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Abstract: The harmonic index H(G) of a graph G is defined as the sum of the weights 2
du+dv

of all
edges uv of G, where du denotes the degree of a vertex u. Delorme et al. [1] (2002) put forward a
conjecture concerning the minimum Randić index among all connected graphs with n vertices and the
minimum degree at least k. Motivated by this paper, a conjecture related to the minimum harmonic
index among all connected graphs with n vertices and the minimum degree at least k was posed in [2].
In this work, we show that the conjecture is true for a connected graph on n vertices with k vertices of
degree n − 1, and it is also true for a k-tree. Moreover, we give a shorter proof of Liu’s result [3].
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1. Introduction

Let G = (V, E) denote a simple connected graph. The Randić (or connectivity) index R(G) is
defined in [4] by R(G) =

∑
uv∈E(G)

1
√

dudv
, where du denotes the degree of a vertex u in G, and 1

√
dudv

is

called the weight of the edge uv in the Randić index. This index was extensively studied in mathe-
matical chemistry. The harmonic index H(G) is defined in [5] as H(G) =

∑
uv∈E(G)

2
du+dv

, where 2
du+dv

is

called the weight of the edge uv in the harmonic index. In [6], the authors considered the relation
between the harmonic index and the eigenvalues of graphs. In [7], the author presented the minimum
and maximum values of harmonic index on simple connected graphs and trees, and characterized
the corresponding extremal graphs. In [8], the authors gave a best possible lower bound for the har-
monic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and
characterized the corresponding extremal graphs.

In 1968, Harary and Palmer [9] defined an n-plex as an n-dimensional complex in which every
k-simplex with k < n is contained in an n-complex. For convenience, 0-simplexes, 1-simplexes, and
2-simplexes are called points, lines, and cells respectively. The two-dimensional trees, also called
2-trees can now be defined inductively. The 2-plex with three points is a 2-tree, and a 2-tree with
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p + 1 points is obtained from a 2-tree with p points by adjoining a new point w adjoint to each of two
adjacent points u and v together with the accompanying cell {u, v,w}. The definition of a k-tree for
k > 2 is similar. In graph theory, a k-tree is a chordal graph all of whose maximal cliques are the same
size k+ 1 and all of whose minimal clique separators are also all the same size k. Every k-tree may be
formed by starting with a (k + 1)-vertex complete graph and then repeatedly adding vertices in such
a way that each added vertex has exactly k neighbors that form a clique (see [10]). The minimum
degree of a k-tree is k. And a 1-tree is a tree in traditional graph theory.

Delorme et al. (2002) [1] put forward a conjecture concerning the minimum Randić index among
all connected graphs with n vertices and the minimum degree at least k.

Conjecture 1. ( [1]) For any connected graph with n vertices and the minimum degree at least k,
R(G) ≥ k(n−k)

√
k(n−1)

+
k(k−1)
2(n−1) , the equality holds if and only if G � K∗k,n−k, which arises from complete

bipartite graph Kn,n−k by joining each pair of vertices in the partite set with k vertices by a new edge.

Using linear programming, Pavlovic [11] proved that Conjecture 1 holds when k = n−1
2 or k = n

2
(see also [12] for further results proved by quadratic programming). Liu [3] showed that Conjecture
1 is true given the graph contains k vertices of degree n − 1 and it is true among k-trees. But, Aouch-
iche and Hansen [13] refuted the conjecture by using the AutoGraphiX 2 system, and modified the
conjecture. Motivated by this paper, a conjecture related to the minimum harmonic index among all
connected graphs with n vertices and the minimum degree at least k was also posed in [2].

Conjecture 2. ( [2]) Let G be a graph with n ≥ 4 vertices and the minimum degree δ(G) ≥ k, where
1 ≤ k ≤

⌊
n
2

⌋
+ 1. Then H(G) ≥ H(K∗k,n−k) with equality if and only if G = K∗k,n−k.

Deng et al posed the following conjecture in [14].

Conjecture 3. ( [14]) For any simple and connected graph G with n vertices and the minimum degree
at least k, H(G) ≥ k(k−1)

2(n−1) +
2k(n−k)
n+k−1 with equality if and only if G � K∗k,n−k.

A counter-example to Conjecture 3 is the graph obtained from K7 by deleting two independent
edges.

Motivated by the paper [3] and [15], here, we will show that Conjecture 2 and Conjecture 3 is true
for a connected graph containing k vertices of degree n − 1 with n vertices and the minimum degree
at least k, and it is also true for a k-tree. For additional results on this index, see [16–34].

2. Main Results

In the following, we first determine the minimum value of H(G) of a graph on n vertices with k
vertices of degree n − 1, and show that Conjecture 2 and Conjecture 3 is true for a graph containing k
vertices of degree n − 1.

Lemma 1. ( [8]) If e is an edge with maximum weight in G, then H(G − e) < H(G).

Theorem 1. Let G be a graph with n vertices and k vertices of degree n − 1. Then

H(G) ≥
k(k − 1)
2(n − 1)

+
2k(n − k)
n + k − 1

with equality if and only if G � K∗k,n−k.

Proof. It is easy to compute that H(K∗k,n−k) =
k(k−1)
2(n−1) +

2k(n−k)
n+k−1 .

Let G be the graph with the minimum harmonic index among all graphs with n vertices and k
vertices of degree n−1. Suppose X denotes the set of k vertices of degree n−1 in G and Y = V(G)−X.
Then the subgraph induced by X is a clique. If G � K∗k,n−k, then the subgraph induced by Y is not an
empty graph. Since the degree of every vertex in Y is at most n − 2, an edge e with the maximum
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weight belongs to the subgraph induced by Y . By Lemma 1, H(G − e) < H(G) and G − e is also a
graph with n vertices and k vertices of degree n− 1, a contradiction. So, the subgraph induced by Y is
an empty graph, and G � K∗k,n−k. 2

Theorem 1 shows that Conjecture 2 and Conjecture 3 is true for a connected graph on n vertices
with k vertices of degree n − 1, certainly, the minimum degree at least k.

Using linear programming, Liu [3] showed that Conjecture 1 is true for a connected graph with n
vertices and k vertices of degree n − 1. In the following, we give a shorter proof of this result.

Lemma 2. ( [35]) Let e be an edge with maximum weight in a graph G. Then R(G − e) < R(G).

Theorem 2. ( [3]) Let G be a graph with n vertices and k vertices of degree n − 1. Then

R(G) ≥
k(n − k)
√

k(n − 1)
+

k(k − 1)
2(n − 1)

with equality if and only if G � K∗k,n−k.

Proof. It is easy to compute that R(K∗k,n−k) =
k(n−k)
√

k(n−1)
+

k(k−1)
2(n−1) .

Let G be the graph with the minimum Randić index among all graphs with n vertices and k vertices
of degree n − 1. X denotes the set of k vertices of degree n − 1 in G and Y = V(G) − X. Then the
subgraph induced by X is a clique. If G � K∗k,n−k, then the subgraph induced by Y is not an empty
graph. Since the degree of every vertex in Y is at most n − 2, an edge e with the maximum weight
belongs to the subgraph induced by Y . By Lemma 2, R(G − e) < R(G) and G − e is also a graph with
n vertices and k vertices of degree n − 1, a contradiction. So, the subgraph induced by Y is an empty
graph, and G � K∗k,n−k. 2

Now, we consider the harmonic index of a k-tree. The following lemma can be proved easily and
it will be used in the back.

Lemma 3. If x ≥ k, then 1
x+d −

1
x+d−1 ≥

1
k+d −

1
k+d−1 and 1

(x+d)2 −
1

(x+d−2)2 ≥
1

(k+d)2 −
1

(k+d−2)2 .

Lemma 4. Let G be a k-tree with n (n ≥ k + 1) vertices. v0 is a vertex of degree k in G and its
neighbors N(v0) = {v1, v2, · · · , vk} and dvi = di (i = 1, 2, . . . , k), then

H(G) − H(G − v0) ≥ f (d1, d2, · · · , dk).

where f (d1, d2, · · · , dk) =
k∑

i=1

(
2(di−k+1)

k+di
−

2(di−k)
k+di−1

)
+

∑
1≤i< j≤k

(
2

di+d j
− 2

di+d j−2

)
. Moreover, f (d1, d2, · · · , dk) ≥

f (n− 1, n− 1, · · · , n− 1), and H(G)−H(G − v0) = f (n− 1, n− 1, · · · , n− 1) if and only if G = K∗k,n−k.

Proof. By the definition of a k-tree, the subgraph induced by N(v0) is a clique. We have

H(G) − H(G − v0) =
k∑

i=1

2
k + di

+
∑

1≤i< j≤k

(
2

di + d j
−

2
di + d j − 2

)

+

k∑
i=1

∑
x∈N(vi)−{v0,v1,··· ,vk}

(
2

dx + di
−

2
dx + di − 1

)

≥

k∑
i=1

2
k + di

+
∑

1≤i< j≤k

(
2

di + d j
−

2
di + d j − 2

)

+

k∑
i=1

(
2(di − k)

k + di
−

2(di − k)
k + di − 1

)
(by Lemma 3 and dx ≥ k)

=

k∑
i=1

(
2(di − k + 1)

k + di
−

2(di − k)
k + di − 1

)
+

∑
1≤i< j≤k

(
2

di + d j
−

2
di + d j − 2

)
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= f (d1, d2, · · · , dk).

Note that the partial derivatives

∂ f (d1, d2, · · · , dk)
∂di

=
2k − 1

(k + di)2 −
(2k − 1)

(k + di − 1)2 −
∑

1≤ j≤k, j,i

1
(di + d j)2 +

∑
1≤ j≤k, j,i

1
(di + d j − 2)2

≤
2k − 1

(k + di)2 −
(2k − 1)

(k + di − 1)2 −
k − 1

(di + k)2 +
k − 1

(di + k − 2)2 (by Lemma 3 and d j ≥ k)

<0

for i = 1, 2, · · · , k, and k ≤ di ≤ n − 1 (i = 1, 2, · · · , k), we have f (d1, d2, · · · , dk) ≥ f (n − 1, n −
1, · · · , n−1) if and only if equalities hold throughout the above inequalities, i.e., di = n−1 and dx = k
for all x ∈ N(vi) − {v0, v1, · · · , vk} (i = 1, 2, · · · , k), and G is K∗k,n−k. 2

Theorem 3. Let G be a k-tree with n (n ≥ k + 1) vertices. Then H(G) ≥ k(k−1)
2(n−1) +

2k(n−k)
n+k−1 with equality

if and only if G � K∗k,n−k.

Proof. We prove the result by induction on n. The result is true for n = k + 1, since a k-tree G with
k + 1 is a complete graph Kk+1 and H(G) = k+1

2 . Assume that the result is true for any k-tree with
n = n0 (n0 ≥ k+1) vertices. Let G be a k-tree with n0+1 vertices. From the structure of a k-tree, there
is a vertex v0 of degree k such that G − v0 is a k-tree with n0 vertices. Denote N(v0) = {v1, v2, · · · , vk}

and dvi = di (i = 1, 2, · · · , k). By Lemma 4 and the inductive assumption, we have

H(G) ≥ H(G − v0) + f (n − 1, n − 1, · · · , n − 1)
≥ H(K∗k,n−1−k) + f (n − 1, n − 1, · · · , n − 1)

=
k(k − 1)
2(n − 2)

+
2k(n − 1 − k)

n + k − 2
+

k∑
i=1

(
2(n − k)
k + n − 1

−
2(n − 1 − k)

k + n − 2

)
+

∑
1≤i< j≤k

(
2

2n − 2
−

2
2n − 4

)
=

k(k − 1)
2(n − 1)

+
2k(n − k)
n + k − 1

with equality if and only if G = K∗k,n−k. 2

Theorem 3 shows that Conjecture 2 and Conjecture 3 is true for k-trees. Note that a 1-tree is a tree,
we get the following result immediately.

Corollary 1. ( [7]) Let T be a tree with n vertices. Then H(T ) ≥ 2(n−1)
n with equality if and only if

T � S n.
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