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Abstract: A vertex-colouring of a graph Γ is rainbow vertex connected if every pair of vertices (u, v)
in Γ there is a u−v path whose internal vertices have different colours. The rainbow vertex connection
number of a graph Γ, is the minimum number of colours needed to make Γ rainbow vertex connected,
denoted by rvc(Γ). Here, we study the rainbow vertex connection numbers of middle and total graphs.
A total-colouring of a graph Γ is total rainbow connected if every pair of vertices (u, v) in Γ there is
a u − v path whose edges and internal vertices have different colours. The total rainbow connection
number of Γ, is the minimum number of colours required to colour the edges and vertices of Γ in
order to make Γ total rainbow connected, denoted by trc(Γ). In this paper, we also research the total
rainbow connection numbers of middle and total graphs.
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1. Introduction

We consider finite and simple graphs only. That is, we do not allow the existence of loops and
multiple edges. We follow the terminology and notation of [1] for those not described here. A
graph Γ is an ordered pair (V(Γ), E(Γ)) consisting of a set V(Γ) of vertices and a set E(Γ) of edges.
Let Ps,Cs,Ks and K1,s−1, denote the path, cycle, complete graph, and star graph with s vertices,
respectively.

An edge-colouring of a connected graph Γ=(V(Γ), E(Γ)) is a mapping c : E → S , where S is a
set of colours. Usually, the set S of colours is taken to be {1, 2, . . . , t}, t ∈ N. A u − v path P in an
edge-coloured graph is defined as a rainbow path if it does not exist two edges on this path coloured
the same. An edge-coloured graph Γ is rainbow connected if any two vertices of Γ are connected
by a rainbow path. The rainbow connection number of a connected graph, denoted by rc(Γ), is the
minimum t for which are needed to make the graph rainbow connected. The concept of rainbow
connection number was first introduced and researched by Chartrand et al. in [2].

Likewise the concept of rainbow connection number, Krivelevich and Yuster [3] put forward
the concept of rainbow vertex connection number. A vertex-colouring of a connected graph Γ =
(V(Γ), E(Γ)) is a mapping c : V → S , where S is a set of colours. Usually, the set S of colours
is taken to be {1, 2, . . . , t}, t ∈ N. A path in a vertex-coloured graph is defined as a vertex rainbow
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path if its internal vertices are assigned distinct colours. A vertex-coloured graph Γ is rainbow vertex
connected if any two vertices of Γ are connected by a vertex rainbow path, while the colouring is
defined as rainbow vertex-colouring. The rainbow vertex connection number of Γ, is the minimum t
for which are needed to make Γ rainbow vertex connected, denoted by rvc(Γ). Let Γ be a connected
graph. The graph Γ is complete, we have rvc(Γ) = 0, and rvc(Γ) ≥ diam(Γ) − 1 with equality if and
only if the diameter of a graph is 1 or 2. Moreover, if Σ is a connected spanning subgraph of Γ(that is
V(Γ) = V(Σ)), then rvc(Γ) ≤ rvc(Σ).

The research of rainbow connection has attracted tremendous attention in the literature, and many
conclusions have been published, see [3–11] for example. For more results, The reader can refer to
the survey [12] and a new monograph [13].

As a natural generalization, Uchizawa et al. [14] and Liu et al. [15] introdeced the concept of total
rainbow connection number, respectively. A total-colouring of a graph Γ is a mapping c : V∪E → S ,
where S is a set of colours. Usually, the set S of colours is taken to be {1, 2, . . . , t}, t ∈ N. A u− v path
P in a graph is defined as a total rainbow path if its internal vertices and edges are assigned distinct
colours. A total-coloured graph Γ is total rainbow connected if any two vertices in Γ are connected
by a total rainbow path, while the colouring is defined as total rainbow colouring. The total rainbow
connection number of Γ, is the minimum t for which are needed to make Γ total rainbow connected,
denoted by trc(Γ). A simple observation is that the graph Γ is complete if and only if trc(Γ) = 1,
otherwise trc(Γ) ≥ 3. Moreover, trc(Γ) = 3 if diam(Γ) = 2 and rc(Γ) = 2. We also noticed some trivial
fact that trc(Γ) ≤ trc(Σ), where Σ is a connected spanning subgraph of Γ. For more results about the
function trc(Γ), the reader can see [16–22] for details.

Definition 1 ( [23]). The middle graph M(Γ) of a connected graph Γ is defined as follows,
(i) V(M(Γ)) = V(Γ) ∪ E(Γ).
(ii) Joining edges with those pairs of these vertices (x ∈ E(Γ), y ∈ E(Γ) ; x ∈ E(Γ), y ∈ V(Γ)) which

is adjacent (incident) in Γ.

In [24], Li investigated the rainbow connection numbers of middle graphs of Γ, where Γ �
Ps,Cs,K1,s or Ks. Here, we research the total rainbow connection numbers (rainbow vertex con-
nection numbers) for the above middle graphs. Our first main result is stated as follows.

Theorem 1. (i) Let M(Ps) be the middle graph of Ps. Then rvc(M(Ps)) = s−1 and trc(M(Ps)) = 2s−1.
(ii) Let M(Cs) be the middle graph of Cs. Then

rvc(M(Cs)) =
{ s

2 if s is even;
s+1
2 if s is odd.

and

trc(M(Cs)) =
{

s + 1 if s is even;
s or s + 1 if s is odd.

(iii) Let M(K1,s) be the middle graph of K1,s. Then rvc(M(K1,s)) = s and trc(M(K1,s)) = 2s.
(iv) Let M(Ks) be the middle graph of Ks. Then rvc(M(Ks)) = 1 and 3 ≤ trc(M(Ks)) ≤ s + 1.

Definition 2 ( [25]). The total graph T (Γ) of a graph Γ is defined as follows.
(i) V(T (Γ)) = V(Γ) ∪ E(Γ).
(ii) Joining edges with those pairs of these vertices (x ∈ E(Γ), y ∈ E(Γ) ; x ∈ E(Γ), y ∈ V(Γ) ;

x ∈ V(Γ), y ∈ V(Γ)) which is adjacent (incident) in Γ.

Li [24] considered the rainbow connection numbers of total graphs of Γ, where Γ � Ps,Cs,K1,s

or Ks. Here, we also consider the total rainbow connection numbers (rainbow vertex connection
numbers) for the above total graphs. Our second main result is stated as follows.
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Figure 1. The middle graph of Ps.

Theorem 2. (i) Let T (Ps) be the total graph of Ps. Then rvc(T (Ps)) = s − 2 and trc(T (Ps)) = 2s − 3.
(ii) Let T (Cs) be the total graph of Cs. Then

rvc(T (Cs)) =
{ s−2

2 or s
2 if s is even;

s−1
2 or s+1

2 if s is odd.

and

trc(T (Cs)) =
{

s − 1, s or s + 1 if s is even;
s or s + 1 if s is odd.

(iii) Let T (K1,s) be the total graph of K1,s. Then rvc(T (K1,s)) = 1, trc(T (K1,2)) = 3, trc(T (K1,3)) = 4
and trc(T (K1,s)) = 5 with s ≥ 4.

(iv) Let T (Ks) be the total graph of Ks. Then rvc(T (Ks)) = 1 and 3 ≤ trc(T (Ks)) ≤ s + 1.

2. Proof of Theorem 1

Proposition 1. Let M(Ps) be the middle graph of Ps. Then rvc(M(Ps)) = s−1 and trc(M(Ps)) = 2s−1.

Proof. The graph M(Ps) is depicted in Figure 1. First we prove that rvc(M(Ps)) = s − 1. Let c
be a vertex-colouring of M(Ps) defined as follows: c(u1) = 1, c(vi) = c(ui+1) = i for 1 ≤ i ≤ s − 2,
c(vs−1) = c(us) = s−1. We will see that M(Ps) is rainbow vertex connected, and so rvc(M(Ps)) ≤ s−1.
On the other hand, since diam(M(Ps)) = s, this implies rvc(M(Ps)) ≥ s−1, and so rvc(M(Ps)) = s−1.

Now we prove that trc(M(Ps)) = 2s − 1. Let c be a total-colouring of M(Ps) defined as follows:
c(u1v1) = 1, c(viui+1) = c(vivi+1) = c(ui+1vi+1) = i + 1 for 1 ≤ i ≤ s − 2, c(vs−1us) = s, c(u1) = s + 1,
c(vi) = c(ui+1) = s + i for 1 ≤ i ≤ s − 2, c(vs−1) = c(us) = 2s − 1. We will see that M(Ps) is total
rainbow connected. Thus trc(M(Ps)) ≤ 2s−1. On the other hand, since diam(M(Ps)) = s, this implies
trc(M(Ps)) ≥ 2s − 1, which follows that trc(M(Ps)) = 2s − 1. □

Proposition 2. Let M(Cs) be the middle graph of Cs. Then

rvc(M(Cs)) =
{ s

2 if s is even;
s+1
2 if s is odd.

and

trc(M(Cs)) =
{

s + 1 if s is even;
s or s + 1 if s is odd.

Proof. The graph M(Cs) is depicted in Figure 2. First we prove that

rvc(M(Cs)) =
{ s

2 if s is even;
s+1
2 if s is odd.

Suppose s is even with s = 2t. Since diam(M(Cs)) = t + 1, we have rvc(M(Cs)) ≥ t. Let c be a
vertex-colouring of M(Cs) defined as follows: c(ui) = c(vi) = i for 1 ≤ i ≤ t, c(ui) = c(vi) = i − t
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Figure 2. The middle graph of Cs.

for t + 1 ≤ i ≤ s. We know that M(Cs) is rainbow vertex connected, and so rvc(M(Cs)) ≤ t. Thus
rvc(M(Cs)) = t.

Suppose s is odd with s = 2t + 1. Since diam(M(Cs)) = t + 1, it follows that rvc(M(Cs)) ≥ t. Now
we show that rvc(M(Cs)) , t. To the contrary, assume that M(Cs) exists a rainbow vertex-colouring c
with t colours. Considering u1 and ut+1, u1v1v2 · · · vt−1vtut+1 must be a vertex rainbow u1 − ut+1 path.
Without loss of generality, let c(vi) = i for 1 ≤ i ≤ t. Considering u2 and ut+2, u2v2v3 · · · vtvt+1ut+2

must be a vertex rainbow u2 − ut+2 path. Thus c(vt+1) = 1. By the same steps, we know that c(vt+i) = i
for 2 ≤ i ≤ t. Considering ut+2 and u1, ut+2vt+2vt+3 · · · vs−1vsu1 must be a vertex rainbow ut+2 − u1

path, and so c(vs) = 1. But then, there does not exist a vertex rainbow path connecting ut+3 and
u2, a contradiction. Thus rvc(M(Cs)) , t. Let c be a vertex-colouring of M(Cn) defined as follows:
c(vi) = c(ui) = i for 1 ≤ i ≤ t, c(vi) = c(ui) = i − t for t + 1 ≤ i ≤ 2t, c(vs) = c(us) = t + 1. We will see
that M(Cs) is rainbow vertex connected, and so rvc(M(Cs)) = t + 1.

Now we prove that

trc(M(Cs)) =
{

s + 1 if s is even;
s or s + 1 if s is odd.

Suppose s is even with s = 2t. Since diam(M(Cs)) = t+ 1, we have trc(M(Cs)) ≥ 2t+ 1. Let c be a
total-colouring of M(Cs) defined as follows: c(u1v1) = c(vsv1) = 1, c(uivi) = c(vi−1vi) = i for 2 ≤ i ≤ t,
c(uivi) = c(vi−1vi) = i− t for t + 1 ≤ i ≤ s, assign all other edges with t + 1, c(vi) = c(ui) = t + i+ 1 for
1 ≤ i ≤ t, c(vi) = c(ui) = i + 1 for t + 1 ≤ i ≤ s. We will see that M(Cs) is total rainbow connected,
and so trc(M(Cs)) ≤ s + 1. Thus trc(M(Cs)) = s + 1.

Suppose s is odd with s = 2t+ 1. Let c be a total-colouring of M(Cs) defined as follows: c(u1v1) =
c(vsv1) = 1, c(u1vs) = t + 1, c(viui) = c(vi−1vi) = i and c(vi−1ui) = t + 1 for 2 ≤ i ≤ t, c(vtvt+1) =
c(vtut+1) = c(ut+1vt+1) = t + 1, c(vt+iut+i+1) = c(vt+ivt+i+1) = c(vt+i+1ut+i+1) = i for 1 ≤ i ≤ t, c(vi) =
c(ui) = t + i + 1 for 1 ≤ i ≤ t, c(vi) = c(ui) = i + 1 for t + 1 ≤ i ≤ s. We obtained that M(Cs) is total
rainbow connected. Since diam(M(Cs)) = t + 1, we have trc(M(Cs)) ≥ 2t + 1 = s, which follows that
s ≤ trc(M(Cs)) ≤ s + 1. □

Proposition 3. Let M(K1,s) be the middle graph of K1,s. Then rvc(M(K1,s))
= s and trc(M(K1,s)) = 2s.
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Figure 3. The middle graph of K1,s.

Proof. The graph M(K1,s) is depicted in Figure 3. First we prove that rvc(M(K1,s)) = s. Since the
cut vertices must be coloured by different colours, we have rvc(M(K1,s)) ≥ s. Assign ui with i for
1 ≤ i ≤ s, and assign all other vertices with 1. We will see that M(K1,s) is rainbow vertex connected,
and so rvc(M(Ps)) ≤ s. This implies rvc(M(K1,s)) = s. Now we prove that trc(M(K1,s)) = 2s. Since
the cut edges and cut vertices must be coloured by different colours, we obtain trc(M(K1,s)) ≥ 2s. Let
c be a total-colouring of M(K1,s) defined as follows: c(uivi) = i for 1 ≤ i ≤ s, c(uu1) = s, c(uui) = i−1
for 2 ≤ i ≤ s, c(uiui+1) = i + 2 for 1 ≤ i ≤ s − 2, c(us−1us) = 1, c(uiu j) = j − 1 for 1 ≤ i, j ≤ s and
j− i ≥ 2, c(ui) = s+ i for 1 ≤ i ≤ s, assign all other vertices with s+ 1. Note that for any two different
vertices vi and v j for 1 ≤ i, j ≤ s, we know that viuiu jv j is a total rainbow vi − v j path. Thus M(K1,s)
is total rainbow connected, and hence trc(M(K1,s)) ≤ 2s. Therefore, trc(M(K1,s)) = 2s. □

Proposition 4. Let M(Ks) be the middle graph of Ks. Then rvc(M(Ks))
= 1 and 3 ≤ trc(M(Ks)) ≤ s + 1.

Proof. Note that diam(M(Ks)) = 2, we have rvc(M(Ks)) = 1. Now we prove that 3 ≤ trc(M(Ks)) ≤
s + 1. Obviously, trc(M(Ks)) ≥ 3 since diam(M(Ks)) = 2. The structure of M(Ks) is depicted as
follows: M(Ks) = H1 ∪ H2 ∪ · · · ∪ Hs, where Hi � Ks for 1 ≤ i ≤ s, and for any i, j ∈ {1, 2, · · · , s}, Hi

and H j only intersect a different vertex. Let c be a total-colouring of M(Ks) defined as follows: For
any e ∈ Hi, c(e) = i, assign s + 1 to all vertices. We will see that M(Ks) is total rainbow connected,
and so trc(M(Ks)) ≤ s + 1. Hence 3 ≤ trc(M(Ks)) ≤ s + 1. □

Combining Propositions 1, 2, 3, 4, Theorem 1 is immediate.

3. Proof of Theorem 2

Proposition 5. Let T (Ps) be the total graph of Ps. Then rvc(T (Ps)) = s − 2 and trc(T (Ps)) = 2s − 3.

Proof. The graph T (Ps) is depicted in Figure 4. First we prove that rvc(T (Ps)) = s − 2. Since
diam(T (Ps)) = s − 1, we have rvc(T (Ps)) ≥ s − 2. Let c be a vertex-colouring of T (Ps) defined as
follows: c(vi) = c(ui+1) = i for 1 ≤ i ≤ s − 2, assign all other vertices with 1. We will see that T (Ps)
is rainbow vertex connected, and so rvc(T (Ps)) ≤ s − 2. Thus rvc(T (Ps)) = s − 1.

Now we prove that trc(T (Ps)) = 2s − 3. Let c be a total-colouring of T (Ps) defined as follows:
c(uivi) = c(uiui+1) = c(viui+1) = i for 1 ≤ i ≤ s − 1, assign all other edges with 1, c(vi) = c(ui+1) =
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Figure 4. The total graph of Ps.

s + i − 1 for 1 ≤ i ≤ s − 2, all other vertices coloured with s. We will see that T (Ps) is total
rainbow connected with the above total-colouring. Thus trc(T (Ps)) ≤ 2s−3. On the other hand, since
diam(T (Ps)) = s − 1, this implies trc(T (Ps)) ≥ 2s − 3. This follows that trc(T (Ps)) = 2s − 3. □

Proposition 6. Let T (Cs) be the total graph of Cs. Then

rvc(T (Cs)) =
{ s

2 − 1 or s
2 if s is even;

s−1
2 or s+1

2 if s is odd.

and

trc(T (Cs)) =
{

s − 1, s or s + 1 if s is even;
s or s + 1 if s is odd.

Proof. By [24], we know that

diam(T (Cs)) =
{ s

2 if s is even;
s+1
2 if s is odd.

On the other hand, note that M(Cs) is a connected spanning subgraph of T (Cs), this proposition
follows from Proposition 2. □

Proposition 7. Let T (K1,s) be the total graph of K1,s. Then rvc(T (K1,s))
= 1, trc(T (K1,2)) = 3, trc(T (K1,3)) = 4 and trc(T (K1,s)) = 5 with s ≥ 4.

Proof. Since diam(T (K1,s)) = 2, we have rvc(T (K1,s)) = 1 and trc(T (K1,s))
≥ 3 for s ≥ 2.

Suppose s = 2. We can easily verify that the total-colouring shown in Figure 5(a) is total rainbow.
Thus trc(T (K1,2)) = 3.

Suppose s = 3. Let c be a total-colouring of T (K1,3) defined as follows: c(uv1) = c(uu1) =
1, c(uv2) = c(uu2) = 2, c(uv3) = c(uu3) = 3, assign all other edges with 1, and assign all vertices
with 4. We can easily verify that T (K1,3) is total rainbow connected with the above total-colouring,
and so trc(T (K1,3)) ≤ 4. Now we only need to prove that trc(T (K1,3)) , 3. To the contrary, assume
that T (K1,3) exists a total rainbow colouring with 3 colours. Considering v1 and v2, the total rainbow
v1 − v2 path must be v1uv2. Without loss of generality, assume that c(v1u) = 1, c(u) = 2, c(uv2) = 3.
Considering v1 and v3, the total rainbow v1 − v3 path must be v1uv3. Thus c(uv3) = 3. But then, there
is no total rainbow v2 − v3 path, a contradiction. Hence trc(T (K1,3)) , 3, and so trc(T (K1,3)) = 4.

Suppose s ≥ 4. Let c be a total-colouring of T (K1,s) defined as follows: assign 1 to the edges uvi

for 1 ≤ i ≤ s, assign 2 to the edges uivi for 1 ≤ i ≤ s, assign 3 to all other edges, assign 4 to u, and
assign 5 to all other vertices. We will see that T (K1,s) is total rainbow connected with the above total-
colouring. Thus trc(T (K1,s)) ≤ 5. Now we only need to prove that trc(T (K1,s)) , 4. To the contrary,
assume that T (K1,s) exists a total rainbow colouring with 4 colours. Considering v1 and v2, v1uv2 must
be a total rainbow v1−v2 path. Without loss of generality, assume that c(u) = 1, c(v1u) = 2, c(uv2) = 3.
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Figure 5. The total graph of K1,s.

Considering v1 and v3, v1uv3 must be a total rainbow v1 − v3 path. Thus c(uv3) = 4, otherwise there is
no total rainbow v2−v3 path. Considering v1 and v4, v1uv4 must be a total rainbow v1−v4 path. Hence
c(uv4) = 3 or 4. But then there is no total rainbow v2 − v4 path or v3 − v4 path. Hence trc(T (K1,s)) , 4,
and so trc(T (K1,s)) = 5. □

Proposition 8. Let T (Ks) be the total graph of Ks. Then rvc(T (Ks)) = 1 and 3 ≤ trc(T (Ks)) ≤ s + 1.

Proof. Note that diam(T (Ks)) = 2. Then rvc(T (Ks)) = 1. Obviously, M(Ks) is a connected spanning
subgraph of T (Ks). By Proposition 4, we have 3 ≤ trc(T (Ks)) ≤ s + 1. □

Combining Propositions 5, 6, 7, 8, Theorem 2 is immediate.

4. Conclusion

The concept of total rainbow connection number was proposed in recent years. Moreover, Chen et
al. [16] proved that the calculating of trc(Γ) is NP-hard. Subsequently, there is a great interest towards
determining the total rainbow connection numbers of some graph classes. In this paper, we mainly
consider the total rainbow connection numbers of middle and total graphs.
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