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Abstract. Adjusted orthogonal row-column designs have certain desirable proper-
ties. In this paper we give a definition of adjusted orthogonal row-column designs,
summarise the known designs, give some construction methods and indicate some
open problems. We briefly consider the relationship between adjusted orthogonal row-
column designs and orthogonal main effects block designs.

1. Introduction

We begin with some definitions, based on notation given in Preece (1976). Con-
sidera(t, b, r, k, \) BIBD. It has two constraints, namely the blocks and the treat-
ments, which occur at b and ¢ levels, respectively. A Latin square design has three
constraints — the rows, the columns and the treatments — and a pair of mutu-
ally orthogonal Latin squares have 4 constraints — the rows, the columns, and the
two sets of treatments. After ordering a design’s constraints, we can define the
incidence matrix of the z** constraint with respect to the y** by

Nzy = (’"‘fj)!

where n;; is the number of times that the ith level of the z** constraint occurs with
the jt# level of the y** constraint. N,, is a k. x k, matrix, where there are k; levels
of the i** constraint, and Ny, = N7,.

For example, if we regard the blocks, of a BIBD, as the first constraint and the
treatments as the second constraint, then N»; is the usual incidence matrix and

N NI = (r=X) I+ \J.
A row-column design is a design with 3 constraints, namely rows, with k lev-

els, columns, with b levels, and treatments, with ¢ levels. Each cell in the k x b
array contains exactly one treatment. The matrices N3 and Ny are the incidence
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matrices of block designs. These designs are call the component block designs of
the row-column design.

For example, a Latin square is a row-column design in which ¥ = b = ¢ and
in which N13 = N3 = J¢, where J; is at x t matrix of ones. Note that for all
row-column designs, N1z = Jip (Where Ji is a k x b matrix of ones).

A Youden square is a row-column design in which N3 = Ji; and N3, is the
incidence matrix of a BIBD. A complete BIBD is often called a randomised com-
plete block design (RCBD). So the component block designs for the Latin square
are both randomised complete block designs and for a Youden square are a BIBD
and aRCBD.

Example 1: Let k= 3,b =1t = 7. Then the following array is a Youden square:

1 2 3 4 5 6 7

2 3 4 5 6 7 1.

4 5 6 7 1 2 3

We see that N13 = J3 7, N12 = J37 and

r1 1 0 1 0 0 01
01 1 0 1 00
0 01 10 10
Nxa=10 0 01 1 0 1
10 001 10
01 0 0 0 1 1
1 01 0 0 0 1.

We will denote a row-column design with ¢ treatments, each replicated r times,
with k£ rows and b columns by RCD(t, b, k, r). Observe that then tr = bk.

Next we consider the motivation for the definition of the concept of adjusted-
orthogonality.

LetY;; be the yield of the (1, j) cell in the array and let d(1, ;) be the treatment
applied tocell (¢, 5) in the RCD, d. We assume that the yield Y;; is the sum of arow
effect (p;), a column effect (x;), a treatment effect (7y(; ) and an error term (E;;).
The yields are assumed to be independent of each other (so Corr ( E;;, Egy) = 0
for all pairs (4, /) # (g, w)) and the variance of the error terms is assumed to be
constant (so var ( E;;) = a? forall pairs (i, j)). Thus we may write this model as

Yij = pi+ rj + 1aiij) + Eij,
i=1,2,...,kj=1,2,... b Var(E) = o?.

This is an example of a linear model.
To facilitate further discussion of the linear model, we write it in matrix notation.
Let0= (p1,..., Pk, K1yeee By T1yeee, )T, Y = (Y11, Y12,..., Y1, Ya1,... ,
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Yob,..- , Yk, ,Y/‘b)T,E = (Eu, Ewn,Ew,E,... ,En,... ,Eqn,... ,Ew)T
and write Y = X8+ E. X, is a(0,1) matrix and is called the design matrix.

We can write Y = X8+ E = 5+ E, say. Our eventual aim is to estimate
the elements in @, but we begin by estimating the elements in 4. To do this we
have available the data vector Y which differs from by E. Note that Y , and
E are all vectors in R, E has no preferred direction in R™ since its elements
are independent of each other and have constant variance. Hence the most natural
estimate of 5 is that vector in the the range of X4 which is closest to Y in the usual
Euclidean sense. Thus our estimate of 7, 7j say, minimises (Y —n)T(Y —1).

Suppose we choose b such that X7 (Y — X4b) = 0, thatis, XT Xqsb = XTY.
Clearly X,b is in the range of X4, Y — Xgb is in the orthogonal complement of
therange of Xgand Y = Xzb+ Y — X b . These facts, together with the fact that
nis in the range of X, give

(Y =m)T(Y =) = (Y = Xab + Xab —m)T(Y — Xab + Xgb —7)
= (Y — Xab)T(Y — Xab) + (Xab —n)T(Xab —m).

Since (Y — Xgb)T(Y — X4b) is a constant we see that (Y — DT (Y —n) is
minimised if 5§ = X4b. Any vector @ such that
X0=7%=Xb
produces the same vector 7 and is a least squares estimator of §. Thus we have
XTXP=XTXb = XY,
and R
0= (XTxy)~xTY

where (X { X4) ~ is the Moore-Penrose generalised inverse of X{X 4 (see Searle
(1971)). X}‘Xd is called the information matrix (of the design d) for estimating
0.

For aRCD(t, b, k,r) we have that

bly Ni2 Ni3 bly  Jkp Nis
XIXq=|Nn kIy Nn|=|Jly kIy Nn
N3y Nxn rl N3y N3y rl

Thus

bIxp+ Jepk + N1i3T = Z)
Joip+ kIik+ NnT = 2,
N31p+ NuR+ r[T= 23
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and so
(bkI;—bN33 Np3 — kN3 N13)T— krJy yR— brly xp = bkZ3 — bN3y Zy — kN3, Z; .
From the first equation we have

rJiT — JipZ) = —(kJyR + bJkP) .
Substituting we get
(bkrI; — bBN3a Nas — kN3y Nis + 72 J;)7 = bkZs — bNsy Zy — kN31 2y + JuZ:.
Let

1 1
= — —N3;Nyg — —
C12. TIt b 314V13 L

Then C,; is called the coefficient matrix for treatments in the RCD.
The information matrices for the component block designs are

[b[k le]and[kfb st:l.

r
N32N23 + ?Jt.

Ny, L, N3, 7L,

Hence the coefficient matrices for treatments in the component designs are

1
C=rl— ;N31N13

and
1
C=rl— ;stst-
We see that
1
C12=Cl+02—'r<1}—?.]t).
Example 2:
(i) In a Latin square design, Ni3 = Ny3 = Ni2 = J;s0C; = C; = Cyp =

tIt - Jg.

(ii) In a Youden design, Ni3 = Jix; and N33 N3 = (k — M) I; + A J;. Thus
Cr = k(It=1J0),Cr = kL= (k=D) Ie+ My = 1(k2 —k+\) -2, =
¥ (k- 40)andCua = (L= 17) (k+ 3 — k) = ¥ (5 - 10y
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Adjusted Orthogonality

Eccleston and Russell (1975, 1977) introduced the concept of adjusted orthogo-
nality.
We will say that an equi-replicate RCD is adjusted-orthogonal if and only if

N13 N3z = rJgp.

Thus, any row-column pair in the design have r treatments in common.
Example 3: The RCD(9,6,3,2) given below is adjusted-orthogonal.

— 00 O\

1
2
3

A n b
O 00
W\ W
o lR N (V]

A Latin square is adjusted orthogonal since each row and each column contain
all ¢ treatments. A Youden design is adjusted orthogonal since each row contains
the t treatments and each column contains k treatments. Generalised Youden de-
signs were introduced by Kiefer (1975) and are RCDs in which each component
block design is a balanced block design. Such designs are not usually adjusted-
orthogonal, as the next example shows.

Example 4: Consider the following generalised Youden design which is an
RCD(4,6,6,9).

1 4 2 4 3 2
2 1 4 3 3 4
23 1 3 4 2
1 3 3 1 2 4°
4 1 4 2 1 3
32 1 4 2 1
Then
1112 2 2 222 1 1 1
2 1 2 1 1 2 2 111 2 2
N3“122211'N23‘121221
2 211 2 1 112 2 1 2
and
9 8 9 9 9 10
8 9 9 10 9 9
9 9 8 9 10 9
NoNa=19 190 9 9 9 3
9 9 10 9 8 9
10 9 9 8 9 9
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It can be show (see Eccleston and Kiefer (1981)) that if a RCD is adjusted
orthogonal then

1
Ci2 = =C1C;.
T

Thus there is a matrix Q, say, which simultaneously diagonalises Ci,, C; and C;,
such that the eigenvalues of C;; are those of C, or Cy or zero, and further that
C12, C1 and C, have a common set of eigenvectors.

The eigenvalues of the coefficient matrices are a guide to how well the treatment
effects, 7, are estimated by the design. Thus for an adjusted orthogonal RCD the
optimality properties of the RCD can be calculated from those of the component
block designs.

There exist very few methods for constructing adjusted orthogonal designs, par-
ticular classes of designs are given by Raghavarao and Shah (1980), Anderson and
Eccleston (1985) and John and Eccleston (1986).

The concept of orthogonality of Latin square designs has been generalised to
sets of mutually orthogonal Latin squares (MOLS). In a similar way adjusted or-
thogonality can be generalised to sets of RCD(t, b, k, r) as follows.

Definition 5: Two RCD(t,b, k, r) are defined to be mutually adjusted orthogonal
if and only if any row and column of either design have r elements in common.
Definition 6: A set of RCD(¢, b, k, r) is said to be a set of mutually adjusted or-
thogonal row-column designs if and only if any two RCDs in the set are mutually
adjusted orthogonal.

Example 7: The following two RCD(8, 4
nal.

2

~

are mutually adjusted orthogo-

4
1 58 4 2
2 6 37 4
3762 5
4 8 51 7

Consider a set of p RCD(¢, b, k, ) and let Niy; denote Ny, for the it RCD in
the set and so on. Then, if the p RCDs are mutually adjusted orthogonal,

W = 00 O\
[o LN I (S I
S LW WL

Ni3iNyj=rdey, 4,7=1,2,...,p.

Eccleston and John (1988) discussed adjusted-orthogonality in relation to nested
RCDs, which is related to the above concept of mutually adjusted orthogonal
RCDs.

Lemma 8.

(i) If N13 = Ji; then the RCD is adjusted orthogonal if and only if k= r.
(ii) If Ny = Jy: then the RCD is adjusted orthogonal if and onlyif b=r,.

Proof: The (1, ;) entry of N 3 N3, is the number of treatments in column J , which
is k. The proof of (ii) is similar.
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Corollary 8.1.

(i) If N13 = aJi, then the RCD is adjusted orthogonal if and only if ak = r.
(ii) If Ny3 = aJyy then the RCD is adjusted orthogonal if and only ifab = .

Hence once again we see that Latin squares and Youden squares are adjusted-
orthogonal.

Construction Methods
The results are examples of patchwork constructions.

Construction 9. Let Dy,D,, ..., D, be a set p mutually adjusted orthogonal
RCD(t, b, k,7),1=1,2,... ,p. Then

(D1 Dz -+ Dyp)

is an adjusted orthogonal RCD(t, Y, bs, k, pr).
Proof: We know that N13;N3; = rJgs,. 4,7 = 1,2,..., p. For the array

(D1 Dy -+ Dyp)

we have that
Ni3 = ENm, N3z = (N321 ... N3zp).
;

Hence
NizNy; = (E Nm) (N3 - - N3zp)
i
(E N13;N3p - “EN13.'N32P>
: 3
(Erjk,bt --«E"'Jk,b,> = 'rp.sz,,..,
i §

]

as required.
Then next two results are proved similarly.

Construction 10. Let Dy, D,,... ,D, be a set of p mutually adjusted orthogo-
nalRCD(t, b, k;,7),1=1,2,...,p. Then

(DT DY --- DDYT
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is an adjusted orthogonal RCD(t, b,y ", ki, pr).
Construction 11. Let Dy,D,,D3,Ds be 4 mutually adjusted orthogonal

RCD(t,b,k,r). Then
Dy D,
D3 Dy

is an adjusted-orthogonal RCD(t,2b,2k,4r).
Construction 11 can be generalised in an obvious way to give much larger ad-
justed orthogonal RCD’s.

Example 12: Using the designs in Example 7 we get the following adjusted or-
thogonal RCD(8, 8,8, 8). (Note how different this design is from an 8 x 8 Latin
square which is also an adjusted orthogonal RCD.)

1 58 42 6 135
2 6 37 4 8 2 6
376 2 517 3
4 8 51 7 3 8 4
2 61 515 8 4
4 8 2 6 2 6 3 7
5 1.7 3 3 7 6 2
7 3 8 4 4 8 5 1

Construction 13. Let L and M be two MOLS of order k. Then there exists an
adjusted-orthogonal RCD( k2 , k, 2k, 2).

Proof: Let Abeak x k array containing the numbers 1,2, ... , k?. Construct a
k x k array, B say, by setting

bij = ag;m;.

Then (A B) is the required RCD. The values of ¢, k, b and r are obvious. To check
for adjusted-orthogonality we note that A and B are each adjusted-orthogonal and
that each row (column) of B contains one entry from each row and column of A,
since L and M are orthogonal Latin squares.

The design of Example 3 is an example of the construction with k = 3.

Dual Designs

We will define the dual of a RCD to be a block design with two sets of treatments

in the following way. The rows of the RCD will correspond to the first set of
treatments, the columns will correspond to the second set of treatments and the
treatments will correspond to the blocks of the dual design.

124



Example 14: The following array is RCD(8,4,4,2).

The dual design is given below, where the treatments of the first set correspond
to rows, those of the second set correspond to columns.

Blocks
1 2 3 4 5 6 7 8
11 12 21 22 13 14 23 24
33 44 43 34 31 32 41 42

The dual design of an adjusted orthogonal RCD is a Graeco-Latin design. These
have been studied by Preece (1966, 1976), Seberry (1979) and Street (1981).
Using the results in these papers we can say that there are adjusted-orthogonal
RCD(2p,p+ 1,p,(p+ 1)/2) for p a prime or a prime power.

We could, however, view the entries in the dual design as the levels of two treat-
ment sets which may interact. In this case the treatment sets are usually referred to
as factors . The aims of a factorial experiment are to estimate the interaction effect
of the two factors and the main effect of each of the factors. Since each possible
level of the first factor appears with each level of the second factor exactly once
in the design, the design is a single replicate factorial design. The dual design is
a k x b factorial design, since the first factor has k levels and the second factor b
levels, in ¢ blocks each of size r.

The coefficient matrix for treatment effects for the dual of a RCD is

[ka —INusNa Jep— %NlaNaz]
Tog — LNy N3y bly— INnNs |

If the RCD is adjusted orthogonal then N3 N3, = rJ and the coefficient matrix
is block diagonal. This means that the main effect of each of the factors can be es-
timated independently of the other and we say that the dual design is an orthogonal
main effects plan for a k x b factorial design in ¢ blocks of size r.

The next example gives an orthogonal main effects plan fora 5 x 6 factorial
design in 10 blocks of size 3.

Example 15: The following array is an adjusted orthogonal RCD(10, 6,5,3).

1 2 4 5 6 10
4 1 6 3 7 8

8 5 2 4 9 17

9 8 3 10 5 6
10 3 9 7 1 2
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The dual design is

Blocks
1 2 3 4 5 6 7 10
11 12 24 13 14 15 25 26 35 16
22 33 43 21 32 23 36 31 41 44
55 56 52 34 45 46 .54 42 53 51

[e -]
O

Unequal Replication

We denote a RCD in which treatment 1 is replicated r; times by RCD(t, b, k, (1,
.+,7t)). Let R = diag (71, 72,...,7). Then an RCD((t,b,k,(r1,...,m)) is

said to be adjusted orthogonal if

NisR7!Ns; = Jip.

Construction 16. Let D, be a Latin Square of order k and let D, be a Youden
design with t treatments arranged in blocks of size k. Then (D1 D) is an ad-
Justed orthogonal RCD(t,t + k, k,r), where r is the replication tuple.

Proof: For Dl, Nijy = N121 = N231 = J. For D,, lez = Jk,t = Ni33 and
Nasp satisfies N3gy Nosp = (k — \) I + \J,. For the design (D D;)

J
Nz = Jegek, N13 = (2J, Jeg—x) and Nip = [Ok] + Nip.

Then, since without loss of generality,

2k 0
r= %" L]

we see that
L 0 J

-1 = 2k 1k k

Ni3R™ N3y = (2J¢ Jess) [ 0 %It-k] {[0 ] + N322}

Nip

() (2] 1)
3]

= ch,t+k

as required.
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Example 17: Let

Then
1 2 3 12 3 4
D3=[3 1 2 2 1 4 3]
1 3 4 1 2
is an adjusted orthogonal RCD(4,7,4,(6,6,6,3)). The dual of D3 is given by

Blocks
1 2 3 4
11 12 13 17
14 15 16 26
22 23 21 35

25 24 27
33 31 32
36 37 34

In general the dual of an adjusted orthogonal RCD(t, b, k,r) willbe a k x b
orthogonal main effects plan with blocks of unequal size.

Conclusion

Adjusted-orthogonal RCDs form a useful class of designs but few are available.
Known sets of mutually adjusted-orthogonal RCDs seem to be limited to trivial
examples such as any set of Latin squares, any set of Latin squares together with
a Youden square, and sets consisting of the repetition of one design. Sets of mu-
tally adjusted-orthogonal RCDs are useful in the construction of larger adjusted-
orthogonal RCDs and non-trivial examples of such sets would lead to non-isomor-
phic adjusted-orthogonal RCDs.

These problems merit investigation by combinatorialists.
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