n(n+3)
2

⌉
as the weights for the

edges are different. □

3. Disjoint Union of Zigzag Graph

In this section, we compute the exact value of total absolute difference edge irregularity strength
of disjoint union of zigzag graphs

⋃p
j=1 Zm j

n j with n j ≥ 2 and m j ≥ 2.

Theorem 3. For any integer n j ≥ 2, m j ≥ 2, tades(
⋃p

j=1 Zm j
n j ) =

⌈∑p
j=1(n j−1)(2m j−1)

2

⌉
.

Proof. Let k =
⌈∑p

j=1(n j−1)(2m j−1)

2

⌉
. The disjoint union

⋃p
j=1 Zm j

n j of zigzag graphs Zm
n is defined to be a

graph with vertex set V(
⋃p

j=1 Zm j
n j ) = {a j

i,s : 1 ≤ i ≤ n j, 1 ≤ s ≤ m j, 1 ≤ j ≤ p} and the edge set
E(
⋃p

j=1 Zm j
n j ) = {a j

i,sa
j
i+1,s : 1 ≤ i ≤ n j − 1, 1 ≤ s ≤ m j, 1 ≤ j ≤ p}

⋃
{a j

i,sa
j
i−1,s+1 : 1 ≤ i ≤ n j, 1 ≤

s ≤ m j − 1, 1 ≤ j ≤ p}. The disjoint union of zigzag graphs
⋃p

j=1 Zm j
n j has

∑p
j=1 n jm j vertices and∑p

j=1(n j − 1)(2m j − 1) edges. Based on Theorem 1.1, we have tades(
⋃p

j=1 Zm j
n j ) ≥

⌈∑p
j=1(n j−1)(2m j−1)

2

⌉
.

Figure 2. Z3
5

⋃
Z3

4
⋃
· · ·
⋃

Z4
3

We define ξ as follows:
for 1 ≤ i ≤ n j, 1 ≤ s ≤ m j and 1 ≤ j ≤ p − 1,

ξ(a j
i,s) =

⌈
r
2

⌉
+ (s − 1)(n j − 1) +

⌊
i+ 1

2 ((−1)r+1)
2

⌋
where r =

∑ j−1
q=1(nq − 1)(2mq − 1);

for 1 ≤ i ≤ np, 1 ≤ s ≤ mp − 1 and r =
∑p−1

q=1(nq − 1)(2mq − 1),

ξ(ap
i,s) =

⌈
r
2

⌉
+ (s − 1)(np − 1) +

⌊
i+ 1

2 ((−1)r+1)
2

⌋
;

ξ(ap
i,mp

) =


⌈

r
2

⌉
+ (mp − 1)(np − 1) +

⌊
i+ 1

2 ((−1)r+1)
2

⌋
if 1 ≤ i ≤ np − 1

k if i = np ;
ξ(a j

i,sa
j
i+1,s) = 2, for 1 ≤ i ≤ n j − 1, 1 ≤ s ≤ m j and 1 ≤ j ≤ p − 1;

ξ(ap
i,sa

p
i+1,s = 2, for 1 ≤ i ≤ np − 1, 1 ≤ s ≤ mp − 1;

ξ(ap
i,mp

ap
i+1,mp

) = 2, for 1 ≤ i ≤ np − 2;

Ars Combinatoria Volume 157, 89–94



A. Lourdusamy, F. Joy Beaula and F. Patrick 92

ξ(ap
np−1,mpa

p
np,mp) =

1 if |E(
⋃p

j=1 Zm j
n j )| is even

2 if |E(
⋃p

j=1 Zm j
n j )| is odd

;

ξ(a j
i−1,s+1a j

i,s) = 2, for 2 ≤ i ≤ n j, 1 ≤ s ≤ m j − 1 and 1 ≤ j ≤ p.
We now arrive at the weight of the edges:
for 1 ≤ i ≤ n j − 1, 1 ≤ s ≤ m j, 1 ≤ j ≤ p and r =

∑ j−1
q=1(nq − 1)(2mq − 1),

wt(a j
i,sa

j
i+1,s) = 2

⌈
r
2

⌉
+ 2(s − 1)(n j − 1) + i + 1

2 ((−1)r + 1) − 2;
for 1 ≤ i ≤ n j, 1 ≤ s ≤ m j − 1, 1 ≤ j ≤ p and r =

∑ j−1
q=1(nq − 1)(2mq − 1),

wt(a j
i,sa

j
i−1,s+1) = 2

⌈
r
2

⌉
+ (2s − 1)(n j − 1) + i + 1

2 ((−1)r − 1) − 3.
It is clear that, the labels for vertices and edges receive values are not more than k. Also we see that

the weights for the edges are all distinct. Hence tades(
⋃p

j=1 Zm j
n j ) =

⌈∑p
j=1(n j−1)(2m j−1)

2

⌉
. □

Illustration for tades of Z4
5
⋃

Z5
6

⋃
Z6

4
⋃

Z7
3 is shown in Figure 3.

Figure 3. Z4
5
⋃

Z5
6

⋃
Z6

4
⋃

Z7
3

4. Disjoint Union of Grid Graph

In this section, we compute the exact value of total absolute difference edge irregularity strength
of disjoint union of grid graphs

⋃p
j=1 Zm j

n j with n j,m j ≥ 2.

Theorem 4. For any integer n j,m j ≥ 2 and 1 ≤ j ≤ p, tades(
⋃p

j=1 Gn j,m j) =
⌈∑p

j=1(2n jm j−m j−n j)

2

⌉
.

Proof. Let k =
⌈∑p

j=1(2n jm j−m j−n j)

2

⌉
. We define disjoint union

⋃p
j=1 Gn j,m j of grid graphs Gn,m as follows:

Let V(
⋃p

j=1 Gn j,m j) = {a
j
i,s : 1 ≤ i ≤ n j, 1 ≤ s ≤ m j, 1 ≤ j ≤ p}. Let E(

⋃p
j=1 Gn j,m j) = {a

j
i,s, a

j
i+1,s : 1 ≤

i ≤ n j − 1, 1 ≤ s ≤ m j, 1 ≤ j ≤ p}
⋃
{a j

i,s, a
j
i,s+1 : 1 ≤ i ≤ n j, 1 ≤ s ≤ m j−1, 1 ≤ j ≤ p}. From Theorem

1.1, tades(
⋃p

j=1 Gn j,m j) ≥
⌈∑p

j=1
(2n jm j−m j−n j)

2

⌉
. Now we prove the converse part.
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Figure 4. G5,3
⋃

G4,3
⋃
· · ·
⋃

G3,4

Let us define ξ : V(
⋃p

j=1 Gn j,m j) ∪ E(
⋃p

j=1 Gn j,m j)→ {1, 2, · · · ,
⌈∑p

j=1(2n jm j−m j−n j)

2

⌉
} as follows:

for 1 ≤ i ≤ n j, 1 ≤ s ≤ m j and 1 ≤ j ≤ p − 1,

ξ(a j
i,s) =


⌈

t
2

⌉
+ s−1

2 (2n j − 1) +
⌊

i+ 1
2 ((−1)t+1)

2

⌋
if s is odd⌈

t
2

⌉
+ n j(s − 1) − s

2 +

⌈
i+ 1

2 ((−1)t+1)
2

⌉
if s is even ;

where t =
∑ j−1

q=1 2nqmq − mq − nq

for 1 ≤ i ≤ np, 1 ≤ s ≤ mp − 1 and t =
∑p−1

q=1 2nqmq − mq − nq

ξ(ap
i,s) =


⌈

t
2

⌉
+ s−1

2 (2np − 1) +
⌊

i+ 1
2 ((−1)t+1)

2

⌋
if s is odd⌈

t
2

⌉
+ np(s − 1) − s

2 +

⌈
i+ 1

2 ((−1)t+1)
2

⌉
if s is even ;

for 1 ≤ i ≤ np − 1,

ξ(ap
i,mp

) =


⌈

t
2

⌉
+

mp−1
2 (2np − 1) +

⌊
i+ 1

2 ((−1)t+1)
2

⌋
if s is odd⌈

t
2

⌉
+ np(mp − 1) − mp

2 +

⌈
i+ 1

2 ((−1)t+1)
2

⌉
if s is even ;

ξ(ap
np,mp) = k;

ξ(a j
i,sa

j
i+1,s) = 2, for 1 ≤ i ≤ n j − 1, 1 ≤ s ≤ m j and 1 ≤ j ≤ p − 1;

ξ(ap
i,sa

p
i+1,s) = 2, for 1 ≤ i ≤ np − 1, 1 ≤ s ≤ mp − 1;

ξ(ap
i,mp

ap
i+1,mp

) = 2, for 1 ≤ i ≤ np − 2;

ξ(ap
np−1,apa

p
np,mp) =

1 if |E(
⋃p

j=1 Gn j,m j)| is even
2 if |E(

⋃p
j=1 Gn j,m j)| is odd

;

ξ(a j
i,sa

j
i,s+1) = 2, for 2 ≤ i ≤ n j, 1 ≤ s ≤ m j − 1 and 1 ≤ j ≤ p.

Below we arrive at the weight of the edges. for 1 ≤ i ≤ n j − 1, 1 ≤ s ≤ m j, 1 ≤ j ≤ p and
t =
∑ j−1

q=1 2nqmq − mq − nq,

wt(a j
i,sa

j
i+1,s) =

2
⌈

t
2

⌉
+ (s − 1)(2n j − 1) + i + 1

2 ((−1)t + 1) − 2 s is odd

2
⌈

t
2

⌉
+ (s − 1)2n j − s + i + 1 + 1

2 ((−1)t + 1) − 2 s is even;
for 1 ≤ i ≤ n j, 1 ≤ s ≤ m j − 1, 1 ≤ j ≤ p and t =

∑ j−1
k=1 2n jm j − m j − n j,

wt(a j
i,sa

j
i,s+1) = 2

⌈
t
2

⌉
+ (2s − 1)n j − s + i + 1

2 ((−1)t + 1) − 2.
It is clear that, the labels for vertices and edges receive values are not more than k. Also we see that

the weights for the edges are all distinct. Hence tades(
⋃p

j=1 Gn j,m j) =
⌈∑p

j=1(2n jm j−m j−n j)

2

⌉
. □

Illustration for tades of G6,7
⋃

G5,6
⋃

G4,5 is shown in Figure 5.
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Figure 5. G6,7
⋃

G5,6
⋃

G4,5
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