Article

On a conjecture of the harmonic index with given minimum degree of graphs and short proof of Liu's result on Randić index

Hanyuan Deng ${ }^{1}$ S. Balachandran ${ }^{2,3, *}$ and S. Raja Balachandar ${ }^{3}$
${ }^{1}$ College of Mathematics and Statistics, Hunan Normal University, Changsha,Hunan 410081, P. R. China.
${ }^{2}$ Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa.
${ }^{3}$ Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, India.
* Correspondence: balamaths 1977@gmail.com

Abstract

The harmonic index $H(G)$ of a graph G is defined as the sum of the weights $\frac{2}{d_{u}+d_{v}}$ of all edges $u v$ of G, where d_{u} denotes the degree of a vertex u. Delorme et al. [1] (2002) put forward a conjecture concerning the minimum Randić index among all connected graphs with n vertices and the minimum degree at least k. Motivated by this paper, a conjecture related to the minimum harmonic index among all connected graphs with n vertices and the minimum degree at least k was posed in [2]. In this work, we show that the conjecture is true for a connected graph on n vertices with k vertices of degree $n-1$, and it is also true for a k-tree. Moreover, we give a shorter proof of Liu's result [3].

Keywords: Randić index, harmonic index, minimum degree, k-tree.
Mathematics Subject Classification: 05C07, 05C15.

1. Introduction

Let $G=(V, E)$ denote a simple connected graph. The Randić (or connectivity) index $R(G)$ is defined in [4] by $R(G)=\sum_{u v \in(G)} \frac{1}{\sqrt{d_{u} d_{v}}}$, where d_{u} denotes the degree of a vertex u in G, and $\frac{1}{\sqrt{d_{u} d_{v}}}$ is called the weight of the edge $u v$ in the Randić index. This index was extensively studied in mathematical chemistry. The harmonic index $H(G)$ is defined in [5] as $H(G)=\sum_{u v E(G)} \frac{2}{d_{u}+d_{v}}$, where $\frac{2}{d_{u}+d_{v}}$ is called the weight of the edge $u v$ in the harmonic index. In [6], the authors considered the relation between the harmonic index and the eigenvalues of graphs. In [7], the author presented the minimum and maximum values of harmonic index on simple connected graphs and trees, and characterized the corresponding extremal graphs. In [8], the authors gave a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterized the corresponding extremal graphs.

In 1968, Harary and Palmer [9] defined an n-plex as an n-dimensional complex in which every k-simplex with $k<n$ is contained in an n-complex. For convenience, 0 -simplexes, 1 -simplexes, and 2 -simplexes are called points, lines, and cells respectively. The two-dimensional trees, also called 2 -trees can now be defined inductively. The 2-plex with three points is a 2 -tree, and a 2 -tree with
$\overline{p+1}$ points is obtained from a 2 -tree with p points by adjoining a new point w adjoint to each of two adjacent points u and v together with the accompanying cell $\{u, v, w\}$. The definition of a k-tree for $k>2$ is similar. In graph theory, a k-tree is a chordal graph all of whose maximal cliques are the same size $k+1$ and all of whose minimal clique separators are also all the same size k. Every k-tree may be formed by starting with a $(k+1)$-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex has exactly k neighbors that form a clique (see [10]). The minimum degree of a k-tree is k. And a 1 -tree is a tree in traditional graph theory.

Delorme et al. (2002) [1] put forward a conjecture concerning the minimum Randić index among all connected graphs with n vertices and the minimum degree at least k.

Conjecture 1. ([1]) For any connected graph with n vertices and the minimum degree at least k, $R(G) \geq \frac{k(n-k)}{\sqrt{k(n-1)}}+\frac{k(k-1)}{2(n-1)}$, the equality holds if and only if $G \cong K_{k, n-k}^{*}$, which arises from complete bipartite graph $K_{n, n-k}$ by joining each pair of vertices in the partite set with k vertices by a new edge.

Using linear programming, Pavlovic [11] proved that Conjecture 1 holds when $k=\frac{n-1}{2}$ or $k=\frac{n}{2}$ (see also [12] for further results proved by quadratic programming). Liu [3] showed that Conjecture 1 is true given the graph contains k vertices of degree $n-1$ and it is true among k-trees. But, Aouchiche and Hansen [13] refuted the conjecture by using the AutoGraphiX 2 system, and modified the conjecture. Motivated by this paper, a conjecture related to the minimum harmonic index among all connected graphs with n vertices and the minimum degree at least k was also posed in [2].

Conjecture 2. ([2]) Let G be a graph with $n \geq 4$ vertices and the minimum degree $\delta(G) \geq k$, where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor+1$. Then $H(G) \geq H\left(K_{k, n-k}^{*}\right)$ with equality if and only if $G=K_{k, n-k}^{*}$.

Deng et al posed the following conjecture in [14].
Conjecture 3. ([14]) For any simple and connected graph G with n vertices and the minimum degree at least $k, H(G) \geq \frac{k(k-1)}{2(n-1)}+\frac{2 k(n-k)}{n+k-1}$ with equality if and only if $G \cong K_{k, n-k}^{*}$.

A counter-example to Conjecture 3 is the graph obtained from K_{7} by deleting two independent edges.

Motivated by the paper [3] and [15], here, we will show that Conjecture 2 and Conjecture 3 is true for a connected graph containing k vertices of degree $n-1$ with n vertices and the minimum degree at least k, and it is also true for a k-tree. For additional results on this index, see [16-34].

2. Main Results

In the following, we first determine the minimum value of $H(G)$ of a graph on n vertices with k vertices of degree $n-1$, and show that Conjecture 2 and Conjecture 3 is true for a graph containing k vertices of degree $n-1$.

Lemma 1. ([8]) If e is an edge with maximum weight in G, then $H(G-e)<H(G)$.
Theorem 1. Let G be a graph with n vertices and k vertices of degree $n-1$. Then

$$
H(G) \geq \frac{k(k-1)}{2(n-1)}+\frac{2 k(n-k)}{n+k-1}
$$

with equality if and only if $G \cong K_{k, n-k}^{*}$.
Proof. It is easy to compute that $H\left(K_{k, n-k}^{*}\right)=\frac{k(k-1)}{2(n-1)}+\frac{2 k(n-k)}{n+k-1}$.
Let G be the graph with the minimum harmonic index among all graphs with n vertices and k vertices of degree $n-1$. Suppose X denotes the set of k vertices of degree $n-1$ in G and $Y=V(G)-X$. Then the subgraph induced by X is a clique. If $G \not \equiv K_{k, n-k}^{*}$, then the subgraph induced by Y is not an empty graph. Since the degree of every vertex in Y is at most $n-2$, an edge e with the maximum
weight belongs to the subgraph induced by Y. By Lemma 1, $H(G-e)<H(G)$ and $G-e$ is also a graph with n vertices and k vertices of degree $n-1$, a contradiction. So, the subgraph induced by Y is an empty graph, and $G \cong K_{k, n-k}^{*}$.

Theorem 1 shows that Conjecture 2 and Conjecture 3 is true for a connected graph on n vertices with k vertices of degree $n-1$, certainly, the minimum degree at least k.

Using linear programming, Liu [3] showed that Conjecture 1 is true for a connected graph with n vertices and k vertices of degree $n-1$. In the following, we give a shorter proof of this result.

Lemma 2. ([35]) Let e be an edge with maximum weight in a graph G. Then $R(G-e)<R(G)$.
Theorem 2. ([3]) Let G be a graph with n vertices and k vertices of degree $n-1$. Then

$$
R(G) \geq \frac{k(n-k)}{\sqrt{k(n-1)}}+\frac{k(k-1)}{2(n-1)}
$$

with equality if and only if $G \cong K_{k, n-k}^{*}$.
Proof. It is easy to compute that $R\left(K_{k, n-k}^{*}\right)=\frac{k(n-k)}{\sqrt{k(n-1)}}+\frac{k(k-1)}{2(n-1)}$.
Let G be the graph with the minimum Randić index among all graphs with n vertices and k vertices of degree $n-1$. X denotes the set of k vertices of degree $n-1$ in G and $Y=V(G)-X$. Then the subgraph induced by X is a clique. If $G \not \equiv K_{k, n-k}^{*}$, then the subgraph induced by Y is not an empty graph. Since the degree of every vertex in Y is at most $n-2$, an edge e with the maximum weight belongs to the subgraph induced by Y. By Lemma $2, R(G-e)<R(G)$ and $G-e$ is also a graph with n vertices and k vertices of degree $n-1$, a contradiction. So, the subgraph induced by Y is an empty graph, and $G \cong K_{k, n-k}^{*}$.

Now, we consider the harmonic index of a k-tree. The following lemma can be proved easily and it will be used in the back.

Lemma 3. If $x \geq k$, then $\frac{1}{x+d}-\frac{1}{x+d-1} \geq \frac{1}{k+d}-\frac{1}{k+d-1}$ and $\frac{1}{(x+d)^{2}}-\frac{1}{(x+d-2)^{2}} \geq \frac{1}{(k+d)^{2}}-\frac{1}{(k+d-2)^{2}}$.
Lemma 4. Let G be a k-tree with $n(n \geq k+1)$ vertices. v_{0} is a vertex of degree k in G and its neighbors $N\left(v_{0}\right)=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ and $d_{v_{i}}=d_{i}(i=1,2, \ldots, k)$, then

$$
H(G)-H\left(G-v_{0}\right) \geq f\left(d_{1}, d_{2}, \cdots, d_{k}\right)
$$

where $f\left(d_{1}, d_{2}, \cdots, d_{k}\right)=\sum_{i=1}^{k}\left(\frac{2\left(d_{i}-k+1\right)}{k+d_{i}}-\frac{2\left(d_{i}-k\right)}{k+d_{i}-1}\right)+\sum_{1 \leq i<j \leq k}\left(\frac{2}{d_{i}+d_{j}}-\frac{2}{d_{i}+d_{j}-2}\right)$. Moreover, $f\left(d_{1}, d_{2}, \cdots, d_{k}\right) \geq$ $f(n-1, n-1, \cdots, n-1)$, and $H(G)-H\left(G-v_{0}\right)=f(n-1, n-1, \cdots, n-1)$ if and only if $G=K_{k, n-k}^{*}$.
Proof. By the definition of a k-tree, the subgraph induced by $N\left(v_{0}\right)$ is a clique. We have

$$
\begin{aligned}
& H(G)-H\left(G-v_{0}\right)=\sum_{i=1}^{k} \frac{2}{k+d_{i}}+\sum_{1 \leq i<j \leq k}\left(\frac{2}{d_{i}+d_{j}}-\frac{2}{d_{i}+d_{j}-2}\right) \\
& +\sum_{i=1}^{k} \sum_{x \in N\left(v_{i}\right)-\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}}\left(\frac{2}{d_{x}+d_{i}}-\frac{2}{d_{x}+d_{i}-1}\right) \\
& \geq \sum_{i=1}^{k} \frac{2}{k+d_{i}}+\sum_{1 \leq i<j \leq k}\left(\frac{2}{d_{i}+d_{j}}-\frac{2}{d_{i}+d_{j}-2}\right) \\
& +\sum_{i=1}^{k}\left(\frac{2\left(d_{i}-k\right)}{k+d_{i}}-\frac{2\left(d_{i}-k\right)}{k+d_{i}-1}\right)\left(\text { by Lemma } 3 \text { and } d_{x} \geq k\right) \\
& =\sum_{i=1}^{k}\left(\frac{2\left(d_{i}-k+1\right)}{k+d_{i}}-\frac{2\left(d_{i}-k\right)}{k+d_{i}-1}\right)+\sum_{1 \leq i<j \leq k}\left(\frac{2}{d_{i}+d_{j}}-\frac{2}{d_{i}+d_{j}-2}\right)
\end{aligned}
$$

$$
=f\left(d_{1}, d_{2}, \cdots, d_{k}\right)
$$

Note that the partial derivatives

$$
\begin{aligned}
& \frac{\partial f\left(d_{1}, d_{2}, \cdots, d_{k}\right)}{\partial d_{i}} \\
= & \frac{2 k-1}{\left(k+d_{i}\right)^{2}}-\frac{(2 k-1)}{\left(k+d_{i}-1\right)^{2}}-\sum_{1 \leq j \leq k, j \neq i} \frac{1}{\left(d_{i}+d_{j}\right)^{2}}+\sum_{1 \leq j \leq k, j \neq i} \frac{1}{\left(d_{i}+d_{j}-2\right)^{2}} \\
\leq & \frac{2 k-1}{\left(k+d_{i}\right)^{2}}-\frac{(2 k-1)}{\left(k+d_{i}-1\right)^{2}}-\frac{k-1}{\left(d_{i}+k\right)^{2}}+\frac{k-1}{\left(d_{i}+k-2\right)^{2}}\left(\text { by Lemma } 3 \text { and } d_{j} \geq k\right) \\
< & 0
\end{aligned}
$$

for $i=1,2, \cdots, k$, and $k \leq d_{i} \leq n-1(i=1,2, \cdots, k)$, we have $f\left(d_{1}, d_{2}, \cdots, d_{k}\right) \geq f(n-1, n-$ $1, \cdots, n-1)$ if and only if equalities hold throughout the above inequalities, i.e., $d_{i}=n-1$ and $d_{x}=k$ for all $x \in N\left(v_{i}\right)-\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}(i=1,2, \cdots, k)$, and G is $K_{k, n-k}^{*}$.
Theorem 3. Let G be a k-tree with $n(n \geq k+1)$ vertices. Then $H(G) \geq \frac{k(k-1)}{2(n-1)}+\frac{2 k(n-k)}{n+k-1}$ with equality if and only if $G \cong K_{k, n-k}^{*}$.
Proof. We prove the result by induction on n. The result is true for $n=k+1$, since a k-tree G with $k+1$ is a complete graph K_{k+1} and $H(G)=\frac{k+1}{2}$. Assume that the result is true for any k-tree with $n=n_{0}\left(n_{0} \geq k+1\right)$ vertices. Let G be a k-tree with $n_{0}+1$ vertices. From the structure of a k-tree, there is a vertex v_{0} of degree k such that $G-v_{0}$ is a k-tree with n_{0} vertices. Denote $N\left(v_{0}\right)=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ and $d_{v_{i}}=d_{i}(i=1,2, \cdots, k)$. By Lemma 4 and the inductive assumption, we have

$$
\begin{aligned}
H(G) & \geq H\left(G-v_{0}\right)+f(n-1, n-1, \cdots, n-1) \\
& \geq H\left(K_{k, n-1-k}^{*}\right)+f(n-1, n-1, \cdots, n-1) \\
& =\frac{k(k-1)}{2(n-2)}+\frac{2 k(n-1-k)}{n+k-2}+\sum_{i=1}^{k}\left(\frac{2(n-k)}{k+n-1}-\frac{2(n-1-k)}{k+n-2}\right) \\
& +\sum_{1 \leq i i j j k}\left(\frac{2}{2 n-2}-\frac{2}{2 n-4}\right) \\
& =\frac{k(k-1)}{2(n-1)}+\frac{2 k(n-k)}{n+k-1}
\end{aligned}
$$

with equality if and only if $G=K_{k, n-k}^{*}$.
Theorem 3 shows that Conjecture 2 and Conjecture 3 is true for k-trees. Note that a 1 -tree is a tree, we get the following result immediately.
Corollary 1. ([7]) Let T be a tree with n vertices. Then $H(T) \geq \frac{2(n-1)}{n}$ with equality if and only if $T \cong S_{n}$.

Conflict of Interest

The authors declare no conflict of interests.

References

1. Delorme, C., Favaron, O. and Rautenbach, D., 2002. On the Randic index. Discrete Mathematics, 257(1), pp.29-38.
2. Cheng, M. and Wang, L., 2016. A lower bound for the harmonic index of a graph with minimum degree at least three. Filomat, 30(8), pp.2249-2260.
3. Liu, J., 2013. On a conjecture of the Randić index and the minimum degree of graphs. Discrete Applied Mathematics, 161(16-17), pp.2544-2548.
4. Randić, M., 1975. Characterization of molecular branching. Journal of the American Chemical Society, 97(23), pp.6609-6615.
5. Fajtlowicz, S., 1987. On conjectures of Graffiti-II. Congressus numerantium, 60, pp.187-197.
6. Favaron, O., Mahéo, M. and Saclé, J.F., 1993. Some eigenvalue properties in graphs (conjectures of Graffiti-II). Discrete mathematics, 111(1-3), pp.197-220.
7. Zhong, L., 2012. The harmonic index for graphs. Applied mathematics letters, 25(3), pp.561-566.
8. Wu, R., Tang, Z. and Deng, H., 2013. A lower bound for the harmonic index of a graph with minimum degree at least two. Filomat, 27(1), pp.51-55.
9. Harary, F. and Palmer, E.M., 1968. On acyclic simplicial complexes. Mathematika, 15(1), pp.115122.
10. Patil, H.P., 1986. On the structure of k-trees. Journal of Combinatorics, Information and System Sciences, 11(2-4), pp.57-64.
11. Pavlović, L., 2007. On the conjecture of Delorme, Favaron and Rautenbach about the Randić. European journal of operational research, 180(1), pp.369-377.
12. Pavlović, L. and Divnić, T., 2004. The new approach to the Randić index. Research report, Faculty of Science, University of Kragujevac, Serbia and Monte Negro.
13. Aouchiche, M. and Hansen, P., 2007. On a conjecture about the Randić index. Discrete Mathematics, 307(2), pp.262-265.
14. Deng, H., Balachandran, S. and Raja Balachandar, S., 2020. The minimum value of the harmonic index for a graph with the minimum degree two. Asian-European Journal of Mathematics, 13(03), p. 2050054.
15. Pavlović, L., 2003. Graphs with extremal Randic index when the minimum degree of vertices is two. Kragujevac Journal of Mathematics, 25(25), pp.55-63.
16. Deng, H., Balachandran, S., Ayyaswamy, S.K. and Venkatakrishnan, Y.B., 2013. On the harmonic index and the chromatic number of a graph. Discrete Applied Mathematics, 161(16-17), pp.27402744.
17. Deng, H., Balachandran, S. and Ayyaswamy, S.K., 2014. On two conjectures of Randic index and the largest signless Laplacian eigenvalue of graphs. Journal of Mathematical Analysis and Applications, 411(1), pp.196-200.
18. Deng, H., Tang, Z. and Zhang, J., 2015. On a conjecture of Randić index and graph radius. Filomat, 29(6), pp.1369-1375.
19. Deng, H., Balachandran, S., Venkatakrishnan, Y.B. and Balachandar, S.R., 2016. Trees with smaller harmonic indices. Filomat, 30(11), pp.2955-2963.
20. Deng, H., Balachandran, S., Ayyaswamy, S.K. and Venkatakrishnan, Y.B., 2017. On harmonic indices of trees, unicyclic graphs and bicyclic graphs. Ars Combinatoria, 130, pp.239-248.
21. Deng, H., Balachandran, S. and Ayyaswamy, S.K., 2018. A Note on Harmonic Index and Coloring Number of a Graph. Ars Combinatoria, 137, pp.257-262.
22. Deng, H., Balachandran, S. and Elumalai, S., 2019. Some tight bounds for the harmonic index and the variation of the Randic index of graphs. Discrete Mathematics, 342(7), pp.2060-2065.
23. Li, J. and Shiu, W.C., 2014. The harmonic index of a graph. The Rocky Mountain Journal of Mathematics, 44(5), pp.1607-1620.
24. Liu, J., 2015. Harmonie index of dense graphs. Ars Combinatoria, 120, pp.293-304.
25. Liu, J. and Zhang, Q., 2012. Remarks on harmonic index of graphs. Utilitas Mathematica, 88, pp.281-285.
26. Jian, B.L., Li, J. and Chee, S.W., 2014. The harmonic index of unicyclic graphs with given matching number. Kragujevac Journal of Mathematics, 38(1), pp.173-183.
27. Ma, Y., Shi, Y., Gutman, I. and Furtula, B., 2018. From the connectivity index to various Randictype descriptors. MATCH Communications in Mathematical and in Computer Chemistry, 80(1), pp.85-106.
28. Rasi, R., Sheikholeslami, S.M. and Gutman, I., 2017. On harmonic index of trees. MATCH Communications in Mathematical and in Computer Chemistry, 78, pp.405-416.
29. Rasi, R. and Sheikholeslami, S.M., 2017. The harmonic index of unicyclic graphs. AsianEuropean Journal of Mathematics, 10(03), p. 1750039.
30. Wu, R., Tang, Z. and Deng, H., 2013. On the harmonic index and the girth of a graph. Utilitas Mathematica, 91, pp.65-69.
31. Zhong, L., 2012. The harmonic index on unicyclic graphs. Ars Combinatoria, 104, pp.261-269.
32. Zhong, L. and Xu, K., 2013. The harmonic index for bicyclic graphs. Utilitas Mathematica, 90, pp.23-32.
33. Zhong, L. and Cui, Q., 2015. The harmonic index for unicyclic graphs with given girth. Filomat, 29(4), pp.673-686.
34. Zhu, Y. and Chang, R., 2014. On the harmonic index of bicyclic conjugated molecular graphs. Filomat, 28(2), pp.421-428.
35. Bollobás, B. and Erdoś, P., 1998. Graphs of extremal weights. Ars combinatoria, 50, pp.225-233
