Article

Total Dominator Colorings of P_{4}-reducible and P_{4}-tidy Graphs

Wei $\mathbf{G e}^{1}$ and Jun Yue ${ }^{2, *}$
${ }^{1}$ Shandong University of Engineering and Vocational Technology, Ji'nan, Shandong, China
${ }^{2}$ School of Mathematics Science, Tiangong University, Tianjin, China
* Correspondence: yuejun06@126.com

Abstract

A total dominator coloring of G without isolated vertex is a proper coloring of the vertices of G in which each vertex of G is adjacent to every vertex of some color class. The total dominator chromatic number $\chi_{d}^{t}(G)$ of G is the minimum number of colors among all total dominator coloring of G. In this paper, we will give the polynomial time algorithms to computing the total dominator coloring number for P_{4}-reducible and P_{4}-tidy graphs.

Keywords: total dominating set, total dominating coloring, P_{4}-reducible graphs, P_{4}-tidy graphs
Mathematics Subject Classification: 05C69, 05C75, 05C85

1. Introduction

Let $G=(V, E)$ be a graph with the vertex set V of order n and the edge set E of size m. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are $N(v)=\{u \in V \mid u v \in E\}$ and $N[v]=N_{G}(v) \cup\{v\}$, respectively. The degree of a vertex v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree of G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. A dominating set of a graph G is a vertex subset S in G such that $N_{G}[S]=V$. The domination number $\gamma(G)$ of G is the cardinality of a minimum dominating set. As a generalization of the dominating set, the total dominating set $T S$ of a graph G is a subset of the vertices in G such that $N_{G}(T S)=V$. The total domination number $\gamma_{t}(G)$ of G is the cardinality of a minimum total dominating set. The literature on total domination has been surveyed and detailed in the book [1].

A total dominator coloring of a graph G without isolated vertex is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some (other) color class. For convenience, we abbreviated write TD-coloring for total dominator coloring. The total dominator chromatic number $\chi_{d}^{t}(G)$ of G is the minimum number of color classes in a $T D$-coloring of G. It was introduced by Kazemi in [2] and studied further, the more details can refer to [3,4].

A similarly concept has been given by Gera, Horton and Rasmussen [5], which is called dominator coloring. A dominator coloring, briefly $D C$, of a graph G is a proper coloring of G such that every vertex of $V(G)$ dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number $\chi_{d}(G)$ of G is the minimum number of color classes in a dominator coloring of G. As a consequence result, we have $\chi(G) \leq \chi_{d}(G) \leq \chi_{d}^{t}(G)$ for G without isolate vertex. Since then, many researchers studied on it, the details refer to [6-10].

An induced path on k vertices shall be denoted by P_{k}. Vertices of degree one (resp. two) in P_{k} will be called endpoints (resp. midpoints). An induced subgraph of G isomorphic to P_{k} is simply said to
be a P_{k} in G. A chordless cycle on k vertices is denoted by C_{k}. A cograph is a graph that does not contain P_{4} as an induced subgraph [11]. Several generalizations of cographs have been defined in the literature, such as P_{4}-sparse [12], P_{4}-lite [13], P_{4}-extendible [14] and P_{4}-reducible graphs [15]. A graph class generalizing all of them is the class of P_{4}-tidy graphs [16].

The practical applications (to computational semantics, examination scheduling, clustering analysis, group-based cooperation) of these classes of graphs, have certainly motivated the theoretical and algorithmical study. For some $N P$-hard problem, these classes of graphs have polynomial time algorithms. Bagan et al. [17] proved that determining χ_{d}^{t} is $N P$-hard for general graphs, but polynomialtime solvable for some special graphs, such as cographs and P_{4}-sparse graphs.

In this paper, we consider the total dominator coloring of graphs. In the next section, we give a polynomial time to compute the total dominator chromatic number of P_{4}-reducible graphs. In the last section, the algorithm of the total dominator coloring of P_{4}-tidy graphs is given, which is also a polynomial time algorithm.

2. $T D$-coloring in P_{4}-reducible graphs

In this section, we first give some basic lemmas, which will be used in the following section. And then we give a polynomial time algorithm to compute the value of the total dominator chromatic number of the P_{4}-reducible graph. Lerchs el at. [18] proved that the cographs are precisely the graphs obtained from single-vertex graphs by a finite sequence of \cup and \vee operations defined as follows.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be arbitrary graphs with $V_{1} \cap V_{2}=\emptyset$. Now,
$-G_{1} \cup G_{2}$ is the union of G_{1} and G_{2}.
$-G_{1} \vee G_{2}$ is the join of G_{1} and G_{2}.
For the purpose of constructing the P_{4}-reducible graphs, Jamison el at. [15] defined yet another graph operation, denoted by \oplus, as follows. Let the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)\left(V_{1} \cap V_{2}=\emptyset\right)$ be such that $V_{1}=\{a, d\}, E_{1}=\emptyset$, and some adjacent vertices b, c in V_{2} are adjacent to all the remaining vertices in V_{2}.
$-G_{1} \oplus G_{2}=\left(V_{1} \cup V_{2},\{a b, c d\} \cup E_{2}\right)$.
A graph G is $B-P_{4}$ if there exists a unique $P_{4}=a b c d$ in G such that every vertex of G outside $\{a, b, c, d\}$ is adjacent to both b and c and nonadjacent to both a and d.

Proposition 1. [15] A graph G is P_{4}-reducible if and only if, G is obtained from single-vertex graphs by a finite sequence of operations \cup, \vee and \oplus.

In the same paper, Jamison el at. also gave the following characterization of the P_{4}-reducible graphs.

Theorem 1. [15] A graph G is P_{4}-reducible if, and only if, for every induced subgraph H of G exactly one of the following conditions are satisfied
(i) H is disconnected;
(ii) \bar{H} is disconnected;
(iii) H is a $B-P_{4}$ graph.

Before giving the main result, we need a new notation as follows.Given a graph G with a $T D$ coloring f. Let q_{f} to be the number of colors used by f. Since f is a $T D$-coloring, there exists a set of color classes of f such that every vertex of G total dominates at least one color class in that set; and we denote by p_{f} the size of a smallest such set. Obviously, $p_{f}<q_{f}$.

In a graph G, a complete bipartite graph $G[X, Y]$ is called universal if every vertex in $V(G) \backslash\{X, Y\}$ is adjacent to every vertex of at least one set of X and Y.

Lemma 1. Let G be a connected graph,Then
(i) The following are equivalent.
$-G$ has a TDC f with $p_{f}=2$;

- G has a universal complete bipartite graph;
- Every proper coloring of G is a TD-coloring with $p_{f}=2$.
(ii) If \bar{G} is not connected, then every proper coloring of G is a TDC and $\chi_{d}^{t}=\chi(G)$. Moreover, G must has a universal complete bipartite graph with $p_{f}=2$.
Proof. (i) Suppose that G has a $T D C f$ with $p_{f}=2$. So there are two color classes X and Y such that every vertex of G total dominates at least one of X and Y. In particular, every vertex of X must dominate every vertex of Y, every vertex of Y must dominate every vertex of X, Thus $G[X, Y]$ is a universal complete bipartite graph. Conversely, if G has a universal complete bipartite graph, then every proper coloring f is obviously a $T D C$ with $p_{f}=2$.
(ii) Since \bar{G} is not connected, there is a partition of $V(G)$ into two non-empty sets V_{1} and V_{2} such that every vertex of V_{1} is adjacent in G to every vertex of V_{2}. Let f be any proper coloring of G. Then some color α appears only in V_{1} and some color β appears only in V_{2}. So every vertex of V_{1} totally dominates color β, and every vertex of V_{2} totally dominates color α, Thus f is a TDC. and $\chi_{d}^{t}=\chi(G)$. Moreover, the same argument shows that $p_{f} \leq 2$, and every $T D C f$ of G satisfies $p_{f} \geq 2$, then G must has a universal complete bipartite graph with $p_{f}=2$.

Lemma 2. Let G be a non-connected graph with components $G_{1}, \ldots, G_{k}, k \geq 2$. Then

$$
\chi_{d}^{t}=\min \left\{\sum_{i=1}^{k} p_{f_{i}}+\max _{1 \leq i \leq k}\left\{q_{f_{i}}-p_{f_{i}}\right\}\right\}
$$

where the minimum is over all choices of a TD-coloring f_{i} for each G_{i}.
Proof. Let f be any $T D$-coloring of G. For $i=1, \ldots, k$, any color class whose vertices are all in G_{i} will be called a private color of G_{i}. Let p_{i} be the number of private colors in G_{i}. Let f_{i} be the coloring induced by f on G_{i}. Consider any vertex v of G_{i}. Since f is a $T D$-coloring, v totally dominates a color class, which must therefore be a private color of G_{i}. By the same argument, f_{i} is a $T D$-coloring of G_{i}. Then $p_{i} \geq p_{f_{i}}$. Moreover, if R_{i} denotes the set of vertices of all private colors of G_{i}, then f uses $q_{f_{i}}-p_{i}$ colors on the vertices of $G_{i} \backslash R_{i}$. Such colors can be used on several components. So f uses at least

$$
\sum_{i=1}^{k} p_{i}+\max _{1 \leq i \leq k}\left\{q_{f_{i}}-p_{i}\right\}
$$

colors. This value is larger than or equal to

$$
\sum_{i=1}^{k} p_{f_{i}}+\max _{1 \leq i \leq k}\left\{q_{f_{i}}-p_{\left.f_{i}\right\}}\right\}
$$

Because replacing p_{i} by $p_{f_{i}}$ can only decrease the sum, and if it increases the max then it decreases the sum correspondingly. On the other hand, we can turn f into a $T D$-coloring f^{\prime} with a number of colors equal to the second displayed value. Indeed, let $q=\max _{1 \leq i \leq k}\left\{q_{f_{i}}-p_{f_{i}}\right\}$. It suffices to use in each G_{i} precisely $p_{c_{i}}$ private colors and to rename $1, \ldots, q_{f_{i}}-p_{f_{i}}$ the other colors of f_{i}. Since f is any $T D$-coloring, it follows that χ_{d}^{t} is equal to the minimum of this value.

If the graph G is constructed by operation \oplus, then we give the following lemma.
Lemma 3. Let G be a connected $B-P_{4}$ graph, and let G^{*} be the vertex-induced subgraph by the outside of $\{a, b, c, d\}$. Then

$$
\chi_{d}^{t}(G)=2+\chi\left(G^{*}\right)
$$

Moreover, every TD-coloring of G has a universal bipartite graph with $p_{f}=2$.

Proof. Color G^{*} using $\chi\left(G^{*}\right)$ such that G^{*} is proper coloring and color a, b with the two colors in $\chi\left(G^{*}\right)$, and then color b and c with two different new colors, respectively. For any vertex $v \in V(G)$, v must be adjacent to one of $\{b, c\}$, since G is a $B-P_{4}$ graph. This is to say, every vertex in G total dominates a color set. Then $\chi_{d}^{t}(G) \leq 2+\chi\left(G^{*}\right)$. Suppose that $\chi_{d}^{t}(G) \leq 1+\chi\left(G^{*}\right)$. Then there must be two adjacent vertices b, c in G have the same color by pigeonhole principle, a contradiction. So the lemma holds.

Combining the above lemmas, we give the following theorem.
Theorem 2. Let G be a P_{4}-reducible graph.
(i) If G is $B-P_{4}$ graph and G^{*} defined as Lemma 3, then $\chi_{d}^{t}(G)=2+\chi\left(G^{*}\right)$;
(ii) If G is connected and not a $B-P_{4}$ graph, then $\chi_{d}^{t}=\chi(G)$;
(iii) If G is not connected, and let $k(\geq 2)$ be the number of components in G, then

$$
\chi_{d}^{t}(G)=\chi(G)+2 k-2
$$

Proof. (i) From the Lemma 3, we have $\chi_{d}^{t}(G)=2+\chi\left(G^{*}\right)$.
(ii) Let G be a connected graph and not a $B-P_{4}$ graph. Then \bar{G} is not connected by Theorem 1. From Lemma 1 (ii), we have $\chi_{d}^{t}(G)=\chi(G)$.
(iii) Suppose that G is not connected. Let G_{1}, \ldots, G_{k} be the components of G. By Lemma 2, we have

$$
\chi_{d}^{t}=\min \left\{\sum_{i=1}^{k} p_{f_{i}}+\max _{1 \leq i \leq k}\left\{q_{f_{i}}-p_{f_{i}}\right\}\right\},
$$

for some appropriate choice of a $T D$-coloring f_{i} for each G_{i}. Consider any component G_{i} of G. If G_{i} has a universal bipartite graph, then we have $p_{f_{i}}=2$ (whatever the choice of f_{i}) since Lemma 1. If G_{i} has no universal bipartite graph, then $\overline{G_{i}}$ is not connected from the Lemma 1. And further we have $p_{f_{i}}=2$ (whatever the choice of f_{i} again) by Lemma 1. It follows that in the formula above, the sum term is equal to $2 k$. Moreover, we may assume that $q_{f_{i}}=\chi\left(G_{i}\right)$ for each i since this is the best way to minimize the value in the formula. More precisely, if some component G_{i} of G has a universal bipartite graph and satisfies $\chi\left(G_{i}\right)=\chi(G)$, then the max term in the formula is equal to $\chi(G)-2$, so we obtain the conclusion.

3. TD-coloring in P_{4}-tidy graphs

In this section, we mainly study on the total dominator coloring of the P_{4}-tidy graphs. Now, we begin with some preliminaries. Let $G=(V, E)$ be a graph. Set $F=\{e \in$ $E \mid e$ belongs to an induced P_{4} of $\left.G\right\}$ and $G_{p}=(V, F)$. A connected component of G_{p} having exactly one vertex is called a weak vertex. Any connected component of G_{p} distinct from a weak vertex is called a p-component of G. A graph G is p-connected if it has only one p-component and no weak vertices.

An p-connected graph $G=(V, E)$ is p-separable if V can be partitioned into two sets (C, S) such that each P_{4} that contains vertices from C and from S has its midpoints in C and its endpoints in S. we will call it a p-partition. An urchin (resp. starfish) of size $k(\geq 2)$, is a p-separable graph with p-partition (C, S), where $C=\left\{c_{1}, \ldots, c_{k}\right\}$ is a clique; $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is a stable set; s_{i} is adjacent to c_{i} if and only if $i=j$ (resp. $i \neq j$). A quasi-urchin (resp. starfish) of size k is a graph obtained from an urchin (resp.starfish) of size k by replacing at most one vertex by K_{2} or S_{2}. Note that the new vertices result in true or false twins, respectively, and they are in the same set of the new p-partiton $\left(C^{*}, S^{*}\right)$. The elements of S^{*} are called legs and C^{*} is called the body of the quasi-starfish or quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five possible quasi-urchins of size two: P_{4}, P, \bar{P}, fork and kite (see Figure 1). To avoid ambiguity, we will consider these five graphs as quasi-starfishes, while quasi-urchins will be always of size at least three.

Figure 1. Possible quasi-starfishes of size two. From left to right: P_{4}, fork, P, \bar{P} and kite.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We will call Type 1 (resp. Type 2) the urchins (resp. starfish); Type 3 (resp. Type 4) the urchins (resp. starfish), where a vertex in the body was replaced by K_{2}; Type 5 (resp. Type 6) the urchins (resp. starfish), where a vertex in the body was replaced by S_{2}; Type 7 (resp. Type 8) the urchins (resp. starfish), where a leg was replaced by K_{2}; and Type 9 (resp. Type 10) the urchins (resp. starfish), where a leg was replaced by S_{2}. To avoid ambiguity, we will let the graph of odd type have size at least three.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\emptyset$, such that G_{1} is p-separable with partition $\left(V_{1}^{1}, V_{1}^{2}\right)$. Consider the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2} \cup\{x y \mid x \in$ $\left.V_{1}^{1}, y \in V_{2}\right\}$. we shall denote this graph by $G_{1} \underline{\vee} G_{2}$.
Proposition 2. [16] A graph G is P_{4}-tidy if and only if every p-component is isomorphic to either P_{5} or $\overline{P_{5}}$ or C_{5} or a quasi-starfish or a quasi-urchin. Quasi-starfishes or quasi-urchins are the pseparable p-components of G.

Lemma 4. Let G be a quasi-starfish or quasi-urchin of size k. Then
(1) If G is type $1,2,5,6,7,9$ or 10 , then $\chi(G)=k$.
(2) If G is type 3,4 or 8 , then $\chi(G)=k+1$.

Proof. Since a proper coloring of the maximum clique in G can be extended to G without adding other colors, then the results are hold.

In [19], Corneil el at. gave the chromatic number of the union and join graph operations.
Theorem 3. [19] If G is the trivial graph, then $\chi(G)=1$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Then,
i. $\chi\left(G_{1} \cup G_{2}\right)=\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$;
ii. $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

Lemma 5. Let G be a quasi-starfish or quasi-urchin of size k. Then
(1) If G is type $1,2,5,6,9$ or 10 , then $\chi_{d}^{t}(G)=k+1$;
(2) If G is type $3,4,7$ or 8 , then $\chi_{d}^{t}(G)=k+2$.

Proof. (1) By the configuration of G, let $\left(C^{*}, S^{*}\right)$ be the p-partition of G. Now we give a coloring f of G as follows. If G is in type 1 (resp. type 2 , type 9 or type 10), then color every vertex of C^{*} a new color and color all vertices of S^{*} another new color. Then f is a $T D$-coloring in G since every vertex is total dominator a color set, and $\chi_{d}^{t}(G) \leq k+1$. If G is in type 5 (resp. type 6), then color each S_{2} with a different colors and color all the vertices in S^{*} another new colors. Then f is a $T D$-coloring of G and $\chi_{d}^{t}(G) \leq k+1$.

Suppose $\chi_{d}^{t}(G)=k$. We obtain $\chi_{d}^{t}\left(C^{*}\right)=k$, since C^{*} is a clique. Then there must be two vertices $c_{i}\left(\in C^{*}\right), s_{j}\left(\in S^{*}\right)$ such that they have been colored by the same color and they are not adjacent. Let $s_{i}\left(\in S^{*}\right)$ is adjacent to c_{i}, we can get c_{i} is not adjacent to all the vertices in any color, a contradiction. Then $\chi_{d}^{t}(G)=k+1$.
(2) Since the proof of type 3 and type 4 are similar to type 1 , we limit them. Now assume that G is in type 7 (resp. type 8). Let s_{1}, s_{1}^{\prime} be two adjacent vertices in S^{*}. We give the following coloring
f of G. Color each vertex in C^{*} a new color; color the vertices s_{1}, s_{1}^{\prime} two new colors and color the remained vertex in S^{*} by the same color of s_{1} or s_{1}^{\prime}. Then f is a $T D$-coloring of G with $|f|=k+2$. Then $\chi_{d}^{t}(G) \leq k+2$.

Suppose $\chi_{d}^{t}(G)=k+1$. Since C^{*} is a clique of size k, then color C^{*} must use k colors. All vertices of S^{*} do not color the same color, since s_{1} or s_{1}^{\prime} is adjacent. Then either s_{1} or s_{1}^{\prime} must have been colored by the same color of a vertex c_{i} in C^{*}. Then there are must be a vertex in $S^{*} \backslash\left\{s_{1}, s_{1}^{\prime}\right\}$ that not dominate the color class which contains s_{1}, a contradiction. Then $\chi_{d}^{t}(G)=k+2$.

A redundant color of G is a color in a total dominating coloring of G that no vertex in G total dominating the vertices in this color. Let $r(G)$ be the number of redundant colors in a total dominating coloring of G. Now, we give the lemmas as follows.
Lemma 6. (1) Let $G=G_{1} \cup G_{2}$. Then

$$
\chi_{d}^{t}(G)=\chi_{d}^{t}\left(G_{1}\right)+\chi_{d}^{t}\left(G_{2}\right)-\min \left\{r\left(G_{1}\right), r\left(G_{2}\right)\right\} .
$$

(2) Let $G=G_{1} \vee G_{2}$. Then

$$
\chi_{d}^{t}(G)=\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)
$$

Proof. (1)Let f_{i} be a total dominator coloring of G_{i} with $r\left(G_{i}\right)$ redundant colors, where $i \in\{1,2\}$. Without loss of generality, we assume that $r\left(G_{1}\right) \leq r\left(G_{2}\right)$. Now, we define the coloring f in G as follows. Color G_{i} as f_{i} and then using $r\left(G_{1}\right)$ redundant colors to repeat some redundant colors in G_{2}. Because f_{1} and f_{2} are total dominator coloring of G_{1} and G_{2}, respective. Then f is total dominator coloring of G and then $\chi_{d}^{t}(G)=\chi_{d}^{t}\left(G_{1}\right)+\chi_{d}^{t}\left(G_{2}\right)-r\left(G_{1}\right)$. On the other hand, suppose that $\chi_{d}^{t}(G) \leq \chi_{d}^{t}\left(G_{1}\right)+\chi_{d}^{t}\left(G_{2}\right)-\min \left\{r\left(G_{1}\right), r\left(G_{2}\right)\right\}-1$. By Pigeonhole Principle, there are some vertex which is not total dominating. Then the result holds.
(2) By Theorem 3 (ii), $\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. Let f be a proper coloring of G using $\chi(G)$ colors. Since $G=G_{1} \vee G_{2}$ contains a complete bipartite graph as a induced subgraph, then f is a total dominator coloring and $\chi_{d}^{t}(G) \leq \chi(G)$. So $\chi_{d}^{t}(G)=\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$, since $\chi_{d}^{t}(G) \geq \chi(G)$.

Note that we can compute the number of redundant color in a total dominator coloring in polynomial time.
Lemma 7. Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a p-separable p_{4}-tidy graph, and $G_{2}=\left(V_{2}, E_{2}\right)$ a graph such that $V_{1} \cap V_{2}=\emptyset$. Then,
(1) If G is not type 7 , then $\chi_{d}^{t}\left(G_{1} \underline{\vee} G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)+1$;
(2) If G is type 7, then $\chi_{d}^{t}\left(G_{1} \underline{\vee} G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)+2$.

Proof. Let $G=G_{1} \underline{\vee} G_{2}$. By Proposition $2, G_{1}$ is a quasi-urchin or a quasi-starfish and set $\left(C^{*}, S^{*}\right)$ be its p-partition. Then G contains $G_{1}\left[C^{*}\right] \vee G_{2}$ as an induced subgraph. Thus $\chi_{d}^{t}(G) \geq \chi_{d}^{t}\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)$. On the other hand, if G is type 7 or type 8 , a $T D C$ of $G_{1}\left[C^{*}\right] \vee G_{2}$ can be extended to G by adding two new colors. Hence $\chi_{d}^{t}(G)=\chi_{d}^{t}\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)+2$; if G is not type 7 or type 8 , a $T D C$ of $G_{1}\left[C^{*}\right] \vee G_{2}$ can be extended to G by adding one new colors. Hence $\chi_{d}^{t}(G)=\chi_{d}^{t}\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)+1$. By Lemma 6 , we get $\chi_{d}^{t}\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$, so by Lemma 4 , we can know if G_{1} is type 8 , then $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)-1$; otherwise, $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)$.

Combining the above, we can get that if G is type 7, then $\chi_{d}^{t}(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)+2$; otherwise, $\chi_{d}^{t}(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)+1$.

Theorem 4. [20] Every graph G either is p-connected or can be obtained uniquely from its pcomponents and weak vertices by a finite sequence of $\cup, \vee, \underline{\vee}$ operations.

Combining the above lemmas and theorems, we get the following theorem.
Theorem 5. Total dominator chromatic number of P_{4}-tidy can be computed in polynomial time on P_{4}-tidy graphs.

acknowledgments

The authors would like to thank the anonymous referee for many helpful comments and suggestions.

Conflict of Interest

The authors declares no conflict of interests.

References

1. Henning, M. A. and Yeo, A., 2013. Total domination in graphs. Springer Monographs in Mathematics. New York: Springer.
2. Kazemi, A. P. (2015). Total dominator chromatic number of a graph. Transactions on Combinatorics, 2, pp.57-68.
3. Henning, M.A., 2015. Total dominator colorings and total domination in graphs. Graphs and Combinatorics, 31, pp.953-974.
4. Kazemi, A.P., 2013. Total dominator chromatic number and Mycieleskian graphs. arXiv preprint arXiv:1307.7706.
5. Gera, R., Rasmussen, C. and Horton, S., 2006. Dominator colorings and safe clique partitions. Congressus numerantium, 181, pp.19-32.
6. Arumugam, S., Bagga, J. and Chandrasekar, K.R., 2012. On dominator colorings in graphs. Proceedings-Mathematical Sciences, 122, pp.561-571.
7. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G. and Saurabh, S., 2011. Algorithmic aspects of dominator colorings in graphs. In Combinatorial Algorithms: 22nd International Workshop, IWOCA 2011, Victoria, BC, Canada, July 20-22, 2011, Revised Selected Papers 22 (pp. 19-30). Springer Berlin Heidelberg.
8. Chellali, M. and Maffray, F., 2012. Dominator colorings in some classes of graphs. Graphs and Combinatorics, 28, pp.97-107.
9. Gera, R., 2007, April. On the dominator colorings in bipartite graphs. In Fourth International Conference on Information Technology (ITNG’07) (pp. 947-952). IEEE.
10. Gera, R., 2007. On dominator colorings in graphs. Graph Theory Notes of New York, 52, pp.25-30.
11. Corneil, D.G., Lerchs, H. and Burlingham, L.S., 1981. Complement reducible graphs. Discrete Applied Mathematics, 3(3), pp.163-174.
12. Hoàng, C. T. (1985). Perfect graphs (Doctoral dissertation). School of Computer Science, McGill University, Montreal, Canada.
13. Jamison, B. and Olariu, S., 1989. A new class of brittle graphs. Studies in Applied Mathematics, 81(1), pp.89-92.
14. Jamison, B. and Olariu, S., 1991. On a unique tree representation for P_{4}-extendible graphs. Discrete Applied Mathematics, 34(1-3), pp.151-164.
15. Jamison, B. and Olariu, S., 1989. P_{4}-reducible graphsa class of uniquely tree representable graphs. Studies in Applied Mathematics, 81(1), pp.79-87.
16. Giakoumakis, V., Roussel, F. and Thuillier, H., 1997. On P_{4}-tidy graphs. Discrete Mathematics and Theoretical Computer Science, 1, 17-41.
17. Bagan, G., Boumediene-Merouane, H., Haddad, M. and Kheddouci, H., 2017. On some domination colorings of graphs. Discrete Applied Mathematics, 230, pp.34-50.
18. Lerchs, H., 1972. On the clique-kernel structure of graphs, Dept. of Comp. Sci, University of Toronto (October 1972).
19. Corneil, D.G., Perl, Y. and Stewart, L.K., 1984. Cographs: recognition, applications and algorithms. Congressus Numerantium, 43, pp.249-258.
20. Jamison, B. and Olariu, S., 1995. P-components and the homogeneous decomposition of graphs. SIAM Journal on Discrete Mathematics, 8(3), pp.448-463.
