

Article

Total Dominator Colorings of *P*₄**-reducible and** *P*₄**-tidy Graphs**

Wei Ge¹ and Jun Yue^{2,*}

- ¹ Shandong University of Engineering and Vocational Technology, Ji'nan, Shandong, China
- ² School of Mathematics Science, Tiangong University, Tianjin, China
- * Correspondence: yuejun06@126.com

Abstract: A total dominator coloring of *G* without isolated vertex is a proper coloring of the vertices of *G* in which each vertex of *G* is adjacent to every vertex of some color class. The total dominator chromatic number $\chi_d^t(G)$ of *G* is the minimum number of colors among all total dominator coloring of *G*. In this paper, we will give the polynomial time algorithms to computing the total dominator coloring number for P_4 -reducible and P_4 -tidy graphs.

Keywords: total dominating set, total dominating coloring, P_4 -reducible graphs, P_4 -tidy graphs **Mathematics Subject Classification:** 05C69, 05C75, 05C85

1. Introduction

Let G = (V, E) be a graph with the vertex set V of order n and the edge set E of size m. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are $N(v) = \{u \in V | uv \in E\}$ and $N[v] = N_G(v) \cup \{v\}$, respectively. The degree of a vertex v is $deg_G(v) = |N_G(v)|$. The minimum and maximum degree of G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A *dominating set* of a graph G is a vertex subset S in G such that $N_G[S] = V$. The domination number $\gamma(G)$ of G is the cardinality of a minimum dominating set. As a generalization of the dominating set, the *total dominating set* TS of a graph G is a subset of the vertices in G such that $N_G(TS) = V$. The total domination number $\gamma_t(G)$ of G is the cardinality of a minimum total dominating set. The literature on total domination has been surveyed and detailed in the book [1].

A *total dominator coloring* of a graph *G* without isolated vertex is a proper coloring of *G* in which each vertex of the graph is adjacent to every vertex of some (other) color class. For convenience, we abbreviated write *TD-coloring* for total dominator coloring. The total dominator chromatic number $\chi_d^t(G)$ of *G* is the minimum number of color classes in a *TD*-coloring of *G*. It was introduced by Kazemi in [2] and studied further, the more details can refer to [3,4].

A similarly concept has been given by Gera, Horton and Rasmussen [5], which is called *dominator coloring*. A dominator coloring, briefly *DC*, of a graph *G* is a proper coloring of *G* such that every vertex of V(G) dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number $\chi_d(G)$ of G is the minimum number of color classes in a dominator coloring of *G*. As a consequence result, we have $\chi(G) \leq \chi_d(G) \leq \chi_d^t(G)$ for *G* without isolate vertex. Since then, many researchers studied on it, the details refer to [6–10].

An induced path on k vertices shall be denoted by P_k . Vertices of degree one (resp. two) in P_k will be called endpoints (resp. midpoints). An induced subgraph of G isomorphic to P_k is simply said to

be a P_k in *G*. A chordless cycle on *k* vertices is denoted by C_k . A cograph is a graph that does not contain P_4 as an induced subgraph [11]. Several generalizations of cographs have been defined in the literature, such as P_4 -sparse [12], P_4 -lite [13], P_4 -extendible [14] and P_4 -reducible graphs [15]. A graph class generalizing all of them is the class of P_4 -tidy graphs [16].

The practical applications (to computational semantics, examination scheduling, clustering analysis, group-based cooperation) of these classes of graphs, have certainly motivated the theoretical and algorithmical study. For some *NP*-hard problem, these classes of graphs have polynomial time algorithms. Bagan et al. [17] proved that determining χ_d^t is *NP*-hard for general graphs, but polynomialtime solvable for some special graphs, such as cographs and *P*₄-sparse graphs.

In this paper, we consider the total dominator coloring of graphs. In the next section, we give a polynomial time to compute the total dominator chromatic number of P_4 -reducible graphs. In the last section, the algorithm of the total dominator coloring of P_4 -tidy graphs is given, which is also a polynomial time algorithm.

2. *TD*-coloring in *P*₄-reducible graphs

In this section, we first give some basic lemmas, which will be used in the following section. And then we give a polynomial time algorithm to compute the value of the total dominator chromatic number of the P_4 -reducible graph. Lerchs el at. [18] proved that the cographs are precisely the graphs obtained from single-vertex graphs by a finite sequence of \cup and \vee operations defined as follows.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be arbitrary graphs with $V_1 \cap V_2 = \emptyset$. Now,

 $-G_1 \cup G_2$ is the union of G_1 and G_2 .

 $-G_1 \lor G_2$ is the join of G_1 and G_2 .

For the purpose of constructing the P_4 -reducible graphs, Jamison el at. [15] defined yet another graph operation, denoted by \oplus , as follows. Let the graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)(V_1 \cap V_2 = \emptyset)$ be such that $V_1 = \{a, d\}, E_1 = \emptyset$, and some adjacent vertices b, c in V_2 are adjacent to all the remaining vertices in V_2 .

 $-G_1 \oplus G_2 = (V_1 \cup V_2, \{ab, cd\} \cup E_2).$

A graph G is $B - P_4$ if there exists a unique $P_4 = abcd$ in G such that every vertex of G outside $\{a, b, c, d\}$ is adjacent to both b and c and nonadjacent to both a and d.

Proposition 1. [15] A graph G is P_4 -reducible if and only if, G is obtained from single-vertex graphs by a finite sequence of operations \cup , \vee and \oplus .

In the same paper, Jamison el at. also gave the following characterization of the P_4 -reducible graphs.

Theorem 1. [15] A graph G is P_4 -reducible if, and only if, for every induced subgraph H of G exactly one of the following conditions are satisfied

(i) H is disconnected;
(ii) H is disconnected;
(iii) H is a B - P₄ graph.

Before giving the main result, we need a new notation as follows. Given a graph G with a TD-coloring f. Let q_f to be the number of colors used by f. Since f is a TD-coloring, there exists a set of color classes of f such that every vertex of G total dominates at least one color class in that set; and we denote by p_f the size of a smallest such set. Obviously, $p_f < q_f$.

In a graph *G*, a complete bipartite graph G[X, Y] is called *universal* if every vertex in $V(G) \setminus \{X, Y\}$ is adjacent to every vertex of at least one set of *X* and *Y*.

Lemma 1. Let G be a connected graph, Then (i) The following are equivalent.

Total Dominator Colorings of P₄-reducible and P₄-tidy Graphs

- *G* has a TDC f with $p_f = 2$;

-G has a universal complete bipartite graph;

- Every proper coloring of G is a TD-coloring with $p_f = 2$.

(ii) If \overline{G} is not connected, then every proper coloring of G is a TDC and $\chi_d^t = \chi(G)$. Moreover, G must has a universal complete bipartite graph with $p_f = 2$.

Proof. (i) Suppose that *G* has a *TDC f* with $p_f = 2$. So there are two color classes *X* and *Y* such that every vertex of *G* total dominates at least one of *X* and *Y*. In particular, every vertex of *X* must dominate every vertex of *Y*, every vertex of *Y* must dominate every vertex of *X*, Thus *G*[*X*, *Y*] is a universal complete bipartite graph. Conversely, if *G* has a universal complete bipartite graph, then every proper coloring *f* is obviously a *TDC* with $p_f = 2$.

(ii) Since *G* is not connected, there is a partition of V(G) into two non-empty sets V_1 and V_2 such that every vertex of V_1 is adjacent in *G* to every vertex of V_2 . Let *f* be any proper coloring of *G*. Then some color α appears only in V_1 and some color β appears only in V_2 . So every vertex of V_1 totally dominates color β , and every vertex of V_2 totally dominates color α . Thus *f* is a *TDC*. and $\chi_d^t = \chi(G)$. Moreover, the same argument shows that $p_f \leq 2$, and every *TDC f* of *G* satisfies $p_f \geq 2$, then *G* must has a universal complete bipartite graph with $p_f = 2$.

Lemma 2. Let G be a non-connected graph with components $G_1, \ldots, G_k, k \ge 2$. Then

$$\chi_d^t = min\left\{\sum_{i=1}^k p_{f_i} + \max_{1 \le i \le k} \{q_{f_i} - p_{f_i}\}\right\},\$$

where the minimum is over all choices of a TD-coloring f_i for each G_i .

Proof. Let *f* be any *TD*-coloring of *G*. For i = 1, ..., k, any color class whose vertices are all in G_i will be called a *private color* of G_i . Let p_i be the number of private colors in G_i . Let f_i be the coloring induced by *f* on G_i . Consider any vertex *v* of G_i . Since *f* is a *TD*-coloring, *v* totally dominates a color class, which must therefore be a private color of G_i . By the same argument , f_i is a *TD*-coloring of G_i . Then $p_i \ge p_{f_i}$. Moreover, if R_i denotes the set of vertices of all private colors of G_i , then *f* uses $q_{f_i} - p_i$ colors on the vertices of $G_i \setminus R_i$. Such colors can be used on several components. So *f* uses at least

$$\sum_{i=1}^{k} p_i + \max_{1 \le i \le k} \{ q_{f_i} - p_i \}$$

colors. This value is larger than or equal to

$$\sum_{i=1}^{k} p_{f_i} + \max_{1 \le i \le k} \{ q_{f_i} - p_{f_i} \}.$$

Because replacing p_i by p_{f_i} can only decrease the sum, and if it increases the max then it decreases the sum correspondingly. On the other hand, we can turn f into a TD-coloring f' with a number of colors equal to the second displayed value. Indeed, let $q = \max_{1 \le i \le k} \{q_{f_i} - p_{f_i}\}$. It suffices to use in each G_i precisely p_{c_i} private colors and to rename $1, \ldots, q_{f_i} - p_{f_i}$ the other colors of f_i . Since f is any TD-coloring, it follows that χ_d^t is equal to the minimum of this value.

If the graph G is constructed by operation \oplus , then we give the following lemma.

Lemma 3. Let G be a connected $B - P_4$ graph, and let G^* be the vertex-induced subgraph by the outside of $\{a, b, c, d\}$. Then

$$\chi_d^t(G) = 2 + \chi(G^*).$$

Moreover, every TD-coloring of G has a universal bipartite graph with $p_f = 2$.

Proof. Color G^* using $\chi(G^*)$ such that G^* is proper coloring and color a, b with the two colors in $\chi(G^*)$, and then color b and c with two different new colors, respectively. For any vertex $v \in V(G)$, v must be adjacent to one of $\{b, c\}$, since G is a $B - P_4$ graph. This is to say, every vertex in G total dominates a color set. Then $\chi_d^t(G) \le 2 + \chi(G^*)$. Suppose that $\chi_d^t(G) \le 1 + \chi(G^*)$. Then there must be two adjacent vertices b, c in G have the same color by pigeonhole principle, a contradiction. So the lemma holds.

Combining the above lemmas, we give the following theorem.

Theorem 2. Let G be a P₄-reducible graph.

- (i) If G is $B P_4$ graph and G^* defined as Lemma 3, then $\chi_d^t(G) = 2 + \chi(G^*)$;
- (ii) If G is connected and not a $B P_4$ graph, then $\chi_d^t = \chi(G)$;

(iii) If G is not connected, and let $k (\geq 2)$ be the number of components in G, then

$$\chi_d^t(G) = \chi(G) + 2k - 2.$$

Proof. (i) From the Lemma 3, we have $\chi_d^t(G) = 2 + \chi(G^*)$.

(ii) Let *G* be a connected graph and not a $B - P_4$ graph. Then \overline{G} is not connected by Theorem 1. From Lemma 1 (ii), we have $\chi_d^t(G) = \chi(G)$.

(iii) Suppose that G is not connected. Let G_1, \ldots, G_k be the components of G. By Lemma 2, we have

$$\chi_d^t = min\left\{\sum_{i=1}^k p_{f_i} + \max_{1 \le i \le k} \{q_{f_i} - p_{f_i}\}\right\},\$$

for some appropriate choice of a *TD*-coloring f_i for each G_i . Consider any component G_i of G. If G_i has a universal bipartite graph, then we have $p_{f_i} = 2$ (whatever the choice of f_i) since Lemma 1. If G_i has no universal bipartite graph, then $\overline{G_i}$ is not connected from the Lemma 1. And further we have $p_{f_i} = 2$ (whatever the choice of f_i again) by Lemma 1. It follows that in the formula above, the sum term is equal to 2k. Moreover, we may assume that $q_{f_i} = \chi(G_i)$ for each *i* since this is the best way to minimize the value in the formula. More precisely, if some component G_i of *G* has a universal bipartite graph and satisfies $\chi(G_i) = \chi(G)$, then the max term in the formula is equal to $\chi(G) - 2$, so we obtain the conclusion.

3. *TD*-coloring in *P*₄-tidy graphs

In this section, we mainly study on the total dominator coloring of the P_4 -tidy graphs. Now, we begin with some preliminaries. Let G = (V, E) be a graph. Set $F = \{e \in E | e \text{ belongs to an induced } P_4 \text{ of } G\}$ and $G_p = (V, F)$. A connected component of G_p having exactly one vertex is called a weak vertex. Any connected component of G_p distinct from a weak vertex is called a *p*-component of *G*. A graph *G* is *p*-connected if it has only one *p*-component and no weak vertices.

An *p*-connected graph G = (V, E) is *p*-separable if *V* can be partitioned into two sets (C, S) such that each P_4 that contains vertices from *C* and from *S* has its midpoints in *C* and its endpoints in *S*. we will call it a *p*-partition. An urchin (resp. starfish) of size $k (\ge 2)$, is a *p*-separable graph with *p*-partition (C, S), where $C = \{c_1, \ldots, c_k\}$ is a clique; $S = \{s_1, \ldots, s_k\}$ is a stable set; s_i is adjacent to c_i if and only if i = j(resp. $i \neq j$). A quasi-urchin (resp. starfish) of size k is a graph obtained from an urchin (resp. starfish) of size k by replacing at most one vertex by K_2 or S_2 . Note that the new vertices result in true or false twins, respectively, and they are in the same set of the new *p*-partition (C^*, S^*) . The elements of S^* are called legs and C^* is called the body of the quasi-starfish or quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five possible quasi-urchins of size two: P_4 , P, \bar{P} , fork and kite (see Figure 1). To avoid ambiguity, we will consider these five graphs as quasi-starfishes, while quasi-urchins will be always of size at least three.

Figure 1. Possible quasi-starfishes of size two. From left to right: P_4 , fork, P,\bar{P} and kite.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We will call Type 1 (resp. Type 2) the urchins (resp. starfish); Type 3 (resp. Type 4) the urchins (resp. starfish), where a vertex in the body was replaced by K_2 ; Type 5 (resp. Type 6) the urchins (resp. starfish), where a vertex in the body was replaced by S_2 ; Type 7 (resp. Type 8) the urchins (resp. starfish), where a leg was replaced by K_2 ; and Type 9 (resp. Type 10) the urchins (resp. starfish), where a leg was replaced by S_2 . To avoid ambiguity, we will let the graph of odd type have size at least three.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with $V_1 \cap V_2 = \emptyset$, such that G_1 is *p*-separable with partition (V_1^1, V_1^2) . Consider the graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2 \cup \{xy | x \in V_1^1, y \in V_2\}$. we shall denote this graph by $G_1 \lor G_2$.

Proposition 2. [16] A graph G is P_4 -tidy if and only if every p-component is isomorphic to either P_5 or $\overline{P_5}$ or C_5 or a quasi-starfish or a quasi-urchin. Quasi-starfishes or quasi-urchins are the p-separable p-components of G.

Lemma 4. Let G be a quasi-starfish or quasi-urchin of size k. Then (1) If G is type 1, 2, 5, 6, 7, 9 or 10, then $\chi(G) = k$. (2) If G is type 3, 4 or 8, then $\chi(G) = k + 1$.

Proof. Since a proper coloring of the maximum clique in G can be extended to G without adding other colors, then the results are hold.

In [19], Corneil el at. gave the chromatic number of the union and join graph operations.

Theorem 3. [19] If G is the trivial graph, then $\chi(G) = 1$. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs such that $V_1 \cap V_2 = \emptyset$. Then,

i. $\chi(G_1 \cup G_2) = max\{\chi(G_1), \chi(G_2)\};$ *ii.* $\chi(G_1 \vee G_2) = \chi(G_1) + \chi(G_2).$

Lemma 5. Let G be a quasi-starfish or quasi-urchin of size k. Then

(1) If G is type 1, 2, 5, 6, 9 or 10, then $\chi_d^t(G) = k + 1$;

(2) If G is type 3, 4, 7 or 8, then $\chi_d^t(G) = k + 2$.

Proof. (1) By the configuration of *G*, let (C^*, S^*) be the *p*-partition of *G*. Now we give a coloring *f* of *G* as follows. If *G* is in type 1 (resp. type 2, type 9 or type 10), then color every vertex of C^* a new color and color all vertices of S^* another new color. Then *f* is a *TD*-coloring in *G* since every vertex is total dominator a color set, and $\chi_d^t(G) \le k + 1$. If *G* is in type 5 (resp. type 6), then color each S_2 with a different colors and color all the vertices in S^* another new colors. Then *f* is a *TD*-coloring of *G* and $\chi_d^t(G) \le k + 1$.

Suppose $\chi_d^t(G) = k$. We obtain $\chi_d^t(C^*) = k$, since C^* is a clique. Then there must be two vertices $c_i (\in C^*)$, $s_j (\in S^*)$ such that they have been colored by the same color and they are not adjacent. Let $s_i (\in S^*)$ is adjacent to c_i , we can get c_i is not adjacent to all the vertices in any color, a contradiction. Then $\chi_d^t(G) = k + 1$.

(2) Since the proof of type 3 and type 4 are similar to type 1, we limit them. Now assume that G is in type 7 (resp. type 8). Let s_1, s'_1 be two adjacent vertices in S^* . We give the following coloring

f of *G*. Color each vertex in *C*^{*} a new color; color the vertices s_1, s'_1 two new colors and color the remained vertex in *S*^{*} by the same color of s_1 or s'_1 . Then *f* is a *TD*-coloring of *G* with |f| = k + 2. Then $\chi_d^t(G) \le k + 2$.

Suppose $\chi_d^t(G) = k + 1$. Since C^* is a clique of size k, then color C^* must use k colors. All vertices of S^* do not color the same color, since s_1 or s'_1 is adjacent. Then either s_1 or s'_1 must have been colored by the same color of a vertex c_i in C^* . Then there are must be a vertex in $S^* \setminus \{s_1, s'_1\}$ that not dominate the color class which contains s_1 , a contradiction. Then $\chi_d^t(G) = k + 2$.

A *redundant color* of G is a color in a total dominating coloring of G that no vertex in G total dominating the vertices in this color. Let r(G) be the number of redundant colors in a total dominating coloring of G. Now, we give the lemmas as follows.

Lemma 6. (1) Let $G = G_1 \cup G_2$. Then

$$\chi_d^t(G) = \chi_d^t(G_1) + \chi_d^t(G_2) - \min\{r(G_1), r(G_2)\}.$$

(2) *Let* $G = G_1 \lor G_2$. *Then*

$$\chi_d^t(G) = \chi(G) = \chi(G_1) + \chi(G_2)$$

Proof. (1)Let f_i be a total dominator coloring of G_i with $r(G_i)$ redundant colors, where $i \in \{1, 2\}$. Without loss of generality, we assume that $r(G_1) \leq r(G_2)$. Now, we define the coloring f in G as follows. Color G_i as f_i and then using $r(G_1)$ redundant colors to repeat some redundant colors in G_2 . Because f_1 and f_2 are total dominator coloring of G_1 and G_2 , respective. Then f is total dominator coloring of G and then $\chi_d^t(G) = \chi_d^t(G_1) + \chi_d^t(G_2) - r(G_1)$. On the other hand, suppose that $\chi_d^t(G) \leq \chi_d^t(G_1) + \chi_d^t(G_2) - \min\{r(G_1), r(G_2)\} - 1$. By Pigeonhole Principle, there are some vertex which is not total dominating. Then the result holds.

(2) By Theorem 3 (ii), $\chi(G) = \chi(G_1) + \chi(G_2)$. Let *f* be a proper coloring of *G* using $\chi(G)$ colors. Since $G = G_1 \vee G_2$ contains a complete bipartite graph as a induced subgraph, then *f* is a total dominator coloring and $\chi_d^t(G) \le \chi(G)$. So $\chi_d^t(G) = \chi(G) = \chi(G_1) + \chi(G_2)$, since $\chi_d^t(G) \ge \chi(G)$.

Note that we can compute the number of redundant color in a total dominator coloring in polynomial time.

Lemma 7. Let $G_1 = (V_1, E_1)$ be a *p*-separable p_4 -tidy graph, and $G_2 = (V_2, E_2)$ a graph such that $V_1 \cap V_2 = \emptyset$. Then,

(1) If G is not type 7, then $\chi_d^t(G_1 \lor G_2) = \chi(G_1) + \chi(G_2) + 1$;

(2) If G is type 7, then $\chi_d^t(G_1 \underline{\lor} G_2) = \chi(G_1) + \chi(G_2) + 2$.

Proof. Let $G = G_1 \lor G_2$. By Proposition 2, G_1 is a quasi-urchin or a quasi-starfish and set (C^*, S^*) be its *p*-partition. Then *G* contains $G_1[C^*] \lor G_2$ as an induced subgraph. Thus $\chi_d^t(G) \ge \chi_d^t(G_1[C^*] \lor G_2)$. On the other hand, if *G* is type 7 or type 8, a *TDC* of $G_1[C^*] \lor G_2$ can be extended to *G* by adding two new colors. Hence $\chi_d^t(G) = \chi_d^t(G_1[C^*] \lor G_2) + 2$; if *G* is not type 7 or type 8, a *TDC* of $G_1[C^*] \lor G_2$ can be extended to *G* by adding one new colors. Hence $\chi_d^t(G) = \chi_d^t(G_1[C^*] \lor G_2) + 1$. By Lemma 6, we get $\chi_d^t(G_1 \lor G_2) = \chi(G_1) + \chi(G_2)$, so by Lemma 4, we can know if G_1 is type 8, then $\chi(G_1[C^*]) = \chi(G_1) - 1$; otherwise, $\chi(G_1[C^*]) = \chi(G_1)$.

Combining the above, we can get that if *G* is type 7, then $\chi_d^t(G) = \chi(G_1) + \chi(G_2) + 2$; otherwise, $\chi_d^t(G) = \chi(G_1) + \chi(G_2) + 1$.

Theorem 4. [20] Every graph G either is p-connected or can be obtained uniquely from its p-components and weak vertices by a finite sequence of \cup , \vee , \vee operations.

Combining the above lemmas and theorems, we get the following theorem.

Theorem 5. Total dominator chromatic number of P_4 -tidy can be computed in polynomial time on P_4 -tidy graphs.

acknowledgments

The authors would like to thank the anonymous referee for many helpful comments and suggestions.

Conflict of Interest

The authors declares no conflict of interests.

References

- 1. Henning, M. A. and Yeo, A., 2013. Total domination in graphs. *Springer Monographs in Mathematics*. New York: Springer.
- 2. Kazemi, A. P. (2015). Total dominator chromatic number of a graph. *Transactions on Combinatorics*, 2, pp.57-68.
- 3. Henning, M.A., 2015. Total dominator colorings and total domination in graphs. *Graphs and Combinatorics*, 31, pp.953-974.
- 4. Kazemi, A.P., 2013. Total dominator chromatic number and Mycieleskian graphs. *arXiv preprint arXiv:1307.7706*.
- 5. Gera, R., Rasmussen, C. and Horton, S., 2006. Dominator colorings and safe clique partitions. *Congressus numerantium*, 181, pp.19-32.
- 6. Arumugam, S., Bagga, J. and Chandrasekar, K.R., 2012. On dominator colorings in graphs. *Proceedings-Mathematical Sciences*, 122, pp.561-571.
- Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G. and Saurabh, S., 2011. Algorithmic aspects of dominator colorings in graphs. In *Combinatorial Algorithms: 22nd International Workshop, IWOCA 2011, Victoria, BC, Canada, July 20-22, 2011, Revised Selected Papers 22* (pp. 19-30). Springer Berlin Heidelberg.
- 8. Chellali, M. and Maffray, F., 2012. Dominator colorings in some classes of graphs. *Graphs and Combinatorics*, 28, pp.97-107.
- 9. Gera, R., 2007, April. On the dominator colorings in bipartite graphs. In *Fourth International Conference on Information Technology (ITNG'07)* (pp. 947-952). IEEE.
- 10. Gera, R., 2007. On dominator colorings in graphs. Graph Theory Notes of New York, 52, pp.25-30.
- 11. Corneil, D.G., Lerchs, H. and Burlingham, L.S., 1981. Complement reducible graphs. *Discrete Applied Mathematics*, *3*(3), pp.163-174.
- 12. Hoàng, C. T. (1985). *Perfect graphs* (Doctoral dissertation). School of Computer Science, McGill University, Montreal, Canada.
- 13. Jamison, B. and Olariu, S., 1989. A new class of brittle graphs. *Studies in Applied Mathematics*, 81(1), pp.89-92.
- 14. Jamison, B. and Olariu, S., 1991. On a unique tree representation for P_4 -extendible graphs. *Discrete Applied Mathematics*, 34(1-3), pp.151-164.
- 15. Jamison, B. and Olariu, S., 1989. P_4 -reducible graphsa class of uniquely tree representable graphs. *Studies in Applied Mathematics*, 81(1), pp.79-87.
- 16. Giakoumakis, V., Roussel, F. and Thuillier, H., 1997. On *P*₄-tidy graphs. *Discrete Mathematics and Theoretical Computer Science*, *1*, 17-41.
- 17. Bagan, G., Boumediene-Merouane, H., Haddad, M. and Kheddouci, H., 2017. On some domination colorings of graphs. *Discrete Applied Mathematics*, 230, pp.34-50.

- 18. Lerchs, H., 1972. On the clique-kernel structure of graphs, Dept. of Comp. Sci, *University of Toronto* (October 1972).
- 19. Corneil, D.G., Perl, Y. and Stewart, L.K., 1984. Cographs: recognition, applications and algorithms. *Congressus Numerantium*, 43, pp.249-258.
- 20. Jamison, B. and Olariu, S., 1995. *P*-components and the homogeneous decomposition of graphs. *SIAM Journal on Discrete Mathematics*, 8(3), pp.448-463.