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Abstract. We construct nilpotent SQS-skeins of class n, for any positive integer n.
These SQS-skeins are all subdirectly irreducible algebras. The nilpotent SQS-skeins of
class n, which are constructed in this paper, are also solvable of order < L"zl if nis
odd, and of order < 1 + i—n if nis even.

1. Introduction
An SQS-skein is an algebra 7 := (T'; ¢) where T is the underlying set and q is a
ternary operation on T" satisfying:

(z,y,2) =q(z,2,y) = q(2,z,y) totally symmetric identity;

¢z, z,9) =y general idempotent identity;

¢(z,y,q9(z,y,2)) =2 Steiner identity.

There is a one-to-one correspondence between the SQS-skeins and the Steiner
quadruple systems “SQS” [6]. An SQS-skein T = (T'; ¢) or its associate SQS is
said to have cardinality r if |T'| = r. In [4] Hanani has shown that an SQS of
cardinality r exists iff r = 2 or4 (mod 6). An SQS-skein is called Boolean if
it satisfies the identity:

q(z)u)Q(ur ylz)) = q(I) y)z)'

The variety of all Boolean SQS-skeins Ao is the smallest non-trivial subvariety
of the variety of all SQS-skeins. The variety A, is generated by the 2-element
SQS-skein [7]. The variety of all SQS-skeins is a Mal’cev variety, which implies
that the congruences on SQS-skeins are permutable. Moreover the congruences of
such algebras are regular and uniform, i.e. any congruence is uniquely determined
by any of its congruence classes, and any two congruence classes of the same
congruence have the same cardinality [1]. Centrality is defined in general in [8] for
Mal’cev varieties. Here we rewrite the definition of centrality, and consequently
of nilpotence of SQS-skeins as in [1]. A congruence 8 on 7 is said to be central
on 7 iff there is a congruence relation 6 on (3 (considering 3 as a subalgebra of
72) containing the diagonal 7 := {(a,a) : a € T} as a congruence class. The
largest central congruence of 7 is called the centre congruence, which is denoted
by £(T'). An SQS-skein 7 has a central series of congruences, if there is a series
1=160 2061 2... 20, = 0 of congruences on 7 such that 8;/6;.1 C £(7:/641);
1=0,1,... ,n— 1. Then 7 is called a nilpotent SQS-skein of class n, if n is the
smallest length of a central series of congruences in 7.

The nilpotent SQS-skeins of class 1 are the Boolean SQS-skeins. In [1] are
given examples of nilpotent SQS-skeins of class 2. In this paper, we will construct
nilpotent SQS-skeins of class n, for each positive integer n.
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2. Properties of nilpotent SQS-skeins

From the defining conditions for a nilpotent SQS-skein 7 = (T, ¢), one can see
directly that the cardinality |T'| of such a 7 is equal to 2™, for some positive integer
m.

In Theorem 3 we will give a necessary and sufficient condition for a unique
atom in the congruence lattice of an SQS-skein 7 to be the centre of 7. And then
we give the construction of nilpotent SQS-skeins of arbitrary class n in the third
section.

Definition [1]. A sub-SQS-skein N of an SQS-skeinT = (T; q) isnormal iff for
allz;,y; € T;i=1,2,3 anda € N one has

g(a, zi, ) € N3 (i=1,2,3) = g(a,q(z1,72,73),9(y1,¥2,¥3)) EN.

Theorem 1 [1]. Let N be a non-empty subset of T. Then N is a normal sub-
SQS-skein of the SQS-skeinT = (T'; q) iff N is a congruence class of a congru-
ence relation 8y of T, where 0y is given by:

Oy ={(z,y) €T? : q(a,z,y) EN &a € N}.

Theorem 2 [1]{2]. Every sub-SQS-skein of T = (T'; q) with cardinality ;—|T| is
normal.

Theorem 3. LetT be an SQS-skein of cardinality 2™, with a unique atom 9 in its
congruence lattice C(t). Then 8 is the centre of T iff the cardinality of the factor
SQS-skein T/0 is equal to2™!.

Proof: Assume @ is the centre of 7; then the diagonal 7 is a congruence class for
some congruence relation ¢ on 6, ie. T = [(z,z)]¢ forz € T. Let
§:=TU[(z,y)]1¢,forz,y € T & z # y. Then § is a reflexive sub-SQS-skein of
6, so that § is a congruence relation of 7 (8, p. 19].

We have |6] = 2%+ 2™ = 2™! = 271 .22 therefore |T/8] = 2™, conse-
quently § is an atom of the lattice C( 7). But @ is the unique atom of C( 1), hence
0 = 8. It follows that |7/6] = 2™!.

Conversely assume |7/8| = 2™ !, so that |§] = 2™!. We have |7| = 2"
and |7| = £|6]. Now 7 is a sub-SQS-skein of 6, because 0 is reflexive. From
Theorem 2 it follows that 7 is a normal sub-SQS-skein of §. This means that T is
a congruence class for some congruence on 6. To prove that § is the centre of T,
suppose ¢ is another central congruence of 7 containing 6. If ¢ D 6 and ¢ # 0,
then there exists (z,y) € ¢ and (z,y) ¢ 0, and there is ¥ € C(¢) such that
T = [(z,z)]¢. Let§ := [(z,z)]¢ U[(z,y)]4, so that § is a reflexive sub-
SQS-skein of 72. From [8, p. 19] § is a congruence relation on 7. On the other
hand |§] = 2™, so that § is another atom of C(7), contradicting the uniqueness
of the atom @. This implies that  is the largest central congruence of C(7), and
completes the proof of the theorem.
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3. Construction of nilpotent SQS-skeins of class n

Let 7 := (T,3) be an SQS-skein of cardinality 2*, and suppose that the con-
gruence lattice C(7) has a unique atom 8 with cardinality 2™!. We construct a
new SQS-skein 7 = (T, ¢) with cardinality 2™!, for which C(7) has a unique
atom 6, such that 7/8, = 7. We do this in two steps (i) & (ii). The first step (i)
constructs 7 := (T, ¢) and a homomorphism 4 from 7 onto 7. The second step
(i) proves that ker ¢ := 0, is the unique atom of the congruence lattice C( 7).

Step (i)
LetT := {zo,ml,... ,:1:2-:__1} and
272
0= U {zi, i1}
even 5=0
Consider a set S := {yo,y1,...,y2n-1} such that SN T = @, and then let
T=TuUS.
For any three distinct elements z,y, 2 € T', we have the following four cases:
(1) {z,y,z}= {I;’,-Tj,Zk}
2 = {z;, z;, .
2) {z,.2} = {=i,2), 04} i, 7 k€{0,1,...,2" ~ 1}
(3) {z,y,2} = {zi, v, »}
(4) {z,9,2} = {vi,yj, %}

Letg(z;, z;, zx) = z. in 7. We define the ternary operation ¢ on T as follows

Te in case (1)
Ye in case (2)
Te in case (3)
Ye in case (4)

¢ (z,y,2) =

Furthermore let ¢’ be totally symmetric and satisfy the general idempotent identity.
We can easily show that the Steiner identity ¢'( z, v,4'(z,y,2)) = z holds for

any z,y,z € T. This implies that 7 := (T, ¢') is an SQS-skein of cardinality
2n+1 .

Now let (T', B) be the corresponding Steiner quadruple system of 7/, where B
is given by:

B:={{z,y,2,d(2,9,2)} i 5,v,2€ T &z #y# 2 # z}.
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From the definition of § we have that {xo,z1,z2,z3} is an element of B, and
from the definition of ¢’ the following set R is a subset of B.

R:= {{50,Il,22:333}s{50,51,y2,93},{-'170,-’52,ylsyS},{ZO,m,yl,!/Z}
{yo,yl:y2:y3}){y0)ylyz2;z3}x{yO)y21Ilyz3}’{y0;y3’zl)52}}-

We consider the following set H of 4-element subsets of the set T'.

H = {{yo,z2,91,3},{v0, 21, 22,23}, {90, 23, v1, 92}, {90, 71, v2, 13}
{z0,v3, 71,22}, {0, y1, 92, 13 }, {zo,¥2, 71,23}, {Z0, ¥1, 22, 23 }}.

The two sets K and H are formed from the same set

A= {330,5171,1?2,133,90)!/1,!/2:!/3}-

For any three-element subset {z, y, 2} C A and forany b € R with {z,y,2} C b,
there exists b’ € H with {z,y,z} C b'. From this it follows that (T, (B\R) U H)
is a Steiner quadruple system [6].

Let 7 := (T, q) be the corresponding SQS-skein of the Steiner quadruple sys-
tem (T, (B\R) U H).

Now we want to prove thatthe map ¢ : T — T defined by

P(z) =z; &Y(y;) =z; for 1=0,...,2" - 1.

is a homomorphism from 7 onto 7.
It is clear that ¢ is an onto map. We have to prove that

Vz,y,z € T,9(q(z,y,2)) = 7(¥(z),¥(v),¥(2)).

The equality is true if any two of z, y, z are equal. We observe that

¢(z,y,2) =¢'(z,y,2) forany {z,y,2} Z A.

For this reason we divide the proof into two cases: (a) {z,y,z} C A and
®) {z,y,2} € A. Now let z, y, z be three distinct elements defines as in (1),
(2), (3), and (4). This means that two cases (a) and (b) will be equivalent to the
following;:

(a) {i’j’k’e}={0111213}
®) {i,5,ke}#{0,1,2,3}.

We prove the truth of the equality in the two cases (a) and (b) for each case (1),
(2), (3), and (4).
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Case (a) (1): if {z,y,2} = {zi, z;, +}, then from H we have:

¥(q(zi,zj,7k)) = ¥(ye) =z  and

7(Y(z:), ¥(z;), ¥(zh)) = 75, 75, T4) = e

(): if {z,y,2} = {zi, z;, yx}, then
¥(q(zi, 7, 0)) = ¥(z.) =z,  and

g(P(z) ,¥(z5), ¥ (ve)) = U3, T, Tk) = Tes

@): if {z,,2} = {=:, j, v}, then

Y(q(zi, yj, vk)) = P(ye) = ze and

q(P(z:), ¥(y7),¥()) = 9( 5, T5, Th) = Tes

@): if {z,y,2} = {yi,;, %}, then

Y(q(yi, yj, vk)) = ¥(ze) =z,  and

E(‘Kb(ys)ﬂb(!];)dﬁ(yk)) =E(Ii,zj,$k) = Te.

Case (b) (1): if {z,y,2} = {zi,z;, ¢}, then

V(q( =i, zj,zk)) = ¥(q'(zi, T5, k)
= P(q(zi, 35, 2k)) = P(Te) = T
T((z),¥(z;), ¥(z)) = 7 Ti, Tj, Tk) = Tes
(2): if {Iy y)z} = {mi)mj:yk}9 then
Y(a(zi, 5, 98)) = (¢ (zi, T5, y8)) = ¥(ye) = e
q(Y(z),¥(z5), () = 9 zi, 35, Tk) = T3
(3): if{z,y, 2} = {zi,y;, yx}, then

Y(q( i, y7,90)) = ¥(q'(zi, 95, 90)) = (=) = z,
q(P(zi), ¥(y;), v(ye)) = U zi, 35, 3) = xe;

@): if {z,y,2} = {vi,yj,yx}, then

Y(a(yi, y;, k) = ¥(a(yi, 5, ¥6)) = P(ye) = ze
T(P(w), ¥y, v(we)) = 7(zi, T, T4) = Ze.

and

and

and

and

Now we can say in each case (a) and (b) that the required equality is true. There-

fore 7 is a homomorphism from 7 onto 7.
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Step (i)
From the Isomorphism Theorem, we have 7/ ker ¢ = 7. We want to prove that
6; = ker 4 is the unique atom of the congruence lattice C( 7).

Now 61 = {(z,y) € T? : ¥(z) = ¥(y)}
= {(zi,p) :i=0,1,...,2" — 1}

And we know that C(7) ¥ [0, : 1)¢g(n where [0 : 1]g(y is the interval between
61 and the largest congruence 1 in C(7). Let 6, € C(T)_be the corresponding
congruence relation of § € C(7). Then we have 6, /6; = 6, and therefore

272
0= |J {=mizivr, 00,50 Y

even §=0

Now suppose that § is another atom of C(7). Then we have 6, Aé = 0, and this
implies that 6, o 6 covers both 6; and 6 [5,p. 70]. But 7 is chosen with a unique
atom 6, and from [0, : 1lg(n = C(7) we can deduce that 6; o § = 6,. Hence 6,
covers any atom of C( 7). Since the congruences of SQS-skeins are regular and
uniform, we have the following two cases for the class [zo]8:

[20]8 = {zo,z1} Or [2018 = {0, 11 }.
A potential third case [z0]8 = {zo, yo } does not arise because
Y(z0) = ¥(vo) = {z0,%0} = [z0]16:.

Now we can assume [z,]8 = {zk, zx+1 } and ¢(zo, Z2, T4) = 4.
From Theorem 1,

§:={(a,b) € T? : ¢(z,a,b) € [7]6}.

We consider the first case [z0]8 = {zo,z; }. From the definitions of 6 and g we
have:

q(z0,%4,z5) = 11 = (24,%5) €6
Q($0sz2yy3) =1 = (zz,y3) 68;

then we have
(Zo,71),(z4,75),(22,¥3) € 6 = (q(zo,T4,72),9(x1,T5,y3)) € 8.

From the assumption g(zo, 4, Z2) = Tx, We Obtain g(z;,zs,Z3) = Tg+ OF Ty,
and (according to the definition of ¢’ and q) hence g(z1, zs, y3) = yk+1 Or yi. This
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implies (z, yk+1) Of (zk, yx) € 6. But from g(zo, Tk, zk+1) = 11 We also get
(zk,zk+1) € 6. This implies that [ z,]8 contains at least three distinct elements,
which contradicts the uniformity of §. Thus the assumption [£918 = {0, z1} is
false.

Now we discuss the second case [z2016 = {zo, 1 }.

From g(zo, z2,%3) = y1, then [z2]16 = {z2, 3 }.Since § is regular, it can be
written

8:={(a,b) €T? : g(z0,a,b) € [z0]8}

or
§:={(a,b) €T*: q(z2,0,b) € [22]6}.

Hence we have:

q(z2,74,75) = 23 = (Z4,25) € §;
q(zo,y0,71) = y1 = (Yo, 71) € §;
q(z2, Tk, Tks1) = 3 = (Tk, Tke1) € 65

and
g(zo,v2,¥3) =1 = (¥2,y3) €8.

Therefore (yo,z1),(z2,23),(za,25) € § = (q(yo,22,74),q(z1,23,25)) =
(Y&, zk) OF (yk,zk+1). This implies yx € [z,]6, so that [ z,]8 contains at least
three distinct elements, contradicting the uniformity of 6.

Finally the second case [z0]8 = {zo,y1} also leads to a contradiction. We
deduce that there is no other atom §, and that 6, is the unique atom of the lattice
C(7).

Corollary 1. For any positive integer n, there is a nilpotent SQS-skein of class
n. ’

Proof: Each SQS-skein of cardinality < 2 is Boolean, i.e. nilpotent of class 1.
From [1] we have that any associated SQS-skein 7 a Steiner quadruple system of
cardinality 2* with 14 subsystems of cardinality 23 is nilpotent of class 2. The
congruence lattice C(7) has a unique atom 61 with [6,| = 2° & [7/6;] = 2°.
The smallest central series in 7is 0 = 6y C 6, C 9, = 1. The interval [6,,02]
in C(7) is isomorphic to the subgroup lattice of the abelian group 22

According to the preceding construction we can construct an SQS-skein 7 with
cardinality 2° and with congruence lattice C(7) having a unique atom 6, , such
that the homomorphic image 7/6; = 7. Then from Theorem 3, 6, is the centre of
7. Therefore the smallest central series of conguencein Tis0= 6y C 8; C 6, C
63 = 1, where 6, is the image of #, under the homomorphism C(7) — C(7)
induced by the homomorphism 7 — 7. Hence 7 is a nilpotent SQS-skein of
class 3.
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Now |T| = 25 and 6; is a unique atom in C(7), with cardinality 2°. Then by
repeating the same construction, we will get a new nilpotent SQS-skein of class
4, with a unique atom. Continuing thus, we can construct a nilpotent SQS-skein
of class n, for any positive integer n.

Corollary 2. Each SQS-skein as constructed above is subdirectly irreducible.

A Boolean series of congruence on an SQS-skein 7 is a series of congruences
1:=¢o D ¢1 D... 2 ¢n:= 0 suchthat [a]d;/¢;+1 is a Boolean SQS-skein for
aleaeTandi=0,1,... ,n— 1. If nis the smallest length of such a Boolean
series, then 7 is called solvable of length n. It is known that any nilpotent SQS-
skein of class n is solvable of length < = [1]. in [1] are given only examples of
nilpotent SQS-skeins of class 2 that are simultaneously solvable of length 2. In
the following corollary it will be shown that there is a nilpotent SQS-skein of class
n simultaneously solvable of length not greater than n.

Corollary 3. LetT be a nilpotent SQS-skein of class2 n— 1 constructed as above.
Then T is solvable of length < n.

Proof: Let1=60p D 6; D ... D 62,1 = 0 be the central series of congruences
on 7, constructed as in the proof of Corollary 1. This means that the above series
has the smallest length of central series of congruences in 7, because each 6;/6;.;
is the centre of 7/6;4+1,1=0,1,... ,2n— 2,

One can see easily that |[[a]6;/6;.1| = 2,foralla € Tandi=1,2,... ,2n—
2. Moreover |[al8p/6;| = 8 for all @ € T. Then we can select the following
subseries

1=00261203 205 2...202-3 D02p1 =0.

This series is a Boolean series, because |[a]f;/0;+2| = 4, for all a € T and
i=3,5,...,2n-3.

This implies that T is solvable of length < n.

One observes that if 7 is a nilpotent SQS-skein of class 2 n, constructed as in
Corollary 1, then it can be proved by the same way as in the above corollary that
T is solvable of length < n+ 1.
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