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Abstract: Let E(H) and V(H) denote the edge set and the vertex set of the simple connected graph
H, respectively. The mixed metric dimension of the graph H is the graph invariant, which is the
mixture of two important graph parameters, the edge metric dimension and the metric dimension. In
this article, we compute the mixed metric dimension for the two families of the plane graphs viz.,
the Web graphWn and the Prism allied graph Dt

n. We show that the mixed metric dimension is non-
constant unbounded for these two families of the plane graph. Moreover, for the Web graphWn and
the Prism allied graph Dt

n, we unveil that the mixed metric basis set Mm
G is independent.
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1. Introduction

The graph invariant metric dimension is among the important and highly active research topic
in Graph Theory. This fundamental concept of metric dimension was founded by two groups of
researchers independently viz., Slater in [1] and Harary and Melter in [2], in the late seventies. The
set MG of points in the taken metric space with the property (or characteristic) that any point of the
space is determined uniquely by its distances from the points of MG, is referred to as the generator
(or metric generator) of the given metric space. These metric generating sets are called the locating
sets by Slater in [1] and the resolving sets by Melter and Harary in [2], respectively.

After these two important initial papers [1, 2], several works regarding theoretical properties, as
well as applications, of this graph invariant were published. Initially, Slater considered special ac-
knowledgment of a thief in the network, while others noticed problems in picture preparing (or image
processing) and design acknowledgment (or pattern recognition) [3], applications to science are given
in [4], to the route of exploring specialist (navigating agent or robots) in systems (or networks) are
examined in [5], to issues of check and system revelation (or network discovery) in [6], application
to combinatorial enhancement (or optimization) is yielded in [7], and for more work see [8–10].

Suppose E(H) and V(H) denote the edge set and the vertex set of the simple connected graph H,
respectively. The distance between two vertices α, β ∈ V(H), is denoted and defined as dH(α, β) =
length of the shortest possible α − β path in H and the dH(α, ε) = min{dH(α, β1), dH(α, β2)} represents
the distance between an edge ε = β1β2 and the vertex α in H. If the distance between the vertex α
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and an element β is not equaled to the distance between the same vertex α and an element γ in H
(where β, γ ∈ V(H) ∪ E(H)), then one can say that the vertex α distinguish (determines or resolves)
two elements β and γ in H.

A set MG consisting of the vertices of the graph H, is termed as the metric generator for H, if the
vertices of MG distinguish (determines or resolves) every pair of different vertices of the connected
graph H. These metric generators are called metric basis for H if it has the minimum cardinality and
this cardinal number of the metric basis is referred to as the metric dimension of the graph H, denoted
by β(H) or dim(H).

On the other hand, concerning the hypothetical examinations of this important topic, various per-
spectives of metric generators MG have been depicted in the recent literature, which has profoundly
added to acquire more understanding into numerical properties of this graph invariant related with
distances in networks. Several authors working on this topic have presented different varieties of
metric generators like for example, independent resolving sets, resolving dominating sets, strong re-
solving sets, local metric sets, edge resolving sets, strong resolving partitions, mixed metric sets, etc.
For these see references in [8, 11–14]. A set L consisting of vertices of the graph H is said to be an
independent resolving set for H, if L is both resolving (metric generator) and independent.

One can see that the metric dimension deals with the vertices of the graph by its definition, a similar
concept dealing with the edges of the graph introduced by Kelenc et al. in [11], called the edge metric
dimension of the graph H, which uniquely identifies the edges related to a graph H. For an edge
ε = β1β2 and a vertex x the distance between them is defined as dH(x, ε) = min{dH(x, β1), dH(x, β2)}.
A subset MεG is called an edge metric generator for H, if any two different edges of H are distinguish
by some vertex of MεG. The edge metric generator with minimum cardinality is termed as edge metric
basis and that cardinality is known as the edge metric dimension of the graph H, and which is denoted
by edim(H) or βE(H). A set LE consisting of vertices of the graph H is said to be an independent edge
metric generator for H, if LE is both edge metric generator and independent.

2. Mixed metric dimension:

Recently, a new kind of graph parameter was introduced by Kelenc et al. in [12], which is the
composition of both, the edge metric dimension and the metric dimension and called the mixed
metric dimension for a graph H. A subset Mm

G is called a mixed metric generator for H, if any
two different elements of V(H) ∪ E(H) are distinguished by some vertex of Mm

G . For an ordered
subset LM = {ζ1, ζ2, ζ3, ..., ζp} of vertices of the graph H, and an element y ∈ V(H) ∪ E(H), the
mixed metric code\mixed metric representation of y regarding Mm

G is the ordered p-tuple ζM(y|Mm
G) =

(dH(y, ζ1), dH(y, ζ2), dH(y, ζ3), ..., dH(y, ζp)).
If for any two distinct elements y1 and y2 of V(H)∪E(H), ζM(y1|Mm

G) , ζM(y2|Mm
G), then Mm

G is said
to be a mixed metric generator (or shortly, MMG) for H. The mixed metric generator with minimum
cardinality is termed as the mixed metric basis, and that cardinality is known as the mixed metric
dimension of the graph H, and which is denoted by mdim(H) or βM(H). For our gentle purpose, by
MMG and MMD we denote mixed metric generator and mixed metric dimension, respectively. Now,
like edge metric dimension and the metric dimension, for this graph invariant one can define that, set
LM consisting of vertices of the graph, H is said to be an independent mixed metric generator for H,
if LM is both a MMG and independent.

In this study, we consider two important families of the plane graphs viz., the prism allied graph Dt
n

( [15], see Figure 1) and the Web graphWn ( [16], see Figure 2) and we obtain their MMD. Recently,
the metric dimension and the edge metric dimension of these two families of the plane graphs were
computed. For the metric dimension of these families of plane graphs we have the following results:

Theorem 1. [15] Let Dt
n be the Prism allied graph on 6n edges and 4n vertices. Then, for n ≥ 6, we

have β(Dt
n) = 3.

Ars Combinatoria Volume 157, 95–108



On Vertex-Edge Resolvability for the Web Graph and Prism Related Graph 97

Theorem 2. [16] LetWn be the Web graph on 4n edges and 3n vertices. Then, for n ≥ 3, we have

β(Wn) =

2, i f n is odd;
3, otherwise

and regarding the edge metric dimension, we have

Theorem 3. [15] Let Dt
n be the Prism allied graph on 6n edges and 4n vertices. Then, for n ≥ 3, we

have

βE(Dt
n) =

4, i f n = 3, 4, ;⌈
n
2

⌉
+ 1, otherwise.

Theorem 4. [16] Let Wn be the Web graph on 4n edges and 3n vertices. Then, for n ≥ 3, we have
βE(Wn) = 3.

Throughout this article, all vertex indices are taken to be modulo n. The present paper is organized
as follows:

In section 2, we study the MMD of the Prism allied graph Dt
n, when the MMG Mm

G is independent
(see Figure 1). In section 3, we study the MMD of the Web graph Wn, when the MMG Mm

G is
independent (see Figure 2), and in our last section, we conclude our results and findings regarding
these two important families of the plane graphs.

3. Mixed Resolvability of the Prism Allied Graph Dt
n

The Prism allied graph Dt
n [15] has vertex set of cardinality 4n and an edge set of cardinality 6n,

indicated by V(Dt
n) and E(Dt

n) respectively, where V(Dt
n) = {pη, qη, rη, sη|1 ≤ η ≤ n} and E(Dt

n) =
{pηqη, pηpη+1, qηqη+1, rηqη, rηqη+1, rηsη|1 ≤ η ≤ n}. It comprises of n 3-sided faces, n pendant edges, n
4-sided faces, and an n-sided face (see Figure 1). The graph Dt

n is allied to the Prism graph Dn in the
sense that, it can be acquired from the Prism graph by including new vertices {rη, sη|1 ≤ η ≤ n} and
edges {rηqη, rηqη+1, rηsη|1 ≤ η ≤ n} in Dn as follows:

• Placing new vertices rη, between the edges qηqη+1 (1 ≤ η ≤ n).
• Again join the vertices qη and qη+1.
• Join the vertices rη and sη, in order to obtain the n pendant edges.

For our smooth purpose, we refer to the cycle brought forth by the arrangement of vertices {qη :
1 ⩽ η ⩽ n} and {pη : 1 ⩽ η ⩽ n} in the graph, Dt

n as the q and p-cycle respectively, the arrangement of
vertices {rη : 1 ⩽ η ⩽ n} and {sη : 1 ⩽ η ⩽ n}, in the graph, Dt

n as the set of outer and pendant vertices
respectively. For our convenience, we consider s1 = sn+1, r1 = rn+1, q1 = qn+1, and p1 = pn+1. In the
present working section, we obtain that the least possible cardinality for the MMG Mm

G of the Prism
allied graph Dt

n is n+ 1. We also find that the MMG Mm
G for the Prism allied graph Dt

n is independent.
Now, in order to get the exact MMD of graph Dt

n, we need the following three Lemmas:

Lemma 1. The set of outer vertices {sη|1 ≤ η ≤ n} ⊂ Mm
G , where Mm

G is a MMG for the Prism allied
graph Dt

n.

Proof. For the inconsistency, we suppose that the MMG Mm
G , does not contain at least one vertex from

the set {sη|1 ≤ η ≤ n}. Without loss of generality, we suppose that sη < Mm
G , for any η. At that point, we

have ℑM(rη|Mm
G) = ℑM(rηsη|Mm

G), ℑM(qη|Mm
G) = ℑM(rηqη|Mm

G), and ℑM(qη+1|Mm
G) = ℑM(rηqη+1|Mm

G), a
contradiction.

□
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Figure 1. The Prism Allied Graph Dt
n, for n ≥ 4.

Lemma 2. Let P = {pη|1 ≤ η ≤ n} and Mm
G be any mixed resolving generator for the Prism allied

graph Dt
n. Then, P ∩ Mm

G , ∅.

Proof. Suppose on the contrary that P∩Mm
G = ∅ i.e., for any η, pη < Mm

G . Then, we haveℑM(qη|Mm
G) =

ℑM(pηqη|Mm
G), a contradiction. □

In the accompanying Lemma, we show that the cardinality of any mixed resolving generator for
the Prism allied graph Dt

n is greater than or equals to n + 1 i.e., |Mm
G | ≥ n + 1.

Lemma 3. For the Prism allied graph Dt
n and n ≥ 4, we have mdim(Dt

n) ≥ n + 1.

Proof. On contrary, we suppose that the cardinality of the mixed resolving generator Mm
G of the Prism

allied graph Dt
n is equals to n i.e., βM(Dt

n) = n. Then, on combining Lemma 1 and 2, we get contra-
diction as the cardinality of the set {sη|1 ≤ η ≤ n} is n. So, we must have βM(Dt

n) ≥ n + 1. □

Now, we are ready to obtain the exact mixed metric dimension for the Prism allied graph Dt
n. For

this, we have the following important result:

Theorem 5. For the Prism allied graph Dt
n, we have mdim(Dt

n) = n + 1, ∀ n ≥ 4.

Proof. By Lemma 3, we have mdim(Dt
n) ≥ n+ 1. Now, in order to complete the proof of the theorem,

we have to show that mdim(Dt
n) ≤ n + 1. For this, suppose Mm

G = {p1, s1, s2, ..., sn−1, sn} ⊂ V(Dt
n) (for

the location of these vertices, see Figure 1 (vertices in green color)). We will show that Mm
G is the

MMG for the Prism allied graph Dt
n. By total enumeration, it can be easily checked that the set Mm

G
is the MMG for the Prism allied graph Dt

n, when n = 4, 5. Now, for n ≥ 6, we consider the following
two cases regarding the positive integer n (i.e., when n ≡ 0(modn) and n ≡ 1(mod2)).

Case-1 n ≡ 0(mod2).
In this case, n can be written as n = 2α, where α ∈ N and α ≥ 3. Let M∗G = {p1, s1, s2, sα+1, sα+2}

⊂ V(Dt
n). Now, to figure out that M∗G is the MMG for the Prism allied graph Dt

n, we consign the mixed
metric codes for each vertex and each edge of the graph Dt

n regarding M∗G (b = α in Figures 1 and 2).
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Now, the mixed metric codes for the vertices {υ = pη, qη, rη, sη|η = 1, 2, 3, ..., n} regarding the set
M∗G are shown below in the following four tables respectively.

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pη|M∗G):(η = 1) (η − 1, 3, 4, α + 2, α + 1)
ℑM(pη|M∗G):(η = 2) (η − 1, η + 1, 3, α − η + 4, α + 2)
ℑM(pη|M∗G):(3 ≤ η ≤ α + 1) (η − 1, η + 1, η, α − η + 4, α − η + 5)
ℑM(pη|M∗G):(η = α + 2) (2α − η + 1, 2α − η + 4, η, η − α + 1, α − η + 5)
ℑM(pη|M∗G):(α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qη|M∗G):(η = 1) (η, 2, 3, α + 1, α)
ℑM(qη|M∗G):(η = 2) (η, η, 2, α − η + 3, α + 1)
ℑM(qη|M∗G):(3 ≤ η ≤ α + 1) (η, η, η − 1, α − η + 3, α − η + 4)
ℑM(qη|M∗G):(η = α + 2) (2α − η + 2, 2α − η + 3, η − 1, η − α, α − η + 4)
ℑM(qη|M∗G):(α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rη|M∗G): (η = 1) (η + 1, 1, 3, α − η + 3, α + 1)
ℑM(rη|M∗G): (η = 2) (η + 1, η + 1, 1, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (η = α + 1) (2α − η + 2, η + 1, η, 1, α − η + 4)
ℑM(rη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, η, η − α + 1, 1)
ℑM(rη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(sη|M∗G): (η = 1) (η + 2, 0, 4, α − η + 4, α + 2)
ℑM(sη|M∗G): (η = 2) (η + 2, η + 2, 0, α − η + 4, α − η + 5)
ℑM(sη|M∗G): (3 ≤ η ≤ α) (η + 2, η + 2, η + 1, α − η + 4, α − η + 5)
ℑM(sη|M∗G): (η = α + 1) (2α − η + 3, 2α − η + 4, η + 1, 0, α − η + 5)
ℑM(sη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α + 2, 0)
ℑM(sη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α + 2, η − α + 1)

and the mixed metric codes for the edges {ϵ = pηpη+1, pηqη, qηqη+1, qηrη, rηqη+1, rηsη|η = 1, 2, 3, ..., n}
regarding the set M∗G are shown in the tables below, respectively.

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pηpη+1|M∗G): (η = 1) (η − 1, 3, 3, α − η + 3, α + 1)
ℑM(pηpη+1|M∗G): (η = 2) (η − 1, η + 1, 3, α − η + 3, α − η + 4)
ℑM(pηpη+1|M∗G): (3 ≤ η ≤ α) (η − 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(pηpη+1|M∗G): (η = α + 1) (2α − η, 2α − η + 3, η, 3, α − η + 4)
ℑM(pηpη+1|M∗G): (η = α + 2) (2α − η, 2α − η + 3, 2α − η + 4, η − α + 1, 3)
ℑM(pηpη+1|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pηqη|M∗G): (η = 1) (η − 1, 2, 3, α + 1, α)
ℑM(pηqη|M∗G): (η = 2) (η − 1, η, 2, α − η + 3, α + 1)
ℑM(pηqη|M∗G): (3 ≤ η ≤ α + 1) (η − 1, η, η − 1, α − η + 3, α − η + 4)
ℑM(pηqη|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 3, η − 1, η − α, α − η + 4)
ℑM(pηqη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)
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ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qηqη+1|M∗G): (η = 1) (η, 2, 2, α − η + 2, α)
ℑM(qηqη+1|M∗G): (η = 2) (η, η, 2, α − η + 2, α − η + 3)
ℑM(qηqη+1|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qηqη+1|M∗G): (η = α + 1) (2α − η + 1, 2α − η + 2, η − 1, 2, α − η + 3)
ℑM(qηqη+1|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 2, 2α − η + 3, η − α, 2)
ℑM(qηqη+1|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 2, 2α − η + 3, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qηrη|M∗G): (η = 1) (η, 1, 3, α + 1, α)
ℑM(qηrη|M∗G): (η = 2) (η, η, 3, α − η + 2, α − η + 4)
ℑM(qηrη|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 3, α − η + 4)
ℑM(qηrη|M∗G): (η = α + 1) (η, η, η − 1, 1, α − η + 4)
ℑM(qηrη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, η − 1, η − α, 1)
ℑM(qηrη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rηqη+1|M∗G): (η = 1) (η + 1, 1, 2, α − η + 2, α + 1)
ℑM(rηqη+1|M∗G): (η = 2) (η + 1, η + 1, 1, α − η + 2, α − η + 3)
ℑM(rηqη+1|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 2, α − η + 3)
ℑM(rηqη+1|M∗G): (η = α + 1) (2α − η + 1, 2α − η + 2, η, 1, α − η + 3)
ℑM(rηqη+1|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 2, 2α − η + 3, η − α + 1, 1)
ℑM(rηqη+1|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 2, 2α − η + 3, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rηsη|M∗G): (η = 1) (η + 1, 0, 3, α − η + 3, α + 1)
ℑM(rηsη|M∗G): (η = 2) (η + 1, η + 1, 0, α − η + 3, α − η + 4)
ℑM(rηsη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rηsη|M∗G): (η = α + 1) (2α − η + 2, 2α − η + 3, η, 0, α − η + 4)
ℑM(rηsη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α + 1, 0)
ℑM(rηsη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

Now, from these mixed metric codes of the edges and the vertices of the Prism allied
graph Dt

n concerning the set M∗G, we ascertain that for 1 ≤ η ≤ n and η , 1, 2, α + 1, α + 2,
ℑM(qη|M∗G) = ℑM(rηqη|M∗G), ℑM(qη+1|M∗G) = ℑM(rηqη+1|M∗G), and ℑM(rη|M∗G) = ℑM(rηsη|M∗G).
For the remaining mixed metric edges and vertices codes in Dt

n, we find no two vertices or
edges with the same mixed metric codes. For η = 3, 4, ..., α − 1, α, α + 2, α + 3, ..., n, we see
that ℑM(qη|M∗G ∪ {sη}) , ℑM(rηqη|M∗G ∪ {sη}), ℑM(qη+1|M∗G ∪ {sη}) , ℑM(rηqη+1|M∗G ∪ {sη}), and
ℑM(rη|M∗G ∪ {sη}) , ℑM(rηsη|M∗G ∪ {sη}). From this, we obtain ℑM(qη|Mm

G) , ℑM(rηqη|Mm
G),

ℑM(qη+1|Mm
G) , ℑM(rηqη+1|Mm

G), and ℑM(rη|Mm
G) , ℑM(rηsη|Mm

G), for any 1 ≤ η ≤ n and so
|Mm

G | ≤ n + 1, suggesting that mdim(Dt
n) = n + 1 in this case.

Case-2 n ≡ 1(mod2).
In this case, n can be written as n = 2α + 1, where α ∈ N and α ≥ 3. Let M∗G = {p1, s1, s2, sα+1,

sα+2} ⊂ V(Dt
n). Now, to figure out that M∗G is the MMG for the Prism allied graph Dt

n, we consign the
mixed metric codes for each vertex and each edge of the graph Dt

n regarding M∗G.

Now, the mixed metric codes for the vertices {υ = pη, qη, rη, sη|η = 1, 2, 3, ..., n} regarding the set
M∗G are shown below in the following four tables respectively.
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ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pη|M∗G): (η = 1) (η − 1, 3, 4, α − η + 4, α + 2)
ℑM(pη|M∗G): (η = 2) (η − 1, η + 1, 3, α − η + 4, α − η + 5)
ℑM(pη|M∗G): (3 ≤ η ≤ α + 1) (η − 1, η + 1, η, α − η + 4, α − η + 5)
ℑM(pη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 5, η, η − α + 1, α − η + 5)
ℑM(pη|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 5, 2α − η + 6, η − α + 1, η − α)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qη|M∗G): (η = 1) (η, 2, 3, α − η + 3, α + 1)
ℑM(qη|M∗G): (η = 2) (η, η, 2, α − η + 3, α − η + 4)
ℑM(qη|M∗G): (3 ≤ η ≤ α + 1) (η, η, η − 1, α − η + 3, α − η + 4)
ℑM(qη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 4, η − 1, η − α, α − η + 4)
ℑM(qη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α, η − α − 1)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rη|M∗G): (η = 1) (η + 1, 1, 3, α − η + 3, α + 2)
ℑM(rη|M∗G): (η = 2) (η + 1, η + 1, 1, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (η = α + 1) (η + 1, η + 1, η, 1, α − η + 4)
ℑM(rη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 4, η, η − α + 1, 1)
ℑM(rη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)

ℑM(υ|M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(sη|M∗G): (η = 1) (η + 2, 0, 4, α − η + 4, α + 3)
ℑM(sη|M∗G): (η = 2) (η + 2, η + 2, 0, α − η + 4, α − η + 5)
ℑM(sη|M∗G): (3 ≤ η ≤ α) (η + 2, η + 2, η + 1, α − η + 4, α − η + 5)
ℑM(sη|M∗G): (η = α + 1) (η + 2, η + 2, η + 1, 0, α − η + 5)
ℑM(sη|M∗G): (η = α + 2) (2α − η + 4, 2α − η + 5, η + 1, η − α + 2, 0)
ℑM(sη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 4, 2α − η + 5, 2α − η + 6, η − α + 2, η − α + 1)

and the mixed metric codes for the edges {ϵ = pηpη+1, pηqη, qηqη+1, qηrη, rηqη+1, rηsη|η = 1, 2, 3, ..., n}
regarding the set M∗G are shown in the tables below, respectively.

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pηpη+1|M∗G): (η = 1) (η − 1, 3, 3, α − η + 3, α + 2)
ℑM(pηpη+1|M∗G): (η = 2) (η − 1, η + 1, 3, α − η + 3, α − η + 4)
ℑM(pηpη+1|M∗G): (3 ≤ η ≤ α) (η − 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(pηpη+1|M∗G): (η = α + 1) (2α − η + 1, η + 1, η, 3, α − η + 4)
ℑM(pηpη+1|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 4, η, η − α + 1, 3)
ℑM(pηpη+1|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 1, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(pηqη|M∗G): (η = 1) (η − 1, 2, 3, α − η + 3, α + 1)
ℑM(pηqη|M∗G): (η = 2) (η − 1, η, 2, α − η + 3, α − η + 4)
ℑM(pηqη|M∗G): (3 ≤ η ≤ α + 1) (η − 1, η, η − 1, α − η + 3, α − η + 4)
ℑM(pηqη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 4, η − 1, η − α, α − η + 4)
ℑM(pηqη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 4, 2α − η + 5, η − α, η − α − 1)
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ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qηqη+1|M∗G): (η = 1) (η, 2, 2, α − η + 2, α + 1)
ℑM(qηqη+1|M∗G): (η = 2) (η, η, 2, α − η + 2, α − η + 3)
ℑM(qηqη+1|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qηqη+1|M∗G): (η = α + 1) (2α − η + 2, η, η − 1, 2, α − η + 3)
ℑM(qηqη+1|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, η − 1, η − α, 2)
ℑM(qηqη+1|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(qηrη|M∗G): (η = 1) (η, 1, 3, α − η + 3, α + 1)
ℑM(qηrη|M∗G): (η = 2) (η, η, 1, α − η + 3, α − η + 4)
ℑM(qηrη|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 3, α − η + 4)
ℑM(qηrη|M∗G): (η = α + 1) (η, η, η − 1, 1, α − η + 4)
ℑM(qηrη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 4, η − 1, η − α, 1)
ℑM(qηrη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rηqη+1|M∗G): (η = 1) (η + 1, 1, 2, α − η + 2, α − η + 3)
ℑM(rηqη+1|M∗G): (η = 2) (η + 1, η + 1, 1, α − η + 2, α − η + 3)
ℑM(rηqη+1|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 2, α − η + 3)
ℑM(rηqη+1|M∗G): (η = α + 1) (2α − η + 2, 2α − η + 3, η, 1, α − η + 3)
ℑM(rηqη+1|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α + 1, 1)
ℑM(rηqη+1|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, s1, s2, sα+1, sα+2}

ℑM(rηsη|M∗G): (η = 1) (η + 1, 0, 3, α − η + 3, α + 2)
ℑM(rηsη|M∗G): (η = 2) (η + 1, η + 1, 0, α − η + 3, α − η + 4)
ℑM(rηsη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rηsη|M∗G): (η = α + 1) (η + 1, η + 1, η, 0, α − η + 4)
ℑM(rηsη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 4, η, η − α + 1, 0)
ℑM(rηsη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)

Now, from these mixed metric codes of the edges and the vertices of the Prism allied graph Dt
n

concerning the set M∗G, we ascertain that for 1 ≤ η ≤ n and η , 1, 2, α + 1, α + 2, ℑM(qη|M∗G) =
ℑM(rηqη|M∗G), ℑM(qη+1|M∗G) = ℑM(rηqη+1|M∗G), and ℑM(rη|M∗G) = ℑM(rηsη|M∗G). For the remaining
mixed metric edges and vertices codes in Dt

n, we find no two vertices or edges with the same mixed
metric codes. For η = 3, 4, ..., α−1, α, α+2, α+3, ..., n, we see that ℑM(qη|M∗G∪{sη}) , ℑM(rηqη|M∗G∪
{sη}), ℑM(qη+1|M∗G ∪ {sη}) , ℑM(rηqη+1|M∗G ∪ {sη}), and ℑM(rη|M∗G ∪ {sη}) , ℑM(rηsη|M∗G ∪ {sη}).
From this, we obtain ℑM(qη|Mm

G) , ℑM(rηqη|Mm
G), ℑM(qη+1|Mm

G) , ℑM(rηqη+1|Mm
G), and ℑM(rη|Mm

G) ,
ℑM(rηsη|Mm

G), for any 1 ≤ η ≤ n and so |MG| ≤ n + 1, suggesting that mdim(Dt
n) = n + 1 in this case

also, which concludes the theorem. □

Theorem 6. The independent mixed metric number for the Prism allied graph Dt
n, for n ≥ 4 is n + 1.

Proof. For proof, refer to Theorem 5. □
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4. Mixed Resolvability of the Web GraphWn

The Web graph Wn [16] has a vertex set of cardinality 3n and an edge set of cardinality 4n, in-
dicated by V(Wn) and E(Wn) respectively, where V(Wn) = {pη, qη, rη|1 ≤ η ≤ n} and E(Wn) =
{pηqη, pηpη+1, qηqη+1, rηqη|1 ≤ η ≤ n}. It comprises of n 4-sided faces, n pendant edges, and an n-
sided face (see Figure 2). The Web graphWn can also be obtained from the Prism graph Dn by simply
including n new pendant edges qηrη (1 ≤ η ≤ n).

Figure 2. The Web GraphWn, for n ≥ 4.

For our smooth purpose, we refer to the cycle brought forth by the arrangement of vertices {qη :
1 ⩽ η ⩽ n} and {pη : 1 ⩽ η ⩽ n} in the graph,Wn as the q and p-cycle respectively, the arrangement
of vertices {rη : 1 ⩽ η ⩽ n}, in the graph, Wn as the set of pendant vertices respectively. For our
convenience, we consider r1 = rn+1, q1 = qn+1, and p1 = pn+1. In this working section, we obtain that
the least possible cardinality for the MMG Mm

G of the Web graphWn is n+1. For this, we also see that
the MMG Mm

G for the Web graph Wn is independent. Now, in order to get the exact MMD of graph
Wn, we need the following Lemmas:

Lemma 4. The set of outer vertices {rη|1 ≤ η ≤ n} ⊂ Mm
G , where Mm

G is a MMG for the Web graph
Wn.

Proof. For the inconsistency, we suppose that the MMG Mm
G , does not contain at least one vertex from

the set {rη|1 ≤ η ≤ n}. Without loss of generality, we suppose that rη < Mm
G , for any η. At that point,

we have ℑM(rη|Mm
G) = ℑM(rηqη|Mm

G), a contradiction.
□

Lemma 5. Let P = {pη|1 ≤ η ≤ n} and Mm
G be any MMG for the Web graphWn. Then, P ∩ Mm

G , ∅.

Proof. Suppose on the contrary that P∩Mm
G = ∅ i.e., for any η, pη < Mm

G . Then, we haveℑM(qη|Mm
G) =

ℑM(pηqη|Mm
G), a contradiction. □
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In the accompanying Lemma, we show that the cardinality of any MMG for the Web graphWn is
greater than or equals to n + 1 i.e., |Mm

G | ≥ n + 1.

Lemma 6. For the Web graphWn and n ≥ 4, we have mdim(Wn) ≥ n + 1.

Proof. On contrary, we suppose that the cardinality of the MMG Mm
G of the Web graphWn is equals

n i.e., βM(Wn) = n. Then, on combining Lemma 4 and 5, we get contradiction as the cardinality of
the set {rη|1 ≤ η ≤ n} is n. So, we must have βM(Wn) ≥ n + 1. □

Now, for the Web graphWn, we have the following important result regarding its MMD:

Theorem 7. For the Web graphWn, we have mdim(Wn) = n + 1, ∀ n ≥ 4.

Proof. By Lemma 6, we have mdim(Wn) ≥ n+1. Now, in order to complete the proof of the theorem,
we have to show that mdim(Wn) ≤ n + 1. For this, suppose Mm

G = {p1, r1, r2, ..., rn−1, rn} ⊂ V(Wn)
(for the location of these vertices, see Figure 2 (vertices in purple color)). We will show that Mm

G is
the mixed metric basis set for the Web graph Wn. By total enumeration, it can be easily checked
that the set Mm

G is the mixed metric basis set for the Web graphWn, when n = 4, 5. Now, for n ≥ 6,
we consider the following two cases regarding the positive integer n (i.e., when n ≡ 0(modn) and
n ≡ 1(mod2)).

Case-1 n ≡ 0(mod2).
In this case, n can be written as n = 2α, where α ∈ N and α ≥ 3. Let M∗G = {p1, r1, r2, rα+1, rα+2}

⊂ V(Wn). Now, to figure out that M∗G is the MMG for the Web graph Wn, we consign the mixed
metric codes for each vertex and each edge of the graphWn regarding M∗G.

Now, the mixed metric codes for the vertices {υ = pη, qη, rη|η = 1, 2, 3, ..., n} regarding the set M∗G
are shown below in the following three tables respectively.

ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pη|M∗G): (η = 1) (η − 1, η + 1, 3, α − η + 3, α + 1)
ℑM(pη|M∗G): (2 ≤ η ≤ α + 1) (η − 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(pη|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 3, η, η − α + 1, α − η + 4)
ℑM(pη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qη|M∗G): (η = 1) (η, η, 2, α − η + 2, α)
ℑM(qη|M∗G): (2 ≤ η ≤ α + 1) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 2, η − 1, η − α, α − η + 3)
ℑM(qη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 2, 2α − η + 3, η − α, η − α − 1)

ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(rη|M∗G): (η = 1) (η + 1, 0, 3, α − η + 3, α + 1)
ℑM(rη|M∗G): (η = 2) (η + 1, η + 1, 0, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (η = α + 1) (η + 1, η + 1, η, 0, α − η + 4)
ℑM(rη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 3, η, η − α + 1, 0)
ℑM(rη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 3, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

and the mixed metric codes for the edges {ϵ = pηpη+1, pηqη, qηqη+1, qηrη|η = 1, 2, 3, ..., n} regarding
the set M∗G are shown in the tables below, respectively.
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ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pηpη+1|M∗G): (η = 1) (η − 1, η + 1, 2, α − η + 2, α + 1)
ℑM(pηpη+1|M∗G): (2 ≤ η ≤ α) (η − 1, η + 1, η, α − η + 2, α − η + 3)
ℑM(pηpη+1|M∗G): (η = α + 1) (2α − η, 2α − η + 2, η, η − α + 1, α − η + 3)
ℑM(pηpη+1|M∗G): (α + 2 ≤ η ≤ 2α) (2α − η, 2α − η + 2, 2α − η + 3, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pηqη|M∗G): (η = 1) (η − 1, η, 2, α − η + 2, α)
ℑM(pηqη|M∗G): (3 ≤ η ≤ α + 1) (η − 1, η, η − 1, α − η + 2, α − η + 3)
ℑM(pηqη|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 2, η − 1, η − α, α − η + 3)
ℑM(pηqη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 2, 2α − η + 3, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qηqη+1|M∗G): (η = 1) (η, η, 1, α − η + 1, α)
ℑM(qηqη+1|M∗G): (2 ≤ η ≤ α) (η, η, η − 1, α − η + 1, α − η + 2)
ℑM(qηqη+1|M∗G): (η = α + 1) (2α − η + 1, 2α − η + 1, η − 1, η − α, α − η + 2)
ℑM(qηqη+1|M∗G): (α + 2 ≤ η ≤ 2α) (2α − η + 1, 2α − η + 1, 2α − η + 2, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qηrη|M∗G): (η = 1) (η, 0, 2, α − η + 2, α)
ℑM(qηrη|M∗G): (η = 2) (η, η, 0, α − η + 2, α − η + 3)
ℑM(qηrη|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qηrη|M∗G): (η = α + 1) (η, η, η − 1, 0, α − η + 3)
ℑM(qηrη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 2, η − 1, η − α, 0)
ℑM(qηrη|M∗G): (α + 3 ≤ η ≤ 2α) (2α − η + 2, 2α − η + 2, 2α − η + 3, η − α, η − α − 1)

Now, from these mixed metric codes of the edges and the vertices of the Web graphWn concerning
the set M∗G, we ascertain that for 1 ≤ η ≤ n and η , 1, 2, α + 1, α + 2, ℑM(qη|M∗G) = ℑM(rηqη|M∗G).
For the remaining mixed metric edges and vertices codes in Wn, we find no two vertices or edges
with the same mixed metric codes. For η = 3, 4, ..., α − 1, α, α + 2, α + 3, ..., n, we see that
ℑM(qη|M∗G ∪ {rη}) , ℑM(rηqη|M∗G ∪ {rη}). From this, we obtain ℑM(qη|Mm

G) , ℑM(rηqη|Mm
G), for any

1 ≤ η ≤ n and so |Mm
G | ≤ n + 1, suggesting that mdim(Wn) = n + 1 in this case.

Case-2 n ≡ 1(mod2).
In this case, n can be written as n = 2α + 1, where α ∈ N and α ≥ 3. Let M∗G = {p1, r1, r2, rα+1,

rα+2} ⊂ V(Wn). Now, to figure out that M∗G is the MMG for the Web graphWn, we consign the mixed
metric codes for each vertex and each edge of the graphWn regarding M∗G.

Now, the mixed metric codes for the vertices {υ = pη, qη, rη|η = 1, 2, 3, ..., n} regarding the set M∗G
are shown below in the following three tables respectively.

ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pη|M∗G): (η = 1) (η − 1, η + 1, 3, α − η + 3, α + 2)
ℑM(pη|M∗G): (2 ≤ η ≤ α + 1) (η − 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(pη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 4, η, η − α + 1, α − η + 4)
ℑM(pη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)
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ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qη|M∗G): (η = 1) (η, η, 2, α − η + 2, α + 1)
ℑM(qη|M∗G): (2 ≤ η ≤ α + 1) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 3, η − 1, η − α, α − η + 3)
ℑM(qη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

ℑM(υ|M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(rη|M∗G): (η = 1) (η + 1, 0, 3, α − η + 3, α + 2)
ℑM(rη|M∗G): (η = 2) (η + 1, η + 1, 0, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (3 ≤ η ≤ α) (η + 1, η + 1, η, α − η + 3, α − η + 4)
ℑM(rη|M∗G): (η = α + 1) (η + 1, η + 1, η, 0, α − η + 4)
ℑM(rη|M∗G): (η = α + 2) (2α − η + 4, 2α − η + 4, η, η − α + 1, 0)
ℑM(rη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 4, 2α − η + 4, 2α − η + 5, η − α + 1, η − α)

and the mixed metric codes for the edges {ϵ = pηpη+1, pηqη, qηqη+1, qηrη|η = 1, 2, 3, ..., n} regarding
the set M∗G are shown in the tables below, respectively.

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pηpη+1|M∗G): (η = 1) (η − 1, η + 1, 2, α − η + 2, α − η + 3)
ℑM(pηpη+1|M∗G): (2 ≤ η ≤ α) (η − 1, η + 1, η, α − η + 2, α − η + 3)
ℑM(pηpη+1|M∗G): (η = α + 1) (η − 1, η + 1, η, η − α + 1, α − η + 3)
ℑM(pηpη+1|M∗G): (η = α + 2) (2α − η + 1, 2α − η + 3, η, η − α + 1, η − α)
ℑM(pηpη+1|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 1, 2α − η + 3, 2α − η + 4, η − α + 1, η − α)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(pηqη|M∗G): (η = 1) (η − 1, η, 2, α − η + 2, α + 1)
ℑM(pηqη|M∗G): (2 ≤ η ≤ α + 1) (η − 1, η, η − 1, α − η + 2, α − η + 3)
ℑM(pηqη|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 3, η − 1, η − α, α − η + 3)
ℑM(pηqη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qηqη+1|M∗G): (η = 1) (η, η, 1, α − η + 1, α − η + 2)
ℑM(qηqη+1|M∗G): (2 ≤ η ≤ α) (η, η, η − 1, α − η + 1, α − η + 2)
ℑM(qηqη+1|M∗G): (η = α + 1) (η, η, η − 1, η − α, α − η + 2)
ℑM(qηqη+1|M∗G): (η = α + 2) (2α − η + 2, 2α − η + 2, η − 1, η − α, η − α − 1)
ℑM(qηqη+1|M∗G):(α + 3 ≤ η ≤ 2α + 1) (2α − η + 2, 2α − η + 2, 2α − η + 3, η − α, η − α − 1)

ℑM(ϵ |M∗G) M∗G = {p1, r1, r2, rα+1, rα+2}

ℑM(qηrη|M∗G): (η = 1) (η, 0, 2, α − η + 2, α + 1)
ℑM(qηrη|M∗G): (η = 2) (η, η, 0, α − η + 2, α − η + 3)
ℑM(qηrη|M∗G): (3 ≤ η ≤ α) (η, η, η − 1, α − η + 2, α − η + 3)
ℑM(qηrη|M∗G): (η = α + 1) (η, η, η − 1, 0, α − η + 3)
ℑM(qηrη|M∗G): (η = α + 2) (2α − η + 3, 2α − η + 3, η − 1, η − α, 0)
ℑM(qηrη|M∗G): (α + 3 ≤ η ≤ 2α + 1) (2α − η + 3, 2α − η + 3, 2α − η + 4, η − α, η − α − 1)

Now, from these mixed metric codes of the edges and the vertices of the Web graphWn concerning
the set M∗G, we ascertain that for 1 ≤ η ≤ n and η , 1, 2, α+ 1, α+ 2, ℑM(qη|M∗G) = ℑM(rηqη|M∗G). For
the remaining mixed metric edges and vertices codes inWn, we find no two vertices or edges with the
same mixed metric codes. For η = 3, 4, ..., α − 1, α, α + 2, α + 3, ..., n, we see that ℑM(qη|M∗G ∪ {rη}) ,
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ℑM(rηqη|M∗G ∪ {rη}). From this, we obtain ℑM(qη|Mm
G) , ℑM(rηqη|Mm

G), for any 1 ≤ η ≤ n and so
|Mm

G | ≤ n + 1, suggesting that mdim(Wn) = n + 1 in this case also, which concludes the theorem. □

Theorem 8. The independent mixed metric number for the Web graphWn, for n ≥ 4 is n + 1.

Proof. For proof, refer to Theorem 7. □

5. Conclusion

In this examination, we determined the MMD for the two important families of the plane graphs
viz., the Web graphWn ( [16], see Figure 2) and the Prism allied graph Dt

n ( [15], see Figure 1), and
which was found to be non-constant unbounded for these two families of the plane graph. Moreover,
for the Web graph Wn and the Prism allied graph Dt

n, we unveil that the mixed metric basis set Mm
G

is independent. From preliminaries and these results, for these two families of plane graphs H = Dt
n

and H =Wn, we determined that β(H) < βE(H) < βM(H), for every n ≥ 5.
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