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Abstract. We employ a well-known class of designs to give a complete solution to
the problem of determining the spectrum of uniform semiframes with block size two.
As a corollary we prove that the complete graph Ky, admits a one-factorization with
an orthogonal set of u disjoint sub-one-factorizations of K, if and only if g is even and
u> 3.

1. Introduction

In a recent paper [7] the author introduced a particular generalization of a frame,
which we call a semiframe. We begin with a brief review of the definitions and
constructions contained therein.

A group-divible design (GDD) is a triple (X, G, B) where X is a set of points,
G is a partition of X into groups and B is a collection of subsets of X (called
blocks) such that any pair of distinct points from X occurs in one group or one
block, but not in both. A parallel class of blocks in a GDD is a subset B’ C B
which partitions X; a holey parallel class of blocks is a subset B” C B which
partitions X — G for some group G; € G. A semiframe is a group-divisible
design whose block set B can be written as a disjoint union P U @, where P can
be partitioned into parallel classes and Q can be partitioned into holey parallel
classes. Note that when P = § we have a frame, while at the other end of the
spectrum when Q = @ we have a resolvable GDD.

We are concerned herein with semiframes having block size two, in which all
the groups have the same size. We begin by remarking that the spectra for frames
and resolvable GDDs with block size two are well-known (short proofs can be
found, e.g. in [6]):

Theorem 1.0. A resolvable 2-GDD with u groups of size g exists if and only if
u>2and gu=0 (mod 2). A 2-frame with u groups of size g exists if and
onlyif u>3 and g(u—1) =0 (mod 2).

We will assume then that there are both parallel classes and holey parallel classes
present (such a semiframe will be called proper), whence we have the following
(our notation is as in [7]: a 2-SF(p, d; g*) denotes a semiframe with u groups of
size g in which there are p parallel classes and in which for each group G there
are d holey parallel classes of pairs that partition X — G;):
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Lemma 1.1. [7, Corollary 2.2] If there is a proper 2-SF(p, d; g*) then g is even,
v>3,p=0 (mod u—1)andd=g— &

u-1"
We will show that the conditions in lemma 1.1 are sufficient. Our main tools
will be the following special cases of constructions 3.1 and 3.2 from [7]:

Construction 1.2. Let (X, G, B) be a frame with block size two containing t;
groups of size s;, 1 = 1,...,7. Suppose that foreach i = 1,...,j there is a

2-SF(p;, d; g™* %), Then there is a 2-SF(Y; pits, ds g™*'5).

Construction 1.3. Let (X, G, B) be a 2-SF(p,d; g*) and suppose that there
are u — 1 parallel classes of blocks whose union can be partitioned into u holey
parallel classes. Then for each positive integer nandeach i = 0,1,... ,n there
isa 2-SF(mp — i(u— 1), nd + 1; (ng)¥).

We will also make use of the following construction.

Construction 1.4. Suppose that there is a transversal design TD(u + 1,n) and
that for each 1 = 1,2,...,n there is a 2-SF(p;,d;; ¢%). Then there is a

2-SF(Y " pi, 3 di; (ng)¥).

Proof: Take one of the groups and label its points 1,2,... ,n, and let B; denote
the pencil of blocks containing point . Now foreach: = 1,2,... ,nand each
B € B; build a 2-SF(p;, d;; g*) on B — {1}. (Each point in B — {4} is, of course,
being replaced by g new points.). i

2. Semiframes with block size two

We will use as our principal building block a design called a partitioned balanced
tournament design. A balanced tournament design BTD( n) is an arrangement of
the (%) distinct unordered pairs of a 2n-set X into annx 2n— 1 array such that

(i) each element of X appears exactly once in each column of the array, and
(ii) each element of X appears at most twice in each row of the array.

Schellenberg, van Rees and Vanstone [8] have established the existence of BTD(n)
for every positive integer n # 2. Note that BTD(n) gives a schedule for a 2 n-
player round-robin tournament with n playing surfaces in which the players are
distributed over the playing surfaces in as fair a manner as possible (the columns
of the array correspond to rounds and the rows of the array correspond to playing
surfaces).

A balanced tournament design is said to be partitionable (and is denoted
PBTD(n)) if its columns can be partitioned into three sets Ci, C3, Cs, of sizes 1,
n— 1 and n— 1, so that each subarray C, U C, and C; U C; satisfies:

(i)’ each element of X appears exactly once in each row of the subarray.

These designs have been studied by Stinson [9], Lamken and Vanstone [2, 3, 4]
and Lamken [1] and their spectrum has been almost completely determined:
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Theorem 2.1. There exists a PBTD(n) for every positive integer n > S, except
possibly for n€ {9,11,15,26,28,34,44}.

Now we make an observation: a PBTD(n) implies the existence of a 2-SF(2n—

2,0;2™) whose blocks can be partitioned into two sets, each of which can be
viewed alternatively either as forming n — 1 parallel classes of pairs or n ho-

ley parallel classes of pairs. The following is now an immediate consequence of
theorem 2.1 and construction 1.3.

Theorem 2.2. Let u > 5,u ¢ {9,11,15,26,28,34 44}, and let g = O
(mod 2). Thenforeachp =0 (mod v« —1),0 < p< g(u—1), thereisa
2-SF(p, d; g*) whered = g — B+

u-1"
Proof: If £(u—1) < p < g(u—1) apply construction 1.3 to a PBTD(u) viewed
as a2-SF(2u — 2,0;2%). If 0 < p < #(u — 1) apply construction 1.3 t0 a
PBTD(u), viewed instead as a 2-SF(u — 1,1;2%).

Lemma 2.3. The conditions in lemma 1.1 are sufficient when u € {9,11,15}.

Proof: Apply construction 1.3 to the following semiframes. In each case the rel-
evant parallel classes are indicated by an asterisk.

2-SF(8,1,2%)  Points Zy x {1,2}

Groups {{i1,32}:91 € Z9}
Holey parallel classes:

(*) parallel classes: develop each of the pairs
112, 2142 3160 418 51l 6132 715 8172 mod 9.

2-SF(16,0;2°)  Points (Zs x {1,2}) U{o01,002}

Groups {{i1,%2}: ¢ € Z3} U {{oo1,002}}
Parallel classes:

n(i+ 1)y (1+ SN+ Tn 11(s+ 5» (i+ D (i+ 30

B+ 1)1 (5+3)y (1+h(+2), ($+10(s+5); (1+2p(1+6)

(1+2h12 (14 6)1002 H (B+3NnGE+7n (1+ 2)1002 1=0,1,2,3
(G+3)(+6)y (i+4po0 (i+4n(i+ 1) 1200

G+4an@i+ 5k (i+6n(i+4)

(*) parallel classes: columns in the 9 x 8 array whose first row is
21l 312, 43 ... 1,05
and whose remaining rows are obtained by cyclic shifts of

00101 00202 5161 560 1131 123, 4171 472 mod 8
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(e.g. Thethirdrowis 5,0, 00111 0021y 6,71 672 214 2,4,
etc.).

2-SF(10,1,2')  Points 2y x {1,2}
Groups {{11,42}:1 € Zn}
Holey parallel classes:
leOj 2,*9; 3,‘8,' 4,'7)' 5,'6;, j=1,2 mod 11

(*) parallel classes: develop each of the pairs

112, 214, 316, 418, 510,
6112 713; 815 972 10,9, mod 11.

2-SF(20,0,2')  Points (Z10 x {1,2}) U{oo1, 002}

Groups {{11,%2} : 1 € Z10} U {{o01002}}
Parallel classes:

n(i+ 1y (i+ iz i1 (i+4) (i+6)(i+3)
(E+M(i+3y ((+8n(i+4n  (i+11(i+8y (i+i(i+6)
(G+21(G6+5y (E+MGE+Tn, G+21G+1)y, i2(i+ 5y

(i+G+ 9 (i+4ooy  ° (i+3n(+8)y (14900 =0l
(1+51(5+6), (i+2)n00; (1+4)(i+2) (i+Thoo
(1+6)1(s+ 8y (+5(i+ 9

(*) parallel classes: columns in the 11 x 10 array whose first row is
318 49 50, ... 217,
and whose remaining rows are obtained by cyclic shifts of

00101 24 629, 7181 1,5
00202 214, 6197 728 1,5, mod 10.

2-SF(14,1;2%)  Points Z5 x {1,2}

Groups {{i1,432} : i € 215}
Holey parallel classes:

5101,

1]'14)' 2,13) 3]12} 4,11, 5)'10,' 6]9] 7,'8]‘, j=1,2 mod 15

(*) parallel classes: develop each of the pairs

112, 214, 3160 418 510 6;12; 7,14, 8113 913, 10,5,

11,7, 1219, 13;11, 14,13, mod 15.
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2-SF(28,0;2'%)  Points (Z14 x {1,2}) U {c01002}
Groups {{i1,i2}: 1€ Z1a} U {{o01002}}

Parallel classes:
G+ 1) G+ G+ 12) f1(i+ 1) (i+ 8)12
G+ I1G+3y (54 10142 G+ G+ Tn G+MG+ 5k

G+ 2+ 5y G+ GE+2) @216+ 12 (+ 10 (8+9)
(+3GE+Te  G+120(+6) | (+MGE+2 G+ 1BnGE+82 ., o
GrdnG+9%  Ge G+’ ErdnGeil) (+3pG+10p P70

(1+6)n(i+4n (1+5hon (§+ 5N (i+ 13 (i+ 12)1002
GG+ Th(i+8» (i+ 13001 (1+6)n(i+ 1y (1+6no0
(i+ 8) (s + 10y i+ i+ 4y

(*) Parallel classes: columns in the 15 x 14 array whose first row is
411, 512 6113, ... 3110,
and whose remaining rows are obtained by cyclic shifts of

00101 325 1,77 10111 2161 813; 9112; 0020, 3151 17
10,11, 2,6, 8;13; 9;12, mod 14.

This completes the proof of lemma 2.3. 1

Remark: The designs 2-SF(n — 1, 1;2") constructed in lemma 2.3 are special
cases of a more general construction that appears in [8, lemma 2.3].

Lemma 2.4. The conditions inlemma 1.1 are sufficient when u € {26,28,34,44}.

Proof: Here we will use construction 1.2. Consider first the case u = 26. Let g
and d be given. Take a transversal design TD(4,7) and remove three points from
one of the groups; replace each point by g new points and each block by a frame
(theorem 1.0) and so construct a frame with block size two having three groups
of size 7g and one group of size 4 g. Now apply construction 1.2 (the required
‘input’ semiframes exist by theorem 2.2).

The cases u = 28, 34 and 44 are handled analogously, using respectively,
TD(4,7), TD(4,9), TD(4,11). Note that in the last case we require, as input,
semiframes with 11 groups; these exist by lemma 2.3. 1

Finally, consider the cases u = 3,4:

Lemma 2.5. The conditions in lemma 1.1 are sufficient when v = 3 and also
whenu=4 and g=0 mod 4.

Proof: First suppose that u = 3. Let g and d be given. Take 2 g — 2d 1-factors on
the complete tripartite graph K, 4 o as parallel classes (see theorem 1.0) and then
partition the remaining pairs on K, 44 into holey parallel classes.
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Now let u = 4. Apply construction 1.3 to the following semiframes, according
to the value of d (as in lemma 2.3 the relevant parallel classes are indicated by an
asterisk):
0<d< 39
2-SF(6,0;2%)  Points {1,1,...,4,4'}

Groups {{1,1'},...,{4,4'}}

Parallel classes:
1,2 1,3 1,4
3,4 2,4 2,3
11’21 1/)3/ 11’41
31,41 21,41 21,31
(*) Parallel classes:
1,3’ 3,2/ 2,1
2,4’ 4,1 1,2’
3,1 1,4’ 4,3/
4,2/ 2,3/ 3,4/
79<d<g

2-SF(6,2;4%)  Points Zg x {1,2}
Groups {{i1(i+4)1i2(i+4)2}:0<i<3}
Holey parallel classes:
1121 122 3161 362 5:177 572 mod 8
(*) parallel classes: develop the following six pairs of blocks mod 8:
L2, 56, 217, 613 315 L,
211, 615 7122 3,6 513, 117,

This completes the proof of lemma 2.5. |

Lemma 2.6. The conditions in lemma 1.1 are sufficient when v = 4 and g = 2
mod 4.

Proof: We consider first the cases g = 2, 6.
2-SF(3,1;2%)  Points {1,1',2,2',3,3',4,4}
Groups {{i,7'}:1<i<4}
1,2 1,3 1,4
3,4 2,4 2,3
ll 21 1/ 3! ll 4l
3/’4/ 2/24/ 2/:3/

Parallel classes:
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Holey parallel classes:

4,2/ 1,4’ 2,4’ 3,2/

2,3 3,V 4,1 1,3

3,4/ 4,3/ 1,2 2,1
2-SF(18 — 3d,d;6%),1 < d < 3. Apply construction 1.3 to the 2-SF(6,0;24)
given in the proof of lemma 2.5.
2-SF(6,4;6%)  Points Ze x {1,2,3,4}

Groups {Ze x {j}:1<j<4}

Parallel classes:
0,0, , 0,05 , 0,04 ,
0,04’ 0,04’ 0,05’
013, 0133 . 034
O3¢°  0p3° 0,3  md6
Holey parallel classes:
The holey parallel classes with respect to Z¢ x {4} are
f1(i+2) G+Di(E+2n  G+InGE+3)y G+ Dz
(B+ 1 (E+2y; T+ 1)hi3 i (142 i (+1)p(s+3)3 ¢=0,2,4,
(s+ 13 (i+3) (14 1)a4; (i+ 1a(s+ 2 13(s+2)

The holey parallel classes with respect to Z¢ x {j} (j = 1,2, 3) are obtained by
letting the permutation a;; act on the subscripts of the above holey parallel classes,
where a; = (124), a; = (142) and a3 = (12)(34).
2-SF(3,5;6%). Use the 2-SF(6,4;6*) constructed above, changing the last
three parallel classes to the four holey parallel classes

) 0;3; 14, 25,  (4,7) €{(2,9,(4,3),(3,2)},

(i) 0;3; 145 25,  (4,7)) €{(4,1),(1,3),(3,4},

v) 0.3; L4; 25,  (4,/) €{(2,1),(1,4),(4,2)}.
Now suppose that g > 10, and let g = 2n Let p and d be given, and let
p1,D2 ... ,Ps be any sequence of Os, 3s and 6s such that }_ p; = p (this can be
done since, from lemma 1.1,p=0 mod 3 and 0 < p < 3g). Apply construc-
tion 1.4 toa TD(5, m), using as input designs 2-SF(0,2;24),2-SF(3, 1; 24) and
2-SF(6,0; 24) according to the values p;. (A 2-SF(3,1; 24) is constructed ear-
lier in this lemma, and the other two semiframes exist by theorem 1.0.) Note that
for each i, d; = 2 — }p;, whence

1 1
Z;di=z;(2—-3-m> —g—gp-d-
This completes the proof of lemma 2.6. I

Collecting the results in lemma 1.1, theorem 2.2 and lemmas 2.3 through 2.6
we get our main theorem.

93



Theorem 2.7. There exists a proper 2-SF(p, d; g*) if and only if g is even, n >
3,p=0 (mod u—1)andd=g- .

Theorems 1.0 and 2.7 complete the spectrum for semiframes with block size
two.

3. Applications

In section 4 of [7] two particular applications of semiframes were discussed. The

first involves resolvable designs admitting a spanning set of resolvable subdesigns.
If F is a one-factorization of the complete graph K, then a one-factorization F'
of some K, C K, is said to be a sub-one-factorization of F provided that for
each one-factor f' € F' there is a one-factor f € F such that ' C f. Itis well
known (see for example [5]) that the complete graph K, has a one-factorization
admitting a sub-one-factorization of K, if andonly ifv=g =0 (mod 2) and
v > 2g. Acollection Fy, Fj, ... , F, of sub-one-factorizations of F' will be called
an orthogonal disjoint set provided that

(i) the u vertex sets covered by Fy, F3, ... , F. form a partition of the vertex
setof K, and
(i) if'e; is an edge in a one-factor of Fy and e; is an edge in a one-factor of Fj,
and i ¥ j, then e; and e; occur in different one-factors of F.
Note that if each F] consists of a single edge then the above reduces to the usual
definition of an orthogonal one-factor with respect to F.

Theorem 3.1. The complete graph K,, admits a one-factorization with an or-
thogonal set of disjoint sub-one-factorizations of K, if and only if g is even and
v >3,

Proof: The required one-factorization is equivalent to a 2-SF(u — 1,9 — 1; g%)
whose ‘holes’ have been filled with one-factorizations of K,. The required semi-
frames exist by Theorem 2.7. §

The second application of our semiframes is in the construction of a certain
class of incomplete group-divisible designs. The following is a special case of
lemma 4.3 in [7]:

Lemma3.2. A 2-SF(p, d; g*) is equivalent to a 3-IGDD of type ( g+d, d) *(p, p)*
in which every block intersects the hole.

Proof: Adjoin d new points to each ‘hole’ in the semiframe, each new point com-
pleting a holey parallel class. Then adjoin p more points, each one completing a
parallel classs in the semiframe. The construction is reversible, since we would
be starting with a 3-IGDD in which every block intersects the hole. |

The spectrum of 3-IGDDs of the type indicated in lemma 3.2 now follows as a
direct corollary to Theorems 1.0 and 2.7.

94



4. Acknowledgments

This research was supported in part by the Natural Sciences and Engineering
Research Council under grant OGP 36507.
The author acknowledges with thanks many helpful suggestions by the referee,
who supplied construction 1.4 and the bulk of the proof of lemma 2.6.

References

1.E.R. Lamken, A Note on Partitioned Balanced Tournament Designs, Ars
Comb. 24 (1987), 5-16.

2. E.R.Lamken and S.A. Vanstone, Partitioned Balanced Tournament Designs
of Side 4n+ 1, Ars Comb. 20 (1985), 29-44.

3. E.R.Lamken and S.A. Vanstone, The Existence of Partitioned Balanced Tour-
nament Designs of Side 4 n+3, Annals of Discrete Math. 34 (1987), 319-338.

4. E.R.Lamken and S.A. Vanstone, The Existence of Partitioned Balanced Tour-
nament Designs, Annals of Discrete Math. 34 (1987), 339-352.

5. E. Mendelsohn and A. Rosa, One-Factorizations of the Complete Graph—a
Survey, J. Graph Theory 9 (1985), 43-65.

6. R. Rees, A Simple Construction for 2-frames, Research Report M/CS 87-3
(Mount Allison, 1987).

7. R. Rees, Semiframes and Nearframes, “Proceedings of ‘Combinatorics 88’7,
Universita degli Studi di Napoli (to appear).

8. P.J. Schellenberg, G.H.J. van Rees and S.A. Vanstone, The Existence of Bal-
anced Tournament Designs, Ars Comb. 3 (1977), 303-318.

9. D.R. Stinson, Room Squares with Maximum Empty Subarrays, Ars Comb.
20 (1985), 159-166.

95



