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Abstract: Determining the Tutte polynomial T (G; x, y) of a graph network G is a challenging prob-
lem for mathematicians, physicians, and statisticians. This paper investigates a self-similar network
model M(t) and derives its Tutte polynomial. In addition, we evaluate exact explicit formulas for
the number of acyclic orientations and spanning trees of it as applications of the Tutte polynomial.
Finally, we use the derived T (M(t); x, y) to obtain the Tutte polynomial of another self-similar model
N(t) presented in [1] and correct the main result discussed in [1] by Ma et al. and test our result
numerically by using Matlab.
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1. Introduction

The Tutte polynomial is a graph polynomial that encodes a variety of combinatorial and alge-
braic information about the graph. It was first studied by William Tutte [2, 3] in 1954 and known as
the dichromatic polynomial since it is a generalization of the chromatic polynomials introduced by
Birkoff [4] and Whitney [5]. The Tutte polynomial is a well-known tool for examining the character-
istics and properties of graphs [6]. The university of the Tutte polynomial is derived from the recipe
theorem (see [7, 8]). The crucial universal property of this graph polynomial is that practically every
multiplicative graph invariant with a deletion/contraction reduction must be an evaluation of it [9].
These deletion/contraction operations are natural reductions for many network models arising from a
variety of problems at the computer science, engineering, statistics, optimization, and physics.
The Tutte polynomial T (G; x, y) of a graph G = (V, E) is a polynomial in two variables x and y.
Numerous of graph polynomials are specially obtained from the Tutte polynomial. For example,
the chromatic polynomial P(G; x) of G is a one-variable graph invariant counts the number of dis-
tinct ways to colour G with x colours. The Tutte polynomial includes the chromatic polynomial as a
specialization [10–12]:

P(G; x) = (−1)|V |−k(G)xk(G)T (G; 1 − x, 0),

where k(G) is the number of the connected components of G.
Also, the flow polynomial F(G; y) that counts the number of flows in G can be derived from the Tutte

http://dx.doi.org/10.61091/ars157-05
http://www.combinatorialpress.com/ars


A.W. Aboutahoun and F. El-Safty 54

polynomial as follows [2]:
F(G; y) = (−1)|E|−|V |+k(G)T (G; 0, 1 − y)

Furthermore, the reliability polynomial R(G; y) of G is a graph polynomial that measures the prob-
ability that no connected component of G is disconnected when an edge of G with fixed probability
0 ≤ y ≤ 1, is independently deleted. The reliability polynomial is also a special polynomial due to
the Tutte polynomial [13]:

R(G; y) = y|V |−1(1 − y)|E|−|V |+1T (G; 1,
1

1 − y
)

The Tutte polynomials can be defined for graphs, matrices, and matroids. We concern with finding
the Tutte polynomial for a class of self-similar network. Focusing on self-similar networks arises
from being able to represent some real networks. Networks with self-similarity property have been
studied in various fields, such as mathematics, computer science, physics, chemistry, and biology
(see [14–18]). There are diverse and different examples of this networks such as Von Koch graphs,
Sierpinski gasket graphs, and tower of Hanoi graphs (see [19, 20]). Therefore, calculating the Tutte
polynomial for this kind of networks is of a great interest for many researchers ( [24–26]).
The Tutte polynomial has evaluations that count a large number of the graph invariants. The number
of acyclic orientation of a graph is a vital quantity that has many applications in different areas
such as network optimization, social sciences and other fields. For example, the number of acyclic
orientations of a scheduling network equals to the number of feedback arc set and the number of
acyclic orientations of a social network measures its degree of hierarchy. Also, the number of acyclic
orientations of a network measures its planarity. The number of acyclic orientations of a graph can
be evaluated from the Tutte polynomial.
Another significant graph invariant is the number of spanning trees that is related to its structural
and dynamical properties. The number of spanning trees of a self-similar network provides us with
information about the effectiveness of the underlying network. It is well-known that the number of
spanning trees of a graph equals to the determinant of any cofactor of the Laplacian matrix of the
graph. For a graph with a huge number of nodes, finding analytically the number of spanning trees
becomes harder and harsher. We overcome this difficulty by the aid of the Tutte polynomial which
can enumerate it. Hence, evaluating the number of spanning trees of a network is considered as a
crucial and fundamental application of the Tutte polynomials.

This paper is organized as follows. In Section 2, we introduce some definitions and results from
graph theory that would be used throughout the paper and investigate a class of self-similar network
model M(t). In Section 3, we study the Tutte polynomial T (M(t); x, y). Though determining the Tutte
polynomial of a graph is generally an NP-hard problem, we shall find a recursive formula for the
Tutte polynomial of a network model M(t) based on the subgraph decomposition method [21,27,28].
Section 4 is devoted to the applications of T (M(t); x, y). We find the exact formula of the number
of acyclic orientations and spanning trees of network model M(t). We also discuss the spanning tree
entropy or the asymptotic complexity of M(t). In section 4, we examine the self-similar network N(t)
presented in [1] as another application of the underlying model M(t). We deduce the Tutte polynomial
of N(t) by applying some results published in [29]. The number of spanning trees of N(t) is explicitly
derived and coincided with the results obtained by using Matlab code which enhances the validity of
them. Finally, Section 5 gives a brief summary.

2. Preliminaries

This section briefly presents some necessary definitions that will be used in our calculations. Let
G = (V(G), E(G)) be a graph with node set V(G) and edge set E(G). The order and size of G are
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|V(G)| and |E(G)|, respectively. A subgraph A = (V(A), E(A)) of G is called a spanning subgraph of
G if A is obtained by edge deletion only, that is, V(A) = V(G) and E(A) ⊆ E(G).

2.1. Tutte polynomial

The Tutte polynomial is a well-studied invariant of graphs. (For more details, see [11,23].). There
are some different but still equivalent definitions of tutte polynomial [8]. Here we introduce the
common subgraph extension definition. Let A be a spanning subgraph of G, then the Tutte polynomial
T (G; x, y) of G is defined by

T (G; x, y) =
∑
A⊆G

(x − 1)k(A)−k(G)(y − 1)|E(A)|−|V(A)|+k(A), (1)

where the summation runs over all possible spanning subgraphs A of G and k(A) is the number of
connected components of A. From (1), we notice that theTutte polynomial of G is a two-variable
polynomial in x and y. It is remarkable that calculating the Tutte polynomial T (G; x, y) of G at
particular points gives us distinctive combinatorial invariants of G such that

• T (G; 1, 1) = τ(G) is the number of the spanning trees of G.
• T (G; 2, 1) = F(G) is the number of the spanning forest of G.
• T (G; 1, 2) = S (G) is the number of the spanning connected subgraphs of G.
• T (G; 2, 2) = 2|E(G)|.
• T (G; 2, 0) = a(G) is the number of acyclic orientations of G.
• T (G; 0, 2) = ta(G) is the number of totally acyclic orientations of G.

2.2. Proposed network model M(t)

The network model M(t) can be constructed by an iterative method based on a merging process.
The merging process could happen in the following manner.

• At any time step t, M(t) has two special nodes at and bt which are the nodes of the highest degree
and an edge et connecting them.
• M(t + 1) is obtained by merging 6 copies of M(t) by joining their special nodes. Merging at and

at gives a new special node at+1 of M(t + 1) and merging bt and bt gives a new special node bt+1

of M(t + 1). The two special nodes at+1 and bt+1 of M(t + 1) would be linked by a new edge et+1.
The construction process of M(t + 1) is illustrated in Figure 1.

Figure 1. Construction of network model M(t + 1)

For t = 0, let M(0) be a path with length one whose two endpoints are the special nodes a0 and
b0. For t ≥ 0, M(t + 1) can be obtained from M(t) by the construction process presented above, see
Figure 2.

After t time steps, the order and size of M(t) are, respectively,

|V(M(t))| =
4
5

6t +
6
5

(2)
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Figure 2. The diagrams of network model M(t) at t = 0, 1, 2.

|E(M(t))| =
1
5

(6t+1 − 1) (3)

The solution of average degree of model M(t) is

< k(M(t)) > =
2 |E(M(t))|
|V(M(t))|

=

2
5 (6t+1 − 1)

4
56t + 6

5

≈ 3. (4)

3. Tutte polynomial of M(t)

The Tutte polynomial of the network model M(t) is given by

T (M(t); x, y) =
∑

A⊆M(t)

(x − 1)k(A)−1(y − 1)|E(A)|−|V(A)|+k(A) (5)

Let us categorize the spanning subgraphs A of M(t) into two kinds. The first kind M(1, t) is the
spanning subgraphs of M(t), where the two special nodes at and bt belong to the same connected
component. The second kindM(2, t) is the spanning subgraphs of M(t), where the two special nodes
at and bt belong to two different connected components.
Hence, equation (5) can be rewritten as

T (M(t); x, y) = T1,t(x, y) + T2,t(x, y), (6)

where

T1,t(x, y) =
∑

A⊆M(1,t)

(x − 1)k(A)−1(y − 1)|E(A)|−|V(A)|+k(A) (7)

T2,t(x, y) =
∑

A⊆M(2,t)

(x − 1)k(A)−1(y − 1)|E(A)|−|V(A)|+k(A) (8)

To get a recursive formula for T (M(t); x, y), we will exploit the special structure of M(t + 1). It is
known that

T (M(t + 1); x, y) =
∑

A⊆M(t+1)

(x − 1)k(A)−1(y − 1)|E(A)|−|V(A)|+k(A) (9)

Figure 1 shows that M(t + 1) is created from six copies of M(t) by merging some special nodes
and adding an additional edge et+1. Let the six copies of M(t) be denoted by Mi(t), i = 1, ..., 6.
Consequently, let Ai be a subgraph of Mi(t), i = 1, ..., 6, respectively. Define E to be

E =

{
{et+1}

ϕ
(10)

As a result, any spanning subgraph A of M(t+1) can be identified by the spanning subgraphs Ai of the
six copies Mi(t), i = 1, ..., 6 with E. Thus, it is convenient to express the Tutte polynomial of M(t + 1)
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as
T (M(t + 1); x, y) =

∑
A=

(
6⋃

i=1
Ai

)
∪E

(x − 1)k(A)−1(y − 1)|E(A)|−|V(A)|+k(A) (11)

Now, we are ready to state the following theorem.

Theorem 1. Tutte polynomial of the model network M(t + 1) is

T (M(t + 1); x, y) = T1,t+1(x, y) + (x − 1)P2,t+1(x, y), (12)

where

T1,t+1(x, y) = y(y − 1)T 6
1,t(x, y) + 6yT 5

1,t(x, y)P2,t(x, y) + (6xy − 6y + 9)T 4
1,t(x, y)P2

2,t(x, y)
+ (2x2y − 4xy + 18x + 2y − 18)T 3

1,t(x, y)P3
2,t(x, y) + 15(x − 1)2T 2

1,t(x, y)P4
2,t(x, y)

+ 6(x − 1)3T1,t(x, y)P5
2,t(x, y) + (x − 1)4P6

2,t(x, y), (13)

P2,t+1(x, y) =
T2,t+1(x, y)

x − 1
= 9T 4

1,t(x, y)P2
2,t(x, y) + 18(x − 1)T 3

1,t(x, y)P3
2,t(x, y)

+ 15(x − 1)2T 2
1,t(x, y)P4

2,t(x, y) + 6(x − 1)3T1,t(x, y)P5
2,t(x, y) + (x − 1)4P6

2,t(x, y), (14)

with initial conditions T1,0(x, y) = 1 and P2,0(x, y) = 1.

Proof. The initial conditions are obvious since M(0) is a path of length one. To prove relations (12),
(13), and (14), we need to investigate all possible spanning subgraphs A of M(t + 1) and analyze their
corresponding contributions to T (M(t + 1); x, y).

• Let’s start with spanning subgraphs where the special nodes at+1 and bt+1 belong to the same
component. There are 13 distinguish configurations of spanning subgraphs A satisfying this
property. Figures 3, 4 and 5 show the possible configurations associated with their contributions.
We find that

T1,t+1(x, y) = y(y − 1)T 6
1,t +

6y
x − 1

T 5
1,tT2,t +

6xy + 9
(x − 1)2 T 4

1,tT
2
2,t

+
2xy + 16
(x − 1)2 T 3

1,tT
3
2,t +

15
(x − 1)2 T 2

1,tT
4
2,t +

6
(x − 1)2 T1,tT 5

2,t +
1

(x − 1)2 T 6
2,t

• Let’s discuss the spanning subgraphs where the special nodes at+1 and bt+1 belong to two different
components. There are 5 different configurations of spanning trees A with the above mentioned
property. Figure 6 depicts this case. We also get

T2,t+1(x, y) =
9

x − 1
T 4

1,tT
2
2,t +

18
x − 1

T 3
1,tT

3
2,t +

15
x − 1

T 2
1,tT

4
2,t +

6
x − 1

T1,tT 5
2,t +

1
x − 1

T 6
2,t.

Figure 3. (a), (b), (c), (d) and (e) have contributions (y − 1)2T 6
1,t, (y −

1)T 6
1,t,

6(y−1)
x−1 T 5

1,tT2,t,
6(y−1)

x−1 T 4
1,tT

2
2,t, and 2(y−1)

x−1 T 3
1,tT

3
2,t

It is clear that x− 1 divides T2,t(x, y), t ≥ 0. Thus, we put T2,t(x, y) = (x− 1)P2,t(x, y) and the proof
is completed. □
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Figure 4. (a), (b), (c), (d) and (e) have contributions
9

(x−1)2 T 4
1,tT

2
2,t,

18
(x−1)2 T 3

1,tT
3
2,t,

15
(x−1)2 T 2

1,tT
4
2,t,

6
(x−1)2 T1,tT 5

2,t, and 1
(x−1)2 T 6

2,t

Figure 5. (a), (b) and (c) have contributions 6
x−1T 5

1,tT2,t,
6

x−1T 4
1,tT

2
2,t, and 2

x−1T 3
1,tT

3
2,t

Figure 6. (a), (b), (c), (d) and (e) have contributions
9

x−1T 4
1,tT

2
2,t,

18
x−1T 3

1,tT
3
2,t,

15
x−1T 2

1,tT
4
2,t,

6
x−1T1,tT 5

2,t, and 1
x−1T 6

2,t

4. Applications

4.1. Evaluations of T (M(t); x, t)

Many graph invarients can be simply obtained from the Tutte polynomial of the graph. In what
comes, we shall exploit some evaluations of the Tutte polynomial of the proposed model.

4.1.1. Number of acyclic orientations of model M(t)

The number of acyclic orientations a(G) of a graph G is a crucial quantity in graph theory with
related applications in various areas such as social sciences, optimization, computer science and other
fields [22]. Stanley [30] studied the relation between a(G) and the chromatic polynomial P(G; x). It
is also known that a(G) can be calculated by the aid of the Tutte polynomial since a(G) = T (G; 2, 0).
Therefore we shall apply this result to our model M(t) to get an explicit formula for a(M(t)).

Theorem 2. The number of acyclic orientations of M(t) is given by

a(M(t)) = 2 × 49
1
5 (6t−1). (15)

Proof. Since
T (G; 2, 0) = a(G).

Thus, we put x = 2, y = 0 in (12)

a(M(t + 1)) = T (M(t + 1); 2, 0) = T1,t+1(2, 0) + P2,t+1(2, 0)

From (13) and (14), we find that
T1,t+1(2, 0) = P2,t+1(2, 0),
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and
T1,t+1(2, 0) = 49T 6

1,t(2, 0), (16)

with initial condition T1,0(2, 0) = 1. Solving 16, we get

T1,t(2, 0) = 49
1
5 (6t−1).

This completes the required result. □

4.1.2. Number of spanning trees of model M(t)

We shall evaluate an explicit formula for the number of spanning trees of network model M(t) as
an application of the Tutte polynomial of M(t).

Theorem 3. The number of spanning trees of M(t) is given by

τ(M(t)) = 3λ4
t (3 + 2λt)

t−2∏
k=0

(9λ4
t−k−1)6k+1

, (17)

where λt = 3(1 − ( 2
3 )t).

Proof. It is a renowned result that
T (G; 1, 1) = τ(G).

Thus, we put x = y = 1 in (12)

τ(M(t + 1)) = T (M(t + 1); 1, 1) = T1,t+1(1, 1)

From (13) and (14), we have system of difference equations in the form

τ(M(t + 1)) = 6τ5(M(t))P2,t(1, 1) + 9τ4(M(t))P2
2,t(1, 1) (18)

P2,t+1(1, 1) = 9τ4(M(t))P2
2,t(1, 1), (19)

with initial conditions τ(M(0)) = P2,0(1, 1) = 1.
Using (18) and (19), we can deduce that

τ(M(t))
P2,t(1, 1)

= 1 +
2
3
τ(M(t − 1))
P2,t−1(1, 1)

= 3
1 − (

2
3

)t+1
We can say that

τ(M(t)) = λt+1P2,t(1, 1),

where λt = 3
(
1 −

(
2
3

)t
)
. Now, we substitute in (19)

P2,t(1, 1) = 9λ4
t P6

2,t−1(1, 1) = 9λ4
t

(
9λ4

t−1P6
2,t−2(1, 1)

)6
=

(
9λ4

t

) (
9λ4

t−1

)6
...

(
9λ4

t−k+1

)6k−1

P6k

2,t−k(1, 1)

=

t−1∏
k=0

(
9λ4

t−k

)6k

Back to (19), we find that

τ(M(t)) = 9λ4
t P6

2,t−1(1, 1) + 6λ5
t P6

2,t−1(1, 1) = 3λ4
t (3 + 2λt)P6

2,t−1 = 3λ4
t (3 + 2λt)

t−2∏
k=0

(
9λ4

t−k−1

)6k+1

.

□
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4.1.3. Entropy of spanning trees of M(t)

The entropy of spanning trees or asymptotic complexity of any graph network is a graph invarient
which measures the robustness of the graph. We can say that the higher the entropy of spanning trees,
the higher the robustness of the graph.

Theorem 4. The spanning trees entropy of model M(t) is given by

ρ(M(t)) = lim
|V(M(t))|→∞

ln τ(M(t))
|V(M(t))|

≈ 0.64 (20)

Proof. We have

ρ(M(t)) = lim
|V(M(t))|→∞

ln τ(M(t))
|V(M(t))|

= lim
t→∞

ln
(
3λ4

t (3 + 2λt)
t−2∏
k=0

(
9λ4

t−k−1

)6k+1
)

4
56t + 6

5

≈ lim
t→∞

6t−3 ln 9λ4
3 + 6t−2 ln 9λ4

2 + 6t−1 ln 9λ4
1

4
56t

≈ 0.64.

□

4.2. Tutte polynomial of model N(t)

The network model N(t) has been presented in [1] and it can be obtained from the network model
M(t) by replacing each edge in M(t) by a path of length 2 as shown in Figure 7.

Figure 7. The diagrams of network model N(t) at t = 0, 1, 2.

As presented, the network model N(t), studied in [1], is obtained from the network model M(t) by
replacing each edge in M(t) by a path of length two. We can also deduce the Tutte polynomial of N(t)
by the aid of the Tutte polynomial of M(t) based on the results published in [29].
We shall rely on the work achieved by Y. Liao et al. [29] to compute the Tutte polynomial of model
N(t).

Theorem 5. The Tutte polynomial of the network model N(t) is given by

T (N(t); x, y) = (1 + x)
2
5 (6t−1)T

(
M(t); x2,

y + x
1 + x

)
. (21)

As a result, we will evaluate the number of spanning trees of N(t) and compare it with the main
result presented by Ma et al. [1]. In [1], a formula for calculating the number of spanning trees
was presented in Theorem 6 which isn’t redress. In the following, we display the correct formula
for calculating the number of spanning trees in Theorem 6. A total verification with more points of
interest than the one displayed in [1] is given.
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Theorem 6. The number of spanning trees of the network model N(t) is given by

τ(N(t)) = 2
2
5 (6t−1)τ(M(t)). (22)

Note that this result is inconsistent with the previous work [1]. We will verify the accuracy of our
result by using Matlab package (R2019a). The numerical examples were run on a computer with an
Intel(R) processor running at 2.50 GHz using 8.00 GB of RAM, running Windows. Table 1 shows

t τ(N(t)) (our results) τ(N(t)) (results in [1]) τ(N(t)) (Matlab results)
0 1 1 1
1 60 60 60
2 1.2765 × 1012 1.3201 × 1011 1.2765 × 1012

3 8.4134 × 1073 6.7730 × 1066 8.4134 × 1073

Table 1. Comparison between results by Matlab at t = 0, ..., 3

the number of spanning trees of N(t) for the first forth values of t. Initially, at t = 0, 1, our results, the
results from [1], and numerical results from Matlab code are identical. Whereas at t = 2, 3, our results
are the same as the results obtained from Matlab code, and differ with the results proposed in [1].

5. Conclusion

Self-similar networks are hugely investigated in many fields of studies. Numerous of the charac-
teristics and properties of self-similar networks can be recognized from the Tutte polynomial. The
Tutte polynomial of graphs is a considerable graph invariant that includes other graph invariants as a
specialization. We find that the Tutte polynomial of two self-similar networks, namely M(t) and N(t).
In particular, the exact formulae of the number of the spanning trees of both of them are deduced.
Furthermore, we find that our formula of the number of spanning trees of N(t) is more correct than
the formula presented by Ma et al. [1].
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