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Abstract: A total dominator coloring of G without isolated vertex is a proper coloring of the vertices
of G in which each vertex of G is adjacent to every vertex of some color class. The total dominator
chromatic number χt

d(G) of G is the minimum number of colors among all total dominator coloring
of G. In this paper, we will give the polynomial time algorithms to computing the total dominator
coloring number for P4-reducible and P4-tidy graphs.
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1. Introduction

Let G = (V, E) be a graph with the vertex set V of order n and the edge set E of size m. The
open neighborhood and the closed neighborhood of a vertex v ∈ V are N(v) = {u ∈ V |uv ∈ E} and
N[v] = NG(v) ∪ {v}, respectively. The degree of a vertex v is degG(v) = |NG(v)|. The minimum and
maximum degree of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. A dominating set of
a graph G is a vertex subset S in G such that NG[S ] = V . The domination number γ(G) of G is
the cardinality of a minimum dominating set. As a generalization of the dominating set, the total
dominating set TS of a graph G is a subset of the vertices in G such that NG(TS ) = V . The total
domination number γt(G) of G is the cardinality of a minimum total dominating set. The literature on
total domination has been surveyed and detailed in the book [1].

A total dominator coloring of a graph G without isolated vertex is a proper coloring of G in which
each vertex of the graph is adjacent to every vertex of some (other) color class. For convenience, we
abbreviated write TD-coloring for total dominator coloring. The total dominator chromatic number
χt

d(G) of G is the minimum number of color classes in a T D-coloring of G. It was introduced by
Kazemi in [2] and studied further, the more details can refer to [3, 4].

A similarly concept has been given by Gera, Horton and Rasmussen [5], which is called dominator
coloring. A dominator coloring, briefly DC, of a graph G is a proper coloring of G such that every
vertex of V(G) dominates all vertices of at least one color class (possibly its own class). The dominator
chromatic number χd(G) of G is the minimum number of color classes in a dominator coloring of G.
As a consequence result, we have χ(G) ≤ χd(G) ≤ χt

d(G) for G without isolate vertex. Since then,
many researchers studied on it, the details refer to [6–10].

An induced path on k vertices shall be denoted by Pk. Vertices of degree one (resp. two) in Pk will
be called endpoints (resp. midpoints). An induced subgraph of G isomorphic to Pk is simply said to
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be a Pk in G. A chordless cycle on k vertices is denoted by Ck. A cograph is a graph that does not
contain P4 as an induced subgraph [11]. Several generalizations of cographs have been defined in the
literature, such as P4-sparse [12], P4-lite [13], P4-extendible [14] and P4-reducible graphs [15]. A
graph class generalizing all of them is the class of P4-tidy graphs [16].

The practical applications (to computational semantics, examination scheduling, clustering analy-
sis, group-based cooperation) of these classes of graphs, have certainly motivated the theoretical and
algorithmical study. For some NP-hard problem, these classes of graphs have polynomial time algo-
rithms. Bagan et al. [17] proved that determining χt

d is NP-hard for general graphs, but polynomial-
time solvable for some special graphs, such as cographs and P4-sparse graphs.

In this paper, we consider the total dominator coloring of graphs. In the next section, we give a
polynomial time to compute the total dominator chromatic number of P4-reducible graphs. In the
last section, the algorithm of the total dominator coloring of P4-tidy graphs is given, which is also a
polynomial time algorithm.

2. T D-coloring in P4-reducible graphs

In this section, we first give some basic lemmas, which will be used in the following section. And
then we give a polynomial time algorithm to compute the value of the total dominator chromatic
number of the P4-reducible graph. Lerchs el at. [18] proved that the cographs are precisely the graphs
obtained from single-vertex graphs by a finite sequence of ∪ and ∨ operations defined as follows.

Let G1 = (V1, E1) and G2 = (V2, E2) be arbitrary graphs with V1 ∩ V2 = ∅. Now,
– G1 ∪G2 is the union of G1 and G2.
– G1 ∨G2 is the join of G1 and G2.
For the purpose of constructing the P4-reducible graphs, Jamison el at. [15] defined yet another

graph operation, denoted by ⊕, as follows. Let the graphs G1 = (V1, E1) and G2 = (V2, E2)(V1∩V2 = ∅)
be such that V1 = {a, d}, E1 = ∅, and some adjacent vertices b, c in V2 are adjacent to all the remaining
vertices in V2.

– G1 ⊕G2 = (V1 ∪ V2, {ab, cd} ∪ E2).
A graph G is B − P4 if there exists a unique P4 = abcd in G such that every vertex of G outside

{a, b, c, d} is adjacent to both b and c and nonadjacent to both a and d.

Proposition 1. [15] A graph G is P4-reducible if and only if, G is obtained from single-vertex graphs
by a finite sequence of operations ∪, ∨ and ⊕.

In the same paper, Jamison el at. also gave the following characterization of the P4-reducible
graphs.

Theorem 1. [15] A graph G is P4-reducible if, and only if, for every induced subgraph H of G exactly
one of the following conditions are satisfied

(i) H is disconnected;
(ii) H is disconnected;
(iii) H is a B − P4 graph.

Before giving the main result, we need a new notation as follows.Given a graph G with a T D-
coloring f . Let q f to be the number of colors used by f . Since f is a T D-coloring, there exists a set
of color classes of f such that every vertex of G total dominates at least one color class in that set;
and we denote by p f the size of a smallest such set. Obviously, p f < q f .

In a graph G, a complete bipartite graph G[X,Y] is called universal if every vertex in V(G) \ {X,Y}
is adjacent to every vertex of at least one set of X and Y .

Lemma 1. Let G be a connected graph,Then
(i) The following are equivalent.
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— G has a T DC f with p f = 2;
— G has a universal complete bipartite graph;
— Every proper coloring of G is a T D-coloring with p f = 2.
(ii) If G is not connected, then every proper coloring of G is a T DC and χt

d = χ(G). Moreover, G
must has a universal complete bipartite graph with p f = 2.

Proof. (i) Suppose that G has a T DC f with p f = 2. So there are two color classes X and Y such
that every vertex of G total dominates at least one of X and Y . In particular, every vertex of X must
dominate every vertex of Y , every vertex of Y must dominate every vertex of X, Thus G[X,Y] is a
universal complete bipartite graph. Conversely, if G has a universal complete bipartite graph, then
every proper coloring f is obviously a T DC with p f = 2.

(ii) Since G is not connected, there is a partition of V(G) into two non-empty sets V1 and V2 such
that every vertex of V1 is adjacent in G to every vertex of V2. Let f be any proper coloring of G. Then
some color α appears only in V1 and some color β appears only in V2. So every vertex of V1 totally
dominates color β,and every vertex of V2 totally dominates color α, Thus f is a T DC. and χt

d = χ(G).
Moreover, the same argument shows that p f ≤ 2, and every T DC f of G satisfies p f ≥ 2, then G must
has a universal complete bipartite graph with p f = 2. □

Lemma 2. Let G be a non-connected graph with components G1, . . . ,Gk, k ≥ 2. Then

χt
d = min

 k∑
i=1

p fi +max
1≤i≤k
{q fi − p fi}

 ,
where the minimum is over all choices of a T D-coloring fi for each Gi.

Proof. Let f be any T D-coloring of G. For i = 1, . . . , k, any color class whose vertices are all in Gi

will be called a private color of Gi. Let pi be the number of private colors in Gi. Let fi be the coloring
induced by f on Gi. Consider any vertex v of Gi. Since f is a T D-coloring, v totally dominates a
color class, which must therefore be a private color of Gi. By the same argument , fi is a T D-coloring
of Gi. Then pi ≥ p fi . Moreover, if Ri denotes the set of vertices of all private colors of Gi, then f uses
q fi − pi colors on the vertices of Gi \ Ri. Such colors can be used on several components. So f uses at
least

k∑
i=1

pi +max
1≤i≤k
{q fi − pi}

colors. This value is larger than or equal to

k∑
i=1

p fi +max
1≤i≤k
{q fi − p fi}.

Because replacing pi by p fi can only decrease the sum, and if it increases the max then it decreases
the sum correspondingly. On the other hand, we can turn f into a T D-coloring f ′ with a number of
colors equal to the second displayed value. Indeed, let q = max

1≤i≤k
{q fi − p fi}. It suffices to use in each

Gi precisely pci private colors and to rename 1, . . . , q fi − p fi the other colors of fi. Since f is any
T D-coloring, it follows that χt

d is equal to the minimum of this value. □

If the graph G is constructed by operation ⊕, then we give the following lemma.

Lemma 3. Let G be a connected B − P4 graph, and let G∗ be the vertex-induced subgraph by the
outside of {a, b, c, d}. Then

χt
d(G) = 2 + χ(G∗).

Moreover, every T D-coloring of G has a universal bipartite graph with p f = 2.
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Proof. Color G∗ using χ(G∗) such that G∗ is proper coloring and color a, b with the two colors in
χ(G∗), and then color b and c with two different new colors, respectively. For any vertex v ∈ V(G),
v must be adjacent to one of {b, c}, since G is a B − P4 graph. This is to say, every vertex in G total
dominates a color set. Then χt

d(G) ≤ 2 + χ(G∗). Suppose that χt
d(G) ≤ 1 + χ(G∗). Then there must be

two adjacent vertices b, c in G have the same color by pigeonhole principle, a contradiction. So the
lemma holds. □

Combining the above lemmas, we give the following theorem.

Theorem 2. Let G be a P4-reducible graph.
(i) If G is B − P4 graph and G∗ defined as Lemma 3, then χt

d(G) = 2 + χ(G∗);
(ii) If G is connected and not a B − P4 graph, then χt

d = χ(G);
(iii) If G is not connected, and let k (≥ 2) be the number of components in G, then

χt
d(G) = χ(G) + 2k − 2.

Proof. (i) From the Lemma 3, we have χt
d(G) = 2 + χ(G∗).

(ii) Let G be a connected graph and not a B − P4 graph. Then G is not connected by Theorem 1.
From Lemma 1 (ii), we have χt

d(G) = χ(G).
(iii) Suppose that G is not connected. Let G1, . . . ,Gk be the components of G. By Lemma 2, we

have

χt
d = min

 k∑
i=1

p fi +max
1≤i≤k
{q fi − p fi}

 ,
for some appropriate choice of a T D-coloring fi for each Gi. Consider any component Gi of G. If
Gi has a universal bipartite graph, then we have p fi = 2 (whatever the choice of fi) since Lemma 1.
If Gi has no universal bipartite graph, then Gi is not connected from the Lemma 1. And further we
have p fi = 2 (whatever the choice of fi again) by Lemma 1. It follows that in the formula above, the
sum term is equal to 2k. Moreover, we may assume that q fi = χ(Gi) for each i since this is the best
way to minimize the value in the formula. More precisely, if some component Gi of G has a universal
bipartite graph and satisfies χ(Gi) = χ(G), then the max term in the formula is equal to χ(G) − 2, so
we obtain the conclusion. □

3. T D-coloring in P4-tidy graphs

In this section, we mainly study on the total dominator coloring of the P4-tidy graphs.
Now, we begin with some preliminaries. Let G = (V, E) be a graph. Set F = {e ∈
E|e belongs to an induced P4 of G} and Gp = (V, F). A connected component of Gp having ex-
actly one vertex is called a weak vertex. Any connected component of Gp distinct from a weak vertex
is called a p-component of G. A graph G is p-connected if it has only one p-component and no weak
vertices.

An p-connected graph G = (V, E) is p-separable if V can be partitioned into two sets (C, S ) such
that each P4 that contains vertices from C and from S has its midpoints in C and its endpoints in S .
we will call it a p-partition. An urchin (resp. starfish) of size k (≥ 2), is a p-separable graph with
p-partition (C, S ), where C = {c1, . . . , ck} is a clique; S = {s1, . . . , sk} is a stable set; si is adjacent to
ci if and only if i = j(resp. i , j). A quasi-urchin (resp. starfish) of size k is a graph obtained from an
urchin (resp.starfish) of size k by replacing at most one vertex by K2 or S 2. Note that the new vertices
result in true or false twins, respectively, and they are in the same set of the new p-partiton (C∗, S ∗).
The elements of S ∗ are called legs and C∗ is called the body of the quasi-starfish or quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five possible
quasi-urchins of size two: P4, P, P̄, fork and kite (see Figure 1). To avoid ambiguity, we will consider
these five graphs as quasi-starfishes, while quasi-urchins will be always of size at least three.

Ars Combinatoria Volume 157, 81–88



Total Dominator Colorings of P4-reducible and P4-tidy Graphs 85

Figure 1. Possible quasi-starfishes of size two. From left to right: P4, fork, P,P̄ and kite.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We will call Type
1 (resp. Type 2) the urchins (resp. starfish); Type 3 (resp. Type 4) the urchins (resp. starfish), where
a vertex in the body was replaced by K2; Type 5 (resp. Type 6) the urchins (resp. starfish), where a
vertex in the body was replaced by S 2; Type 7 (resp. Type 8) the urchins (resp. starfish), where a leg
was replaced by K2; and Type 9 (resp. Type 10) the urchins (resp. starfish), where a leg was replaced
by S 2. To avoid ambiguity, we will let the graph of odd type have size at least three.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅, such that G1 is p-separable
with partition (V1

1 ,V
2
1 ). Consider the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {xy|x ∈

V1
1 , y ∈ V2}. we shall denote this graph by G1∨G2.

Proposition 2. [16] A graph G is P4-tidy if and only if every p-component is isomorphic to either
P5 or P5 or C5 or a quasi-starfish or a quasi-urchin. Quasi-starfishes or quasi-urchins are the p-
separable p-components of G.

Lemma 4. Let G be a quasi-starfish or quasi-urchin of size k. Then
(1) If G is type 1, 2, 5, 6, 7, 9 or 10, then χ(G) = k.
(2) If G is type 3, 4 or 8, then χ(G) = k + 1.

Proof. Since a proper coloring of the maximum clique in G can be extended to G without adding
other colors, then the results are hold. □

In [19], Corneil el at. gave the chromatic number of the union and join graph operations.

Theorem 3. [19] If G is the trivial graph, then χ(G) = 1. Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs such that V1 ∩ V2 = ∅. Then,

i. χ(G1 ∪G2) = max{χ(G1), χ(G2)};
ii. χ(G1 ∨G2) = χ(G1) + χ(G2).

Lemma 5. Let G be a quasi-starfish or quasi-urchin of size k. Then
(1) If G is type 1, 2, 5, 6, 9 or 10, then χt

d(G) = k + 1;
(2) If G is type 3, 4, 7 or 8, then χt

d(G) = k + 2.

Proof. (1) By the configuration of G, let (C∗, S ∗) be the p-partition of G. Now we give a coloring f
of G as follows. If G is in type 1 (resp. type 2, type 9 or type 10), then color every vertex of C∗ a new
color and color all vertices of S ∗ another new color. Then f is a T D-coloring in G since every vertex
is total dominator a color set, and χt

d(G) ≤ k + 1. If G is in type 5 (resp. type 6), then color each S 2

with a different colors and color all the vertices in S ∗ another new colors. Then f is a T D-coloring of
G and χt

d(G) ≤ k + 1.
Suppose χt

d(G) = k. We obtain χt
d(C∗) = k, since C∗ is a clique. Then there must be two vertices

ci(∈ C∗), s j(∈ S ∗) such that they have been colored by the same color and they are not adjacent. Let
si(∈ S ∗) is adjacent to ci, we can get ci is not adjacent to all the vertices in any color, a contradiction.
Then χt

d(G) = k + 1.
(2) Since the proof of type 3 and type 4 are similar to type 1, we limit them. Now assume that G

is in type 7 (resp. type 8). Let s1, s′1 be two adjacent vertices in S ∗. We give the following coloring
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f of G. Color each vertex in C∗ a new color; color the vertices s1, s′1 two new colors and color the
remained vertex in S ∗ by the same color of s1 or s′1. Then f is a T D-coloring of G with | f | = k + 2.
Then χt

d(G) ≤ k + 2.
Suppose χt

d(G) = k+ 1. Since C∗ is a clique of size k, then color C∗ must use k colors. All vertices
of S ∗ do not color the same color, since s1 or s′1 is adjacent. Then either s1 or s′1 must have been
colored by the same color of a vertex ci in C∗. Then there are must be a vertex in S ∗ \ {s1, s′1} that not
dominate the color class which contains s1, a contradiction. Then χt

d(G) = k + 2.
□

A redundant color of G is a color in a total dominating coloring of G that no vertex in G total
dominating the vertices in this color. Let r(G) be the number of redundant colors in a total dominating
coloring of G. Now, we give the lemmas as follows.

Lemma 6. (1) Let G = G1 ∪G2. Then

χt
d(G) = χt

d(G1) + χt
d(G2) − min{r(G1), r(G2)}.

(2) Let G = G1 ∨G2. Then

χt
d(G) = χ(G) = χ(G1) + χ(G2).

Proof. (1)Let fi be a total dominator coloring of Gi with r(Gi) redundant colors, where i ∈ {1, 2}.
Without loss of generality, we assume that r(G1) ≤ r(G2). Now, we define the coloring f in G
as follows. Color Gi as fi and then using r(G1) redundant colors to repeat some redundant colors
in G2. Because f1 and f2 are total dominator coloring of G1 and G2, respective. Then f is total
dominator coloring of G and then χt

d(G) = χt
d(G1) + χt

d(G2) − r(G1). On the other hand, suppose that
χt

d(G) ≤ χt
d(G1) + χt

d(G2) − min{r(G1), r(G2)} − 1. By Pigeonhole Principle, there are some vertex
which is not total dominating. Then the result holds.

(2) By Theorem 3 (ii), χ(G) = χ(G1) + χ(G2). Let f be a proper coloring of G using χ(G) colors.
Since G = G1 ∨ G2 contains a complete bipartite graph as a induced subgraph, then f is a total
dominator coloring and χt

d(G) ≤ χ(G). So χt
d(G) = χ(G) = χ(G1) + χ(G2), since χt

d(G) ≥ χ(G). □

Note that we can compute the number of redundant color in a total dominator coloring in polyno-
mial time.

Lemma 7. Let G1 = (V1, E1) be a p-separable p4-tidy graph, and G2 = (V2, E2) a graph such that
V1 ∩ V2 = ∅. Then,

(1) If G is not type 7, then χt
d(G1∨G2) = χ(G1) + χ(G2) + 1;

(2) If G is type 7, then χt
d(G1∨G2) = χ(G1) + χ(G2) + 2.

Proof. Let G = G1∨G2. By Proposition 2, G1 is a quasi-urchin or a quasi-starfish and set (C∗, S ∗) be
its p-partition. Then G contains G1[C∗]∨G2 as an induced subgraph. Thus χt

d(G) ≥ χt
d(G1[C∗]∨G2).

On the other hand, if G is type 7 or type 8, a T DC of G1[C∗]∨G2 can be extended to G by adding two
new colors. Hence χt

d(G) = χt
d(G1[C∗]∨G2)+2; if G is not type 7 or type 8, a T DC of G1[C∗]∨G2 can

be extended to G by adding one new colors. Hence χt
d(G) = χt

d(G1[C∗]∨G2)+1. By Lemma 6, we get
χt

d(G1∨G2) = χ(G1)+χ(G2), so by Lemma 4, we can know if G1 is type 8, then χ(G1[C∗]) = χ(G1)−1;
otherwise, χ(G1[C∗]) = χ(G1).

Combining the above, we can get that if G is type 7, then χt
d(G) = χ(G1) + χ(G2) + 2; otherwise,

χt
d(G) = χ(G1) + χ(G2) + 1. □

Theorem 4. [20] Every graph G either is p-connected or can be obtained uniquely from its p-
components and weak vertices by a finite sequence of ∪, ∨, ∨ operations.

Combining the above lemmas and theorems, we get the following theorem.

Theorem 5. Total dominator chromatic number of P4-tidy can be computed in polynomial time on
P4-tidy graphs.
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