On the Existence of (v, 4, 1)-PMD

Zhang Xuebin

Department of Mathematics Suzhou University, Suzhou People's Republic of China

ABSTRACT. F.E. Bennett has proved that a (v, 4, 1)-RPMD exists for every positive integer $v \equiv 1 \pmod{4}$ with the possible exception of v = 33, 57, 93 and 133. In this paper, we shall first introduce the concept of an incomplete PMD and use it to establish some construction methods for Mendelsohn designs; then we shall give the following results: (1) a (v, 4, 1)-PMD exists for every positive integer $V \equiv 0 \pmod{4}$ with the exception of v = 4 and the possible exception of v = 8, 12; (2) a (v, 4, 1)-PMD exists if v = 57, 93 or 133.

1. Introduction

The concept of a perfect cyclic design was introduced by N.S. Mendelsohn [9] and further studied in a subsequent paper [3]. These designs were also called Mendelsohn designs by Hsu and Keedwell in [8]. The following are some definitions on Mendelsohn designs.

Definition 1.1: A set of k distinct elements $\{a_1, a_2, \ldots, a_k\}$ is said to be cyclically ordered by $a_1 < a_2 < \cdots < a_k < a_1$ and the pair a_i, a_{i+t} are said to be t-apart in a cyclic k-tuple (a_1, a_2, \ldots, a_k) where i + t is taken modulo k.

Definition 1.2: Let v, k and λ be positive integers. A (v, k, λ) -Mendelsohn design (briefly (v, k, λ) -MD) is a pair (X, \mathbf{B}) where X is a v-set (of points) and \mathbf{B} is a collection of cyclically ordered subsets of X (called blocks) with size k such that every ordered pair of points of X are consecutive in exactly λ blocks of \mathbf{B} .

Definition 1.3: Let (X, \mathbf{B}) be a (v, k, λ) -MD. The design is called perfect and denoted by (v, k, λ) -PMD if each ordered pair (x, y) of points of X appears t-apart in exactly λ of the blocks of \mathbf{B} for all $t = 1, 2, \ldots, k - 1$.

It is known [2] that a necessary condition for the existence of a (v, k, λ) -MD is $\lambda v(v-1) \equiv 0 \pmod{k}$. We next define the notion of resolvability of a (v, k, 1)-PMD where $v(v-1) \equiv 0 \pmod{k}$.

Definition 1.4: If the blocks of a (v, k, 1)-PMD for which $v \equiv 1 \pmod{k}$ can be partitioned into v sets each containing (v-1)/k blocks which are pairwise disjoint (as sets), we say that the (v, k, 1)-PMD is resolvable (briefly (v, k, 1)-RPMD).

Definition 1.5: If the blocks of a (v, k, 1)-PMD for which $v \equiv 0 \pmod{k}$ can be partitioned into v-1 sets each containing v/k blocks which are pairwise disjoint (as sets), we shall also say that the (v, k, 1)-PMD is resolvable (briefly (v, k, 1)-RPMD).

The following are the known results on (v, k, 1)-PMDs, of which a survey can be found in [2].

Theorem 1.1. A(v,3,1)-RPMD exists if and only if $v \equiv 0$ or $1 \pmod 3$, $v \neq 6$.

Theorem 1.2. A (v, 4, 1) -RPMD exists for every positive integer $v \equiv 1 \pmod{4}$ with the possible exception of v = 33, 57, 93 and 133 [1, Theorem 4.2].

Theorem 1.3. Let p be an odd prime and $r \ge 1$, then there exists a $(p^r, p, 1)$ -PMD.

Theorem 1.4. Let $v = p^r$ be any prime power and k > 2 be such that k | (v - 1), then there exists a (v, k, 1)-RPMD.

Theorem 1.5. A (v, k, 1)-RPMD exists for all sufficiently large v with $k \geq 3$ and $v \equiv 1 \pmod{k}$.

Theorem 1.6. A (v, k, 1)-PMD exists with $v(v-1) \equiv 0 \pmod{k}$ for the case when k is an odd prime and v is sufficiently large.

In this paper, we shall introduce in section 2 the concept of an incomplete PMD and use it to establish some construction methods for PMDs, and further obtain in section 3 the following result: A (v, 4, 1)-PMD exists for every positive integer $v \equiv 0$ or 1 (mod 4) with the exception of v = 4 and the possible exception of v = 8, 12, 33.

We mention some definitions and known facts on PBDs and related designs for later use.

Definition 1.6: Let X be a set of v points. Let A be a collection of some subsets (called blocks) of X. A pair (X, A) is called a pairwise balanced design (briefly PBD) of index 1 if any two distinct points of X are contained in exactly one block of A, and denoted by (v, K, 1)-PMD where K is a set of some integers containing all the block sizes of A. Let $D \subset A$. D is called a parallel class of a PBD (X, A) if D forms a partition of X. The PBD is called resolvable if A can be partitioned into some disjoint parallel classes. If a (v, K, 1)-PBD is resolvable, we denote it by (v, K, 1)-RPBD.

A transversal design TD[k, 1; n] of (X, G, B) can be viewed as a (kn, $\{k, n\}$, 1)-PBD of (X, $G \cup B$) where G forms a parallel class of k blocks (called groups) of size n and B consists of blocks of size k. If B can be partitioned into some disjoint parallel classes, the transversal design TD[k, 1; n] is called resolvable.

Let N(n) denote the maximum number of mutually orthogonal Latin squares of order v. The following results are well known (see [6,7]).

Lemma 1.1. The existence of a TD[k, 1; n] is equivalent to $N(n) \ge k - 2$.

Lemma 1.2. The existence of a TD[k+1,1;n] implies the existence of a resolvable TD[k,1;n].

Lemma 1.3. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be the factorization of n into powers of distinct primes p_i , then $N(n) \ge \min_{1 \le i \le k} \{p_i^{\alpha_i}\} - 1$.

Lemma 1.4. If n > 10632, then $N(n) \ge 14$ (see [5]).

Lemma 1.5. If $n \notin \{2, 6\}$, then $N(n) \ge 2$ (see [4]).

2. IPMD and construction methods

We first introduce the concept of an incomplete PMD.

Definition 2.1: Let v, k and n be positive integers. A (v, k, 1)-incomplete PMD with emptiness n (briefly IPMD[v, k, n]) is a triple (X, Y, B) where X is a v-set (of points), $Y \subset X$ is a n-set (of points) and B is a collection of cyclically ordered subsets of X (called blocks) with block size k such that (1) every ordered pair (x, y) of points of X with $\{x, y\} \not\subset Y$ appears t-apart in a unique block of B for $t = 1, 2, \ldots, k - 1$; (2) every ordered pair (x, y) of points of X with $\{x, y\} \subset Y$ appears in no block of B.

We now establish several constructions for Mendelsohn design.

Theorem 2.1. Suppose there exists an IPMD[v, k, n] and a (n, k, 1)-PMD. Then there exists a (v, k, 1)-PMD.

Proof: Let (X, Y, \mathbf{B}_1) be an IPMD[v, k, n] and (Y, \mathbf{B}_2) be a (n, k, 1)-PMD. It is easy to see that $(X, \mathbf{B}_1 \cup \mathbf{B}_2)$ is a (v, k, 1)-PMD.

Theorem 2.2. Suppose there exists: (1) a(v, k, 1) -PMD, (2) a(u+l, k, 1) -PMD, (3) a TD[k, 1; u], (4) an IPMD[u+l, k, l], where v, k and u are positive integers and l is a nonnegative integer. Then there exists a(vu+l, k, 1) -PMD.

Proof: Let X, Y and Z be three disjoint sets of points where $X = \{x_1, x_2, \ldots, x_v\}$, $Y = \{y_1, y_2, \ldots, y_u\}$ and |Z| = l. From condition (1), we can let (X, A) be a (v, k, 1)-PMD. Let $M_A = \{x_{i_1}, x_{i_2}, \ldots, x_{i_k}\}$ for any $A = (x_{i_1}, x_{i_2}, \ldots, x_{i_k}) \in A$. From condition (3), we can let $(M_A \times Y, G, B_A)$ be a TD[k, 1; u]. Let $\widetilde{B} = ((x_{i_1}, y_{j_1}), (x_{i_2}, y_{j_2}), \ldots, (x_{i_k}, y_{j_k}))$ for every $B = \{(x_{i_1}, y_{j_1}), (x_{i_2}, y_{j_2}), \ldots, (x_{i_k}, y_{j_k})\} \in B_A$ and $\widetilde{B}_A = \bigcup_{B \in B_A} \widetilde{B}$. From condition (2) we can let $((\{x_1\} \times Y) \cup Z, C_1)$ be a (u + l, k, 1)-PMD. From condition (4) we can let $((\{x_i\} \times Y) \cup Z, Z, C_i)$ be an IPMD[u + l, k, l] where $u = 2, 3, \ldots, v$. We are to prove that $((X \times Y) \cup Z, (\bigcup_{A \in A} \widetilde{B}_A) \cup (\bigcup_{i=1}^v C_i))$ is a (vu + l, k, 1)-PMD. Let (w_1, w_2) be an ordered pair of points of $(X \times Y) \cup Z$. We consider the following cases.

- (a) If $w_1, w_2 \in (\{x_i\} \times Y) \cup Z$ and $\{w_1, w_2\} \not\subset Z$, then (w_1, w_2) appears t-apart in a unique block of C_i for any t = 1, 2, ..., k 1.
- (b) If $\{w_1, w_2\} \subset Z$, then (w_1, w_2) appears t-apart in a unique block of C_1 for any t = 1, 2, ..., k 1.

(c) If $w_1 \in \{x_i\} \times Y$ and $w_2 \in \{x_j\} \times Y$ with $i \neq j$, then the ordered pair (x_i, x_j) appears t-apart in a unique block A of A for any t = 1, 2, ..., k - 1. Therefore the ordered pair (w_1, w_2) appears t-apart in a unique block of \widetilde{B}_A for any t = 1, 2, ..., k - 1.

The three cases described above are mutually exclusive and cover all possibilities.

Theorem 2.3. Suppose there exist: (1) a(v, k, 1)-PMD, (2) a resolvable TD[k, 1; u], (3) an IPMD[u+l, k, l], (4) an IPMD[v+m, k, m], (5) a (l+m, k, 1)-PMD, where v, k and u are positive integers, l and m are nonnegative integers. Then there exists a (vu+l+m, k, 1)-PMD.

Proof: We adapt the notations in the proof of Theorem 2.2. Let S be a m-set with $S \cap X = S \cap Y = S \cap (X \times Y) = \emptyset$. For every $A = (x_{i_1}, x_{i_2}, \dots x_{i_k}) \in A$, since there exists a resolvable TD[k, 1; u], we can let $D_A = \{((x_{i_1}, y_j), (x_{i_2}, y_j), \dots, (x_{i_k}, y_j)) \mid j = 1, 2, \dots, u\} \subset \widetilde{B}_A$. From condition (4) we can let $((X \times \{y_i\}) \cup S, S, E_1)$ be an IPMD[v + m, k, m] where $i = 1, 2, \dots, u$. From condition (3) we can let $((\{x_1\} \times Y) \cup Z, Z, D_1)$ be an IPMD[u + l, k, l]. From condition (5) we can let $(S \cup Z, F)$ be a (m + l, k, 1)-PMD. It is easy to see that

$$\left((X \times Y) \cup Z \cup S, \left(\bigcup_{A \in A} (\widetilde{B}_A \backslash D_A) \right) \cup \left(\bigcup_{i=2}^{v} C_i \right) \cup D_1 \cup F \cup \left(\bigcup_{i=1}^{u} E_i \right) \right)$$

is a (vu + l + m, k, 1)-PMD.

Theorem 2.4. Suppose there exist:

- (1) a(v, k, 1)-RPBD of (X, A) where A can be partitioned into s parallel classes A_1, A_2, \ldots, A_s ,
- (2) an IPMD $[|A| + l_i, k, l_i]$ for every $A \in A_i$ where $l_i \ge 0$, $1 \le i \le s$,
- (3) $a(\sum_{i=1}^{s} l_i, k, 1)$ -PMD.

Then there exists a $(v + \sum_{i=1}^{s} l_i, k, 1)$ -PMD.

Proof: Let Y_1, Y_2, \ldots, Y_s be s sets of points where $|Y_i| = l_i$ and $Y_i \cap X = \emptyset$ for $1 \le i \le s$ and $Y_i \cap Y_j = \emptyset$ if $i \ne j$. Let $Y = \bigcup_{i=1}^s Y_i$. From condition (2) we can let $(A \cup Y_i, Y_i, C_A^i)$ be an IPMD $[|A| + l_i, k, l_i]$ where $A \in A_i$ for $i = 1, 2, \ldots, s$. Let $C^i = \bigcup_{A \in A_i} C_A^i$. From condition (3) we can let (Y, B) be a $(\sum_{i=1}^s l_i, k, 1)$ -PMD. We now prove that $(X \cup Y, (\bigcup_{i=1}^s C^i) \cup B)$ is a $(v + \sum_{i=1}^s l_i, k, 1)$ -PMD. Let (w_1, w_2) be an ordered pair of points of $X \cup Y$.

- (a) If $w_1 \in X$, $w_2 \in Y_i$ where $1 \le i \le s$, then there exists a unique block A of A_i such that $w_1 \in A$, therefore (w_1, w_2) appears t-apart in a unique block of C_A^i for t = 1, 2, ..., k 1. If $w_1 \in Y_i$, $w_2 \in X$, the proof is similar.
- (b) If $\{w_1, w_2\} \subset Y$, then (w_1, w_2) appears t-apart in a unique block of **B** for t = 1, 2, ..., k 1.

(c) If $\{w_1, w_2\} \subset X$, then the pair $\{w_1, w_2\}$ appears in a unique block A of A_i where $1 \leq i \leq s$ from condition (1). Therefore, the ordered pair (w_1, w_2) appears t-apart in a unique block of C_A^i for t = 1, 2, ..., k - 1.

The three cases described above are mutually exclusive and cover all possibilities.

3. New results for (v, 4, 1)-PMD

In this section, we need the following notations:

PMD =
$$\{v \mid \text{ there exists a } (v, 4, 1) \text{ -PMD}\}$$

IPMD[n] = $\{v \mid \text{ there exists an IPMD}[v, 4, n]\}$

The following facts are obvious.

- (1) The existence of a (v, 4, 1)-RPMD implies the existence of a (v, 4, 1)-PMD.
- (2) There does not exist any (4,4,1)-PMD.
- (3) A (v, 4, 1)-MD is perfect if any ordered pair of points appears t-apart in a unique block for t = 1, 2.

Lemma 3,1. Let 2s+1 be a prime power where s is odd and s>1, then $3s+1 \in IPMD[s]$.

Proof: Let w be a primitive root of GF(2s+1). Let $A_i = (\infty_i, 0, w^{2i}, w^{2i}(1+w))$ be base blocks where $i = 0, 1, 2, \ldots, s-1$. It is readily checked that 1-apart difference $D_1 = \bigcup_{i=0}^{s-1} \{w^{2i}, w^{2i+1}\} = GF(2s+1)\setminus\{0\}$. Since s is odd and s > 1, we have 2-apart difference $D_2 = \bigcup_{i=0}^{s-1} \{w^{2i}(1+w), -w^{2i}(1+w)\} = GF(2s+1\setminus\{0\})$. Therefore, $3s+1 \in IPMD[s]$.

Lemma 3.2.

$$\{13,17\} \subset IPMD[4], \{20,24,36\} \subset IPMD[5], 25 \in IPMD[8],$$

 $32 \in IPMD[9], \{44,48\} \subset IPMD[13], \{52,56\} \subset IPMD[17],$
 $\{68,72\} \subset IPMD[21], 84 \in IPMD[25], 92 \in IPMD[29],$
 $132 \in IPMD[41].$

Proof: Here, we always take the additive group of integers mod (v - n). Let

$$A_i = (\infty_i, 0, a_i, b_i)$$
 where $i = 1, 2, ..., n$ and $B_i = (0, c_i, d_i, e_i)$ where $i = 1, 2, ..., s$ (s is a nonegative integer)

be base blocks. For brevity we denote these blocks by

$$\begin{bmatrix} c_1 & c_2 & \dots & c_s \\ a_1 & a_2 & \dots & a_n & d_1 & d_2 & \dots & d_s \\ b_1 & b_2 & \dots & b_n & e_1 & e_2 & \dots & e_s \end{bmatrix}.$$

It is easy to see that $v \in IPMD[n]$ whenever

$$D_{1} = \left(\bigcup_{i=1}^{n} \{b_{i} - a_{i}, a_{i}\}\right) \cup \left(\bigcup_{i=1}^{s} \{c_{i}, d_{i} - c_{i}, e_{i} - d_{i}, -e_{i}\}\right) = Z_{v-n} \setminus \{0\} \text{ and }$$

$$D_{2} = \left(\bigcup_{i=1}^{n} \{\pm b_{i}\}\right) \cup \left(\bigcup_{i=1}^{s} \{\pm d_{i}, \pm (e_{i} - c_{i})\}\right) = Z_{v-n} \setminus \{0\}.$$

It is readily checked that the following parameters all satisfy the condition $D_1 = D_2 = Z_{v-n} \setminus \{0\}$.

Lemma 3.3. Suppose

- (1) $N(u) \ge v 1$,
- (2) $u + m \in IPMD[m]$ and $v + l_i \in IPMD[l_i]$ where i = 1, 2, ..., u,
- (3) $m + \sum_{i=1}^{u} l_i \in PMD$.

Then $uv + m + \sum_{i=1}^{u} l_i \in PMD$.

Proof: Since $N(u) \ge v - 1$, we have a resolvable TD[v, 1; u] of (X, G, B) and then a $(uv, \{u, v\}, 1)$ -RPMD of $(X, G \cup B)$. Therefore, we have $uv + m + \sum_{i=1}^{u} l_i \in PMD$ by Theorem 2.4.

Since $v \in PMD$, $v \in IPMD[0]$ and $v \in IPMD[1]$ are pairwise equivalent, we have from Lemma 3.3 the following Corollaries.

Corollary 3.4. Suppose

- (1) $N(u) \ge v 1$,
- (2) $v \in PMD$, $v + l \in IPMD[l]$ and $u + m \in IPMD[m]$,
- (3) $m + sl \in PMD$ where 0 < s < u.

Then $uv + m + sl \in PMD$.

Corollary 3.5. Suppose

- (1) $N(u) \ge v 1$,
- (2) $v + 1 \in PMD$, $v + 5 \in IPMD[5]$ and $u \in PMD$,
- (3) $u + 4s \in PMD$ where $0 \le s \le u$.

Then $uv + u + 4s \in PMD$.

Theorem 3.6. (1) If $16 \le v \le 272$ and $v \equiv 0 \pmod{4}$, then $v \in PMD$. (2) $\{57, 93, 133\} \subset PMD$.

Proof: (a) Taking s = 5, 9, 13, 21, 29 in Lemma 3.1 and using Theorem 1.2 and Theorem 2.1, we have $\{16, 28, 40, 64, 88\} \subset PMD$. By using Lemma 3.2, Theorem 1.2 and Theorem 2.1, we obtain $\{20, 24, 32, 36, 44, 48, 52, 56, 68, 72, 84, 92, 132\} \subset PMD$.

(b) We have $\{5,9,13,17,25,16,20,24,32\} \subset PMD$ from (a) and Theorem 1.2. We also have $\{17,13\} \subset IPMD[4]$ and $25 \in IPMD[8]$ from Lemma 3.2 and $16 \in IPMD[5]$ from Lemma 3.1. Since

$$60 = 5 \times 11 + 5$$
, $76 = 5 \times 15 + 1$, $80 = 5 \times 16$, $96 = 5 \times 19 + 1$, $100 = 20 \times 5$, $156 = 5 \times 31 + 1$, $212 = 16 \times 13 + 4$, $216 = 24 \times 9$, $220 = 24 \times 9 + 4$, $93 = 5 \times 17 + 8$,

it is easy to see by using Theorem 2.2 that $\{60,76,80,96,100,156,212,216,220,93\}\subset PMD$.

- (c) Since $N(11) \ge 3$, $16 \in \text{IPMD}[5]$, $17 \in \text{IPMD}[4]$ and $13,9 \in \text{PMD}$, we have $152 = 13 \times 11 + 5 + 4 \in \text{PMD}$ by using Theorem 2.3. Since $N(4) \ge 3$, $13,5 \in \text{PMD}$ and $17 \in \text{IPMD}[4]$, we have $57 = 13 \times 4 + 1 + 4 \in \text{PMD}$ by using Theorem 2.3. Take u = 13, v = 9, l = 4, m = 0, and s = 4 in Corollary 3.4, since $16 \in \text{PMD}$ from (a), we have $133 = 13 \times 9 + 16 \in \text{PMD}$.
- (d) Take $0 \le s \le 11$ and $s \ne 7$. We have $5 + 4s \in PMD$ from Theorem 1.2, and then $11 \times 9 + 5 + 4s \in PMD$ by Corollary 3.4. We also have $132 \in PMD$

PMD from (a), therefore, $\{v | 104 \le v \le 148 \text{ and } v \equiv 0 \pmod{4}\} \subset \text{PMD}$. For $4 \le s \le 16$ we have $4s \in \text{PMD}$ from (a) and (b). Using Corollary 3.4 we obtain $16 \times 9 + 4s \in \text{PMD}$ and $16 \times 13 + 4s \in \text{PMD}$. That is,

$$\{v|160 \le v \le 208 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD \text{ and } \{v|224 \le v \le 272 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD.$$

The proof is now complete.

The following corollary is straightforward by combining Theorem 1.2 and Theorem 3.6.

Corollary 3.7. If $v \equiv 1 \pmod{4}$ and $v \neq 33$, then $v \in PMD$.

Corollary 3.8. If (1) $N(u) \ge 14$, and (2) $u \equiv 1 \pmod{4}$ and $u + 4s \ne 33$ where 0 < s < u. Then $16u + 4s \in PMD$.

Proof: Take v = 15 in Corollary 3.5. Since $16 \in PMD$ from Theorem 3.6, $20 \in IPMD[5]$ from Lemma 3.2 and $\{u, u + 4s\} \subset PMD$ from Corollary 3.7, we then have $16u + 4s \in PMD$.

Theorem 3.9. If v > 276 and $v \equiv 0 \pmod{4}$, then $v \in PMD$.

Proof: (a) Taking $5 \le s \le 8$, u = 16 and v = 15 in Corollary 3.5, we have $16 \times 15 + 16 + 4s \in PMD$, that is, $\{v|276 \le v \le 288$ and $v \equiv 0 \pmod{4}\} \subset PMD$. By using Corollary 3.4 and Corollary 3.7, we have $23 \times 13 + 1 + 4s \in PMD$ for $10 \le s \le 23$, i.e., $\{v|340 \le v \le 392 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD$, $27 \times 13 + 1 + 4s \in PMD$ for $10 \le s \le 27$, i.e., $\{v|392 \le v \le 460 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD$, $43 \times 13 + 21 + 4s \in PMD$ for $10 \le s \le 27$, i.e., $\{v|392 \le v \le 460 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD$. By using Corollary 3.8, we have $17 \times 15 + 17 + 4s \in PMD$ for $15 \le s \le 17$, i.e., $15 \times 17 + 4s \in PMD$ for $15 \le s \le 17$, i.e., $15 \times 17 + 4s \in PMD$, $15 \times 15 + 25 + 4s \in PMD$ for $15 \le s \le 25$, i.e., $15 \times 17 + 4s \in PMD$, $15 \times 17 + 4s \in PMD$,

(b) Let $t_1=37$, $t_2=41$, $t_3=49$, $t_4=61$, $t_5=73$, $t_6=81$, $t_7=97$, $t_8=101$, $t_9=113$, $t_{10}=137$, $t_{11}=149$, $t_{12}=181$, $t_{13}=197$, $t_{14}=229$, $t_{15}=277$, $t_{16}=337$, $t_{17}=409$, $t_{18}=509$, $t_{19}=617$, $t_{20}=761$. It is clear that t_i is prime power and $t_i=1\pmod 4$ for $1\le i\le 20$. Then $N(t_i)\ge 14$ and $N(25t_i)\ge 14$ for $1\le i\le 20$ from Lemma 1.3. By using Corollary 3.8 we have

$$\{v | 16t_i \le v \le 16t_i + 4t_i \text{ and } v \equiv 0 \pmod{4} \} \subset PMD \text{ and } \{v | 16 \cdot 25t_i \le v \le 16 \cdot 25t_i + 4 + 25t_i \text{ and } v \equiv 0 \pmod{4} \} \subset PMD$$

for $1 \le i \le 20$. It is readily checked that $4(t_{i+1} - t_i) \le t_i$, that is, $16t_i + 4t_i \ge 16t_{i+1}$ and $16 \cdot 25t_i + 4 \cdot 25t_i \ge 16 \cdot 25t_{i+1}$ for $1 \le i \le 19$. Since $16t_1 = 16t_1 \le 16t_1 \le 16t_2$

- 592, $16t_{20} + 4t_{20} = 15220$, $16 \cdot 25t_1 = 14800$, $16 \cdot 25t_{20} + 4 \cdot 25t_{20} = 380500$, we have obtained that $\{v | 592 \le v \le 380500 \text{ and } v \equiv 0 \pmod{4}\} \subset PMD$.
 - (c) Let $t_0 = 2700$, $t_i = t_0 + i$ for $i \ge 1$.

It is easy to see that $4\,t_i+1>10632\,$ for $i\ge 0$. Therefore, we have $N(4\,t_i+1)\ge 14\,$ from Lemma 1.4. Taking $0\le s\le 16\,$ in Corollary 3.8, we have $\{v|16(4\,t_i+1)\le v\le 16(4\,t_i+1)+64\,$ and $v\equiv 0\,$ (mod 4)} \subset PMD. Since $16(4\,t_i+1)+64=16(4\,t_{i+1}+1)\,$, we have that $v\in$ PMD if $v\equiv 0\,$ (mod 4) and $v\ge 16(4\,t_0+1)=172816\,$.

Combining (a), (b) and (c) completes the proof.

From Theorem 1.2, Theorem 3.6 and Theorem 3.9 we conclude with the following theorem.

Theorem 3.10. A (v, 4, 1)-PMD exists for every positive integer $v \equiv 0$ or $1 \pmod{4}$ with the exception of v = 4 and the possible exception of v = 8, 12, 33.

REFERENCES

- 1. F.E. Bennett, Conjugate orthogonal Latin squares and Mendelsohn designs, Ars Combinatoria 19 (1985), 51-62.
- 2. F.E. Bennett, On r-fold perfect Mendelsohn designs, Ars Combinatoria (to appear).
- 3. F.E. Bennett, E. Mendelsohn and N.S. Mendelsohn, *Resolvable perfect cyclic designs*, J. Combinatorial Theory Ser A. **29** (1980), 142–150.
- 4. A.E. Brouwer, The number of mutually orthogonal Latin square a table up to order 10,000, Math. Centr. report ZW123 (June 1979).
- 5. A.E. Brouwer and B.H.J. van Rees, *More mutually orthogonal Latin squares*, Discrete Math 39 (1982), 263–281.
- 6. M. Hall, Jr., "Combinatorial Theory", Blaisdell Walthen, Mass., 1967.
- 7. H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255–369.
- 8. D.F. Hsu and A.D. Keedwell, Generalized complete mappings, sequenceable groups and block designs. II, Pacific J. of Math. 117 (1985), 291–312.
- 9. N.S. Mendelsohn, Perfect cyclic designs, Discrete Math 20 (1977), 63-68.

Acknowledgement I would like to thank Professor L. Zhu for his helpful suggestions.