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ABSTRACT. EE.Bennetthasprovedthata (v,4,1)-RPMD exists for every positive
integer v = 1 (mod 4) with the possible exception of v = 33,57,93 and 133. In this
paper, we shall first introduce the concept of an incomplete PMD and use it to establish
some construction methods for Mendelsohn designs; then we shall give the following
results: (1) a (v, 4, 1)-PMD exists for every positive integer V = 0 (mod 4) with the
exception of v = 4 and the possible exception of v = 8,12; (2) a (v,4,1)-PMD exists
if v=57,93 or 133.

1. Introduction

The concept of a perfect cyclic design was introduced by N.S. Mendelsohn [9] and

further studied in a subsequent paper [3]. These designs were also called Mendel-
sohn designs by Hsu and Keedwell in [8]. The following are some definitions on
Mendelsohn designs.

Definition 1.1: A setof k distinctelements {a1, a2, ..., a; } is said to be cyclically
ordered by a; < a3 < -+ < a; < a and the pair a;, a;,; are said to be t-apart in
acyclic k-tuple (a3, a3,...,ax) where 1 + t is taken modulo k.

Definition 1.2: Let v, k and A be positive integers. A (v, k, A) -Mendelsohn de-
sign (briefly (v, k, A\)-MD) is a pair (X,B) where X is a v-set (of points) and B
is a collection of cyclically ordered subsets of X (called blocks) with size k such
that every ordered pair of points of X are consecutive in exactly X blocks of B.

Definition 1.3: Let (X,B) be a (v, k, \)-MD. The design is called perfect and
denoted by (v, k, \)-PMD if each ordered pair ( z, y) of points of X appears t-
apart in exactly ) of the blocks of B forallt=1,2,...,k - 1.

It is known [2] that a necessary condition for the existence of a (v, k, A)-MD is
Av(v—1) =0 ( mod k). We nextdefine the notion of resolvability ofa (v, k, 1) -
PMD where v(v — 1) = 0 (mod k).

Definition 1.4: If the blocks of a (v, k, 1) -PMD for whichv = 1 ( mod k) can be
partitioned into v sets each containing (v— 1) / k blocks which are pairwise disjoint
(as sets), we say that the (v, k, 1) -PMD is resolvable (briefly (v, k, 1)-RPMD).
Definition 1.5: If the blocks of a (v, k, 1) -PMD for whichv = 0 ( mod k) canbe
partitioned into v — 1 sets each containing v/ k blocks which are pairwise disjoint
(as sets), we shall also say that the (v, k, 1)-PMD is resolvable (briefly (v, k, 1)-
RPMD).

The following are the known results on (v, k, 1) -PMDs, of which a survey can
be found in [2].
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Theorem 1.1. A (v,3,1)-RPMDexists ifand only if v =0 or1 (mod 3),v #
6.

Theorem 1.2. A (v,4,1) -RPMD exists for every positive integerv = 1 (mod
4) with the possible exception of v = 33,57,93 and 133 [1, Theorem 4.2].

Theorem 1.3. Letp be an odd prime and v > 1, then there exists a (p",p, 1) -
PMD.

Theorem 1.4. Letv = p" be any prime power and k > 2 be such thatk|(v — 1),
then there exists a (v, k, 1) -RPMD.

Theorem 1.5. A (v, k, 1) -RPMD exists for all sufficiently large v withk > 3
and v=1 (modk).

Theorem 1.6. A (v, k, 1) -PMD exists withv(v — 1) =0 (mod k) for the case
when k is an odd prime and v is sufficiently large.

In this paper, we shall introduce in section 2 the concept of an incomplete PMD
and use it to establish some construction methods for PMDs, and further obtain in
section 3 the following result: A (v,4, 1)-PMD exists for every positive integer
v = 0 or 1 (mod4) with the exception of v = 4 and the possible exception of
v=_8,12,33,

We mention some definitions and known facts on PBDs and related designs for
later use.

Definition 1.6: Let X be a set of v points. Let A be a collection of some subsets
(called blocks) of X . A pair (X,A) is called a pairwise balanced design (briefly
PBD) of index 1 if any two distinct points of X are contained in exactly one block
of A, and denoted by (v, K, 1)-PMD where K is a set of some integers containing
all the block sizesof A. Let D C A. D is called a parallel class of aPBD (X ,A)
if D forms a partition of X. The PBD is called resolvable if A can be partitioned
into some disjoint parallel classes. If a (v, K, 1)-PBD is resolvable, we denote it
by (v, K, 1)-RPBD.

A transversal design TD[ k, 1; n] of (X, G, B) canbe viewed as a (kn, {k, n},
1)-PBD of (X, G UB) where G forms a parallel class of k blocks (called groups)
of size n and B consists of blocks of size k. If B can be partitioned into some
disjoint parallel classes, the transversal design TD[ k, 1; n] is called resolvable.

Let N(n) denote the maximum number of mutually orthggonal Latin squares
of order v. The following results are well known (see [6,7]).

Lemma 1.1. The existence of a TD{k, 1; n] is equivalent toN(n) > k — 2.

Lemma 1.2. The existence of a TD{ k + 1, 1; n] implies the existence of a re-
solvable TD{ k, 1; n].



Lemma 1.3. Letn = pf'p3® ...p* be the factorization of n into powers of
distinct primes p;, then N(n) > lTigk{p?‘} -1,
_'—

Lemma 1.4. Ifn> 10632, then N(n) > 14 (see [5)).
Lemma 1.5, Ifn¢ {2,6}, then N(n) > 2 (see [4]).

2. IPMD and construction methods

We first introduce the concept of an incomplete PMD.
Definition 2.1: Let v, k and n be positive integers. A (v, k, 1)-incomplete PMD
with emptiness n (briefly IPMD[ v, k, n]) is a triple (X, Y,B) where X is a v-set
(of points), Y (C X) is a n-set (of points) and B is a collection of cyclically
ordered subsets of X (called blocks) with block size k such that (1) every ordered
pair (z,y) of points of X with {z,y} ¢ Y appears t-apart in a unique block
of B fort =1,2,...,k — 1; (2) every ordered pair (z, y) of points of X with
{z,y} C Y appears in no block of B..

We now establish several constructions for Mendelsohn design.

Theorem 2.1. Suppose there exists an IPMD{ v, k,n] and a (n, k, 1) -PMD. Then
there exists a (v, k, 1) -PMD,

Proof: Let (X,Y,B1) be an IPMD[ v, k, n] and (Y, B;) be a (n, k, 1)-PMD. It
is easy to see that (X,B; UB,) is a (v, k, 1)-PMD.

Theorem 2.2. Suppose there exists: (1) a(v, k, 1) -PMD, 2)a(u+l,k,1)-PMD,
(3)aTDik,1;ul, (4) an IPMD{u+ 1, k, 1], where v, k and u are positive integers
and | is a nonnegative integer. Then there exists a (vu + 1, k, 1) -PMD.,

Proof: Let X,Y and Z be three disjoint sets of points where X = {z1,22,..., 3},
Y = {y1,92,...,.} and | Z| = 1. From condition (1), we can let (X,A) be a
(v,k,1)-PMD. Let My = {z;,, z,,...,;,} forany 4 = (zi), Ty, .-+, T,) EA.
From condition (3), we can let (M4 x Y,G,B,4) be a TD[k,1;u]. Let B =
((zinyjl))(ziziyjz) ~--,(ziuyjk)) foreveryB = {(Iinyjl)n(zl’uyjz) --o,(xiln
Y,)} €EBgand B, = UBGBAE- From condition (2) we can let (({z1} x Y) U
Z,Cy) bea (u + I, k,1)-PMD. From condition (4) we can let (({z;} x ¥') U
Z,Z, C.~) be an IPMD[u + [, k, 1] wherei = 2,3 ..., v. We are to prove that
((X XY)UZ, (UseaB) U(UL,C))) isa(vu + L, k, 1)-PMD. Let (wy, ws)
be an ordered pair of points of (X x ¥) U Z. We consider the following cases.
@ fw, wa € ({z:} xY) U Z and {w1,w,} ¢ Z, then (w;,w,) appears
t-apart in a unique block of C; foranyt=1,2,... k- 1.
(®) If {wy,w;} C Z, then (w;,w;) appears t-apart in a unique block of C,
foranyt=1,2,...,k—1.



(©) fw; € {z;} xY and wy € {z;} x Y with i # 7, then the ordered pair
(=i, z;) appears t-apart in a unique block Aof A foranyt=1,2,...,k—
1. Therefore the ordered pair (w,w;) appears t-apart in a unique block
ofﬁAforanyt=1,2,...,k—l. .
The three cases described above are mutually exclusive and cover all possibil-
ities.
Theorem 2.3. Suppose thereexist: (1)a(v, k, 1) -PMD, (2) aresolvable TD{ k, 1;
ul, 3 anIPMD{u+1,k,1], (4) an IPMD{v+ m, k,m], (5)a(l+ m,k, 1) -PMD,
where v, k and u are positive integers, | and m are nonnegative integers. Then
there exists a(vu + L+ m, k, 1) -PMD.

Proof: We adapt the notations in the proof of Theorem 2.2. Let S be a m-set with
SNX=8NY =8SN(XxY) = 0. Forevery A = (z;,,Ts;,..-Ti,) € A,since
there exists a resolvable TD[ k, 1; u], we can let D = {((zs,, y;), (Tiz, ¥5), - -+,
(zi,97)) 17 = 1,2,...,u} C B4. From condition (4) we can let ((X x {y:}) U
S,S,E;) be an IPMD[v + m, k,m] where i = 1,2,...,u. From condition (3)
we canlet (({z1} x Y) UZ, Z,D;) be an IPMD[ v + L, k, I]. From condition (5)
wecanlet (SU Z,F) bea(m+ [, k, 1)-PMD. It is easy to see that

U (ﬁA\DA)> U (OC;) uD;UFU (OE,))

A€A i=2 i=1

((X_XY)UZUS, (

isa(vu+ 1+ m,k,1)-PMD.
Theorem 2.4. Suppose there exist:
(1) a (v,k,1)-RPBD of (X,A) where A can be partitioned into s parallel
classes A, A;,..., A,
(2) anIPMD [|A| + I, k, ;] forevery A € A; where ; >0,1<i<s,
3) a(} ., L k,1)-PMD.
Then there exists a (v+ Y i, ki, k, 1) -PMD.

Proof: LetY1,Y3,...,Y, be s sets of points where |Y;| = [; and Y; N X = 0 for
1<i<sandY;NY; = @ifi # j. LetY = U, Y;. From condition (2) we can let
(AUY;,Y;, C)) bean IPMD[|A|+ i, k, ;] where A € A fori=1,2,...,s. Let
C* = Ugea,C}). From condition (3) we can let (Y,B) bea (Y 7., 4k, 1)-PMD.
We now prove that (X UY, (UL, C*) UB) isa(v+ Y i, ki k,1)-PMD. Let
(w),w2) ba an ordered pair of points of X UY".

(@) Ifw; € X, wy € Y; where 1 < 1 < s, then there exists a unique block A
of A; such that w;, € A, therefore (w;, wy) appears t-apart in a unique block of
Cifort=1,2,...,k— 1. Ifw €Y; w; € X, the proof is similar.

®) If {w;, w, } C Y, then (w;, w,) appears t-apart in a unique block of B for
t=1,2,...,k—1.



() If {wy, w2} C X, then the pair {w;,w,} appears in a unique block A of
A; where 1 < 1 < s from condition (1). Therefore, the ordered pair (w;, w;)
appears t-apart in a unique block of C} fort=1,2,...,k— 1.

The three cases described above are mutually exclusive and cover all possibil-
ities.

3. New results for (v,4,1)-PMD
In this section, we need the following notations:
PMD = {v| there exists a (v,4,1)-PMD}
IPMD[n] = {v| there exists an IPMD[v,4,n]}
The following facts are obvious. ‘
(1) The existence of a (v,4,1)-RPMD implies the existence of a (v,4,1)-
PMD.
(2) There does not exist any (4,4 ,1)-PMD.
(3) A (v,4,1)-MD is perfect if any ordered pair of points appears t-apart in
a unique block fort = 1,2.

Lemma3,1. Let2s+1 be aprime power where s isoddands > 1,then3s+1 €
IPMD( s].

Proof: Let w be a primitive root of GF(2s + 1). Let 4; = (00;,0, w?*, w?*(1+
w)) be base blocks where1=0,1,2,...,s— 1. Itis readily checked that 1-apart
difference D; = Ui} {w?',w?*'} = GF(2s + 1)\{0}. Since s is odd and
s > 1, we have 2-apart difference D; = U] {w? (1 + w), —w? (1 + w)} =
GF(2s+ 1\{0}. Therefore,3s+ 1 € IPMD[s].

Lemma 3.2.

{13,17} c IPMD(4], {20,24,36} C IPMD[5], 25 € IPMD[8],
32 € IPMD{9], {44,48} C IPMD{13], {52,56} C IPMD[17],

{68,72} C IPMD[21], 84 € IPMD{25], 92 € IPMD[29],

132 € IPMD{41].
Proof: Here, we always take the additive group of integers mod (v — n). Let

A; = (oo,-,O,a,-,b;) where 1 = 1,2,...,'nand
Bj = (0,c¢j,dj,e;) where j = 1,2,...,s (s is a nonegative integer)

be base blocks. For brevity we denote these blocks by

cT € ... Cg
a1 a3 ... @ di dy ... ds
bl bz ‘e b,,, ey €y ... €4



It is easy to see that v € IPMD[ n] whenever

i=1

Dy = (0“«' -, a.-}> U (O{Ci, d; — ci, & — di, —e.'}) = Z,_,\{0} and
i=1

Dy =

v

Z,-2\{0}.

i=1

{:I:b.-}) u (O{ﬂ:ds, (e — ) }>

It is readily checked that the following parameters all satisfy the condition D, =
D, =2,_,\{0}.

Zy3_4

Zy-s

Zss_s

Zys_g

Z3_9

Zy_13

Zyg_13

Zs;_17

Zgs_2

. -3

’f 24 ‘23 ‘;] Zna |=5 4 =2 3 6 |,

(-1 - 1 3 5 4 -5

i 1 15

4 6 5 -7 —4 3|, Zus|6 4 89 -5 3 71/,

412 7 66 1 -4 6 8 —9 6 3

r 1317 15 6

10 -13 —10 9 5 157 3 1 14,

s 9 10 -1 -13 7 115 3 2

2 8 —2 4 6 -1 3 —4

12 3 —4 5 -6 -7 8]

r 1

8 9 -2 —10 -1 11 -4 10 7 3],

-1 2 4 5 7 8 —9 —10 -1 7

r 2

2 8 13 1 —2 -8 —10 3 4 9 -3 —5 5 8,

|2 3 4 5 -6 7 9 —10 11 -12 13 —14 —15 1

15 —16 17 11 —-12 —13 12 9 -10 -3 -5 —6 14

1 2 -5 -9 12 13 15 —16 17 -4 -7 -10 -14

13

3 8|,

7 14

(14 13 11 3 -1 —6 6 -9 —10 2 7 -3 -5 -2 5

1 2 -3 -4 -5 6 -7 8 9 —10 11 12 —-13 14 15

18

—16 17]°

17 18 -2 -8 —15 -7 —1 -13 -5 6 16 —10 -3 10

-1 2 3 4 5 6 7 8 9 -1l —12 13 —14 -I5
3

4 2 4 -6 1 -9 9 10/,

16 —17 —19 —20 -21 22 -23 21



Zss-r |6 13 -1 —17 -15 —19 —-12 12 1 -2 -3 —6 -4 -9
1 2 3 4 -5 -6 7 -9 10 12 13 —14 -15 16
3
-7 71 2 1|,
-17 18 19 -5
Znn |-17 —24 22 11 9 15 -15 —-13 10 13 17 20 -12
1 2 -5 -9 —12 -13 14 15 -16 —17 —18 —19 -20
13
-18 -19 19 -16 -3 -5 -6 14 3 8|,
2 23 -24 25 -4 -7 -10 21 7 14
Zaaas |9 =25 26 -13 -8 -16 -23 23 —15 -24 -21 —11 —12
-1 2 -5 9 12 13 14 -15 16 17 18 19 20
13
19 -17 -2 24 25 12 11 16 -3 -5 —6 14 3 8|,
-2 23 24 -25 -26 27 28 29 -4 -7 -10 21 T 14
Zopps |10 26 -5 27 -8 -3 12 -20 -25 18 -21 —16 14
-1 =2 4 -7 9 10 -1l 12 14 -15 16 17 -I18
-15 19 22 -4 -6 6 -27 -2 23 -13 15 -10 -19
19 —20 -21 -5 -8 13 22 23 -24 -25 26 -27 -28
1
21 25 28 3|,
29 30 31 7
Zip_a |-37 —41 -27 12 35 11 -17 -38 38 33 10 26
-1 2 5 -9 -12 -13 14 -15 -16 -17 —18 —-19
15 —40 -19 9 -9 -26 -34 -32 22 -25 —18 20
20 22 23 -24 -25 26 27 28 -29 30 -31 -32
15 —23 —44 34 -8 8 —42 27 25 -22 24 29 28 -3
33 —34 35 -36 37 38 39 40 41 —42 43 —44 45 -4
1 3
-5 —6 14 3 8 |.
-7 -10 21 7 14

Lemma 3.3. Suppose
(1) N(uv) 2v-1,

(2) u+ m € IPMD[m] andv + |; € IPMD{l;] wherei=1,2,...,u,

3) m+ Y i, i € PMD.
Thenuv+m+ Y ., l; € PMD.



Proof: Since N(u) > v — 1, we have a resolvable TD[v, 1; u] of (X,G,B)
and then a (uv, {u,v},1)-RPMD of (X, G U B). Therefore, we have uv + m +
Y i-1 ki € PMD by Theorem 2.4.

Since v € PMD, v € IPMD[0] and v € IPMD| 1] are pairwise equivalent, we
have from Lemma 3.3 the following Corollaries.

Corollary 3.4. Suppose
(1) N(w) >v-1,
(2) ve PMD,v + | € IPMD(1] and u + m € IPMD[m],
(3) m+ sl € PMD where(0 < s < u.

Thenuv + m + sl € PMD.

Corollary 3.5. Suppose
(1) N(uv) >2v-1,
(2) v+ 1 € PMD,v+ 5 € IPMD{5] and u € PMD,
(3) u+4s€ PMD where0 < s < u.

Thenuv + v+ 4s € PMD,

Theorem 3.6. (1) If16 < v < 272 andv = 0 (mod4), thenv € PMD. @)
{57,93,133} c PMD.

Proof: (a) Taking s = 5,9,13,21,29 in Lemma 3.1 and using Theorem 1.2 and
Theorem 2.1, we have {16, 28,40, 64,88 } C PMD. By using Lemma 3.2, Theo-
rem 1.2 and Theorem 2.1, we obtain {20,24,32,36,44,48,52,56,68,72, 84,
92,132} c PMD.

(b) We have {5,9,13,17,25,16,20,24,32} C PMD from (a) and Theorem
1.2. We also have {17,13} C IPMD[4] and 25 € IPMD[8] from Lemma 3.2
and 16 € IPMD[5] from Lemma 3.1. Since

60=5x11+5, 76 =5x15+1, 80 =5 x 16, 96 =5 x 19+ 1,
100 =20 x5, 156 =5x31+1,212 =16 x 13+4,216 = 24 x 9,
220=24 x9+4, 93=5x17+8,

itis easy to see by using Theorem 2.2 that {60, 76, 80,96, 100, 156,212,216,
220,93} C PMD.

(c) Since N(11) > 3, 16 € IPMD[5], 17 € IPMD[4] and 13,9 € PMD,
we have 152 = 13 x 11 + 5+ 4 € PMD by using Theorem 2.3. Since N(4) >
3,13,5 e PMDand 17 € IPMD[4], we have 57 = 13 x 4+ 1+ 4 € PMD by
using Theorem 2.3. Takeu =13, v=9, =4, m=0,ands = 4 in Corollary
3.4, since 16 € PMD from (a), we have 133 = 13 x 9+ 16 € PMD.

(d Take 0 < s < 11 ands # 7. We have 5 + 43 € PMD from Theorem
1.2, and then 11 x 9 + 5 + 4s € PMD by Corollary 3.4. We also have 132 ¢
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PMD from (a), therefore, {v|104 < v < 148 and v = 0 (mod4) } C PMD. For
4 < s < 16 we have 4 s € PMD from (a) and (b). Using Corollary 3.4 we obtain
16 x9+4s € PMDand 16 x 13+ 4s € PMD. That is,

{v]160 < v < 208 andv =0 (mod4)} c PMD and
{v|224 < v <272 andv=0 (mod4)} C PMD.

The proof is now complete.

The following corollary is straightforward by combining Theorem 1.2 and The-
orem 3.6.

Corollary 3.7. If v=1(mod 4) andv # 33, thenv € PMD.

Corollary 3.8. If (1) N(u) > 14, and (2)u = 1 (mod4) and v + 43 # 33
where0 < s < u. Then16u + 4s € PMD.

Proof: Take v = 15 in Corollary 3.5. Since 16 € PMD from Theorem 3.6, 20 €
IPMDI 5] from Lemma 3.2 and {u, u + 4 s} C PMD from Corollary 3.7, we then
have 16 u + 4 s € PMD.

Theorem 3.9. Ifv > 276 andv = 0 (mod4), thenv € PMD.

Proof: (a) Taking 5 < s < 8, u = 16 and v = 15 in Corollary 3.5, we have
16 x 15+ 16 + 45 € PMD, that is, {1|276 < v < 288 andv =0 (mod4)} C
PMD. By using Corollary 3.4 and Corollary 3.7, we have 23 x 13+ 1+ 4s €
PMD for 10 < s < 23, i.e., {v]|340 < v <392 andv = 0 (mod4)} C PMD,
27 x 13+ 1+4s c¢PMDfor 10 < s < 27, ie., {v[392 < v < 460 and v =
0 (mod4)} C PMD,43 x 13+ 21+4s€PMDfor0 < s < 2,ie., {v|580 <
v < 588 and v = 0 (mod4)} C PMD. By using Corollary 3.8, we have 17 x
15+17+4s e PMDfor5 < s < 17,1ie., {v[292 < v < 340 andv =
0 (mod 4)} C PMD, 25 x 15+25+4s € PMDfor 15 < s < 25, i.e., {v[460 <
v <500 andv =0 (mod4)} C PMD, 29 x 15+ 29+4s€ PMDfor9 < s <
29,i.e.,{v|500 < v < 580 and v = 0 ( mod 4) } C PMD. Now, we have proved
that {v|276 < v < 588 andv =0 (mod4)} C PMD.

)Lett; =37,tp=41,13=49,1t4=61,t5=73,t6=81,17 =97, 15 =
101, tg = 113, tj0 = 137, t1; = 149, t12 = 181, t13 = 197, t14 = 229, 85 =
277, tie = 337, t17 = 409, t13 = 509, tig = 617, tao = 761. Itis clear that
t; is prime power and t; = 1 (mod4) for 1 < 1 < 20. Then N(¢;) > 14 and
N(25¢;) > 14 for 1 < i < 20 from Lemma 1.3. By using Corollary 3.8 we have

{v|16t; < v < 16¢;+ 4t;and v = 0 (mod4) } C PMD and
{v|16 -25t; <v < 16 -25t; + 4+ 25t;andv =0 (mod4)} C PMD

for 1 < 4 < 20. Itis readily checked that 4(t;.1 — t;) < t;,thatis, 16¢; + 41; >
16t;,1 and 16 - 25t; + 4 - 25t; > 16 - 25t for 1 < i < 19. Since 16¢; =
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592, 16t30+41t30 = 15220, 16 -25t; = 14800, 16 -25t20+4 -25t20 = 380500,
we have obtained that {v|592 < v < 380500 and v = 0 (mod 4) } C PMD.

(c) Letto = 2700, t;=to + i fori > 1.

It is easy to see that 4¢; + 1 > 10632 for i > 0. Therefore, we have N(4t; +
1) > 14 from Lemma 14. Taking 0 < s < 16 in Corollary 3.8, we have
{v|16(4t; + 1) < v < 16(4t;+ 1) + 64 andv = 0 (mod4)} C PMD. Since
16(4t;+ 1) + 64 = 16(41t;,1 + 1), we have that v e PMD if v = 0 (mod 4) and
v > 16(4ty + 1) = 172816.

Combining (a), (b) and (c) completes the proof.

From Theorem 1.2, Theorem 3.6 and Theorem 3.9 we conclude with the fol-
lowing theorem.

Theorem 3.10. A (v,4,1)-PMD exists for every positive integerv = 0 or
1 (mod 4) with the exception of v = 4 and the possible exception of v =
8,12,33,
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