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Abstract. Let G = (V, E) be a graph or digraph, and let r and s be two positive
integers. A subset U of V is called an (r, s) -dominating set if forany v € V — U, there
exists ¢ € U such that d(u,v) < r and for any u € U there exists ' € U(y’ # u)
for which d(u',u) < s. For graphs, a (1, 1)-dominating set is the same as a total
dominating set. The (r, s) -domination number §,,(G) of a graph or digraph G is
the cardinality of a smallest (r, s)-dominating set of G. Various bounds on &, ,(G)
are established including that, for an arbitrary connected graph of order n > 2, if
s < 1+ 1then §,,(G) <max(2n/(r+s+1),2),andif s > r+ 1 then §,,(G) <
max(n/(r + 1),2). Both bounds are sharp.

1. Introduction.

The study of total dominating sets in graphs was initiated by Cockayne, Dawes
and Hedetniemi [1] in 1980. Several of the results in this paper are generalizations
of those in [1].

The maximum degree and minimum degree of graph G are denoted by A (G)
and 6(G) respectively. A digraph D is strongly connected or strong if for every
two distinct vertices of D, each vertex is reachable from the other. For a connected
graph G, or a strong digraph G, we denote the distance dg(u,v) between two
vertices v and v as the minimum of the lengths of the u — v paths of G. The
eccentricity e(v) of a vertex v of a connected graph or strong digraph G is the
number max dg(u, v), where the max is taken over all the vertices v € V(G).
The radius, rad G, is defined as min,ey e(v) while the diameter, diam G, is
max, ey d(u,v). A total dominating set of a graph G = (V, E) is a subset U
of V such that each vertex in V is adjacent to some vertex in U. Let G = (V, E)
be a graph, and r and s be two positive integers. A subset U of V is called an
(7, 8)-dominating set of G if for any v € V — U there exists u € U such that
dg(u,v) < 7, and for any u; € U there exists u € U (up # ) such that
dg(u1,u2) < s. Similarly, let D = (V, A) be a digraph, and r and s be two
positive integers. A subset U of V is called an (r,s)-dominating set of D if
forany v € V — U there exists u € U such that dp(u,v) < r, and for any
u1 € U there exists uz € U (u2 ¥ u1) such that dp(u;, ;) < s. Clearly, an
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(r, s)-dominating set is a dominating set of radius r. Note that if a digraph D
has an (r, s) -dominating set, then no vertex of D has in-degree 0. Also, a total
dominating set is the same as a (1, 1)-dominating set for graphs.

The cardinality of a smallest (r, s)-dominating set in a graph G is called the
(7, s)-domination number and is denoted by &, ,(G). We note that this parameter
is only defined for graphs without isolated vertices and with §,,(G) > 2. In the
case thatr = s = 1, §,,(G) is the same as §,(G) which is the total domination
number for graphs.

2. Bounds on (7, s)-domination number.

Let G = (V, E) be a graph and r be a nonnegative integer. Define End,(G) =
{v € V | 3 an end-vertex u € V (of a path) such that d(u,v) < r}. Note that
End, (G) is the set of end-vertices in G.

Theorem 2.1. Let G be a connected graph of ordern > 2, and r and s be two
positive integers. Then

8, 5(G) < max{2,min{n— |End,(T)|}}

where the minimum is taken over all spanning treesT of G.
Proof: Let T be a spanning tree of G = (V,E) and U = V — End,(T). Then
|U| = n— |End(T)|. Define set U" as follows:

if|[U| >2 thenU' = U;

if |U| =1 then U’ is the union of U and some vertex adjacent to U;

if JU| = 0 then U’ is any two adjacent vertices where at least one of the
vertices has maximal eccentricity.

Clearly, U’ is an (r, s)-dominating set of T'. Therefore,

8,.4(T) < |U'| < max{2,n— |End,(T)|}.

Thus
8rs(G) < min &, o(T)
< min max{2,n— |End,(T)|}
= max{2,min{n — |[End,(T)|}},
where the minimum is taken over all spanning trees T" of G. 1
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Theorem 2.2. Let G be a nontrivial connected graph, and r and s be two posi-
tive integers. Then 8, ,(G) = min &, ,(T), where the minimum is taken over all
spanning trees T of G.

Proof: Let G be a nontrivial connected graph and T be a spanning tree of G. Then
any (r, s)-dominating set of T is also an (r, s)-dominating set of G. Therefore
51',3( G) S 8r,a( T) .

It follows that, 6, ,(G) < min &, 4(T), where the minimum is taken over all
spanning trees T of G.

Now we show the reverse inequality. If G is a tree, the theorem holds trivially.
So we may assume that G is a connected non-acyclic graph. Let U be a minimum
(7, s)-dominating set of G and C be a smallest cycle in G. If we can show that
U is an (r, s)-dominating set of G — e for some cycle edge e, then 6,s(G —
e) < |U] = §,,(G). By applying this result a finite number of times, we have
6,4(T) < 6,4(G) for some spanning tree T of G. Thus

5,'3(6') > min 5r,a(T),

where the minimum is taken over all spanning trees T of G.

Select two adjacent vertices z and y in V(C) such that dg(z, U) + dg(y, U) =
max {dg(u,U) + dg(v,U)|uv € E(C)}. We will show that U is an (r,s)-
dominating set of G — e, where e = zy.

Note that for any two adjacent vertices u and v in G, the difference of dg( u, U)
and dg(v,U) is at most one. This implies that for t = z or y, dg(t,U) =
max {dg(v,U) | v € V(C)}. Without loss of generality, suppose that dg(z, U) =
max{dg(v,U) | v € V(C)}.

Let z be the vertex in V(C) such that zz € E(C) and z # y. By the way in
which z and y were chosen, dg(z,U) < dg(y,U). Since an (r, s)-dominating
set is a dominating set of radius r, by the proof of Theorem 2.1, U is a dominating
set of radius r of G — e. In addition dg_.(v,U) = dg(v, U), for all vertices v in
V(G). This equality will be used frequently in the rest of the proof.

Now it only remains to show that for any u; € U, there exists uy € U (us #
u1) such that dg_.(u',u2) < s. Suppose, to the contrary, that there exists u; €
U such that dg_.(u,,U — u;) > 2. Let 2’ and ¢’ be vertices in U such that
dg-e(z,2') = dg-(z,U) and dg_(y,y') = dg—_.(y,U). Since U is an (r, s)-
dominating set of G, there exists uy € U (us # up) for which dg(uy, uz) =
dg(u1,U—u1) < s. Let Pbeau —uy pathof length dg(u;, u2) in G. Clearly,
e € E(P). Observe that either the u; — z subpath of P or the u; — y subpath of
P is in G — e. Thus we consider two cases:

Case 1: The u; — y subpath P, of Pisin G — e.

In this case, we may choose u; to be z'. For simplicity, we assume thatu; = z'.
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Let n and m; be the lengths of the paths P and P, respectively. Then n =
m+ 1+ dg_(z,U). If uy # ¢, then

de-e(u1,U — u1) < dg_e(u1,y")
< dg-e(u1,9) + do_e(y,y")
=dg_e(ur,y) + dg-e(y,U)
=mn + de(y,U)
<m +de(z,U)
=m +dg_(z,U)
<n
<s,

which is a contradiction.

So we may assume that u; = y' (see Figure 2.1). Let P, be the path ob-
tained from C by removing the edge e and let w be the vertex in V/( P,) such that
de-e(w,U) = dg_.(w,w’), forsome w' € U,w # y, w' # ¢/, and dp(w, y) is
the smallest. The existence of the vertex w is provided by the fact that z € V( P,)
and dg_e(z,U) = dg_e(z,z'), wherez’ € U and ' = uy # u; = y'. Let w; be
the vertex in V(P,) such that dp (w;,y) = dp,(w,y) — 1. Then w and w' are
adjacent and dg_.(w1,U) = dg_.(w1,y').

—— e e ———
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® . Q g
w’ é €

X' =u

Yy =u 1 2
Figure 2.1

By the way in which z and y were chosen,
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dg-e(u1,w') = dg_e(y', w')
< dg-e(w1,y') + do_e(w,w') + 1
=dg_e(w1,U) +dg_o(w,U) + 1
=dg(w1,U) + dg(w,U) + 1
< dg(z,U) + da(y,U) + 1
=dg-e(z,U) + dg_e(y,U) + 1
=dg_e(z,U) + dg_e(y,u1) + 1
=dg_(z,U)+m +1
=n

<s,

which contradicts dg_e(u;, U — u;) > s.
Case 2: The u; — z subpath P, of Pisin G —e.

The proof of this case is similar to Case 1. Without loss of generality, suppose
that u; = y'. Let nand n, be the lengths of the paths P and P, respectively.
Thenn=mn3 + 1+ dg_.(y,U). Ifu; # =/, then

dg-e(u1,U — u1) < dg—e(u1,2')
< dg-e(u1,7) + dg_e(z,7')
< dg-e(u1, 1) + dg_e(z,U)
<ny+de-o(y,U) + 1
=n
<s,
which is a contradiction. So we may assume that u; = z'.

The rest of the proof is exactly the same as the second part of Case 1 where
u; = y', except we replace z, ', m; by y, ¢, n respectively and vice versa.

A contradiction also arises for Case 2.

Therefore in either case, a contradiction arises. Thus for any u; € U, there
exists up € U (uz # u;) such that dg_.(u1,u3) < s. In addition we have
established that U is a dominating set of radius r of G — e. Therefore, U is an
(7, s)-dominating set of G — e. This completes the proof. 1

Lemma 2.1. Let G = (V, E) be a nontrivial connccted graph, and r and s be
two positive integers. Ifrad G < r, then 6, ,(G) = 2.

Proof: Let v be a vertex in the center of G and u be a vertex adjacent to v. Since
rad G < r, {u,v} is an (r, s)-dominating set of G. S0 §, ,(G) = 2. 1
Lemma 2.1 is useful when establishing certain upper bounds on 6, 4,(G).
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Lemma 2.2. Let G be a graph without isolated vertices, 1, s1, T2, and sy be
positive integers such thatr) < r, and sy < s;. Then

81,0, (G) < 87,5 (G).

Proof: Lemma 2.2 follows from the fact that an (7, s;)-dominating set of G is
also an (r,, s3) -dominating setof G, where ry, s1, 72, and s, are positive integers
such that ry < 7, and 51 < s3. 1

Lemma 2.3. LetG = (V, E) be a graph, and r and s be two positive integers
suchthats > 2r+ 1. A subsetU of V is an (r, s)-dominating set of G if and
only if U is an(r,2r + 1) -dominating sct of G.

Proof: Itis clear that an (7,27 + 1)-dominating sct of G is an (r, s) -dominating
setof G for s > 2r + 1. Now suppose that U is an (r, s)-dominating set of
a graph G, where s > 2r + 1. Then U is a dominating set of radius r of G.
For any vertex u; € U, there exists ua € U such that dg(U — {u1},u1) =
de(uz,u1). Denote dg(uz, u;) by n. Let P be auy — uy pathof lengthnin G
and let v € V(P) such that dg(v,u1) = |n/2]. If dg(uz,u1) > 27+ 1, then
dg(U,v) > r,contradicting that U is a dominating set of radius r of G. Thercfore
dg(uz,u1) < 2r+ 1. ThusU isan (r,2r + 1) -dominating sct of G. 1

By Lemma 2.3, for graphs we need only consider (7, s)-dominating sets and
(7, s)-domination numbers for s < 2r + 1.

The next algorithm will be used by Theorem 2.4,

Algorithm 2.1 SUBTREE-RS-DOMINATION(T', v,r,s, P,U,J)

/* This algorithm finds a minimum (r, s)-dominating sct for some subtree of T,
where s < r+ 1.*/

INPUT

T is a treec with root v such thatrad T > 7.

r and s are positive integers such that s < r + 1.

P is a longest path in T" with end-vertices u and v.

z and y are the vertices on P such thatd(z,u)=r and d(y, u) =7+ s.
The £ — y subpath of P is: = vg,v1,... ,v5 = y.

OUTPUT

J is the index of vertex v;.
U is a minimum (r, s) -dominating set for the subtree of T with root v;.
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begin
U« {z}
Fori=1 to s loop
For each child w(# v;_1) of v; loop
Let T, be the subtree of T" having root w
and let w' be a vertex in T, such that e(w) = d(w, w'),
where e(w) is the eccentricity of w in T,
ife(w) > r then
Let w" be a vertex in T}, such that
d(w',w") = r and d(w”,w) = e(v) — 7.
U—Uu{w"}
else
ife(w) = r—1 then
U—UuU{v}
endif
endif
end loop
Let T, be the subtree of T" having root v;.
if (32 € V(T,) such that d(U, z) > r) or (v; € U) then
U<—UU{'U,'}; Je—1
exit loop
endif
if (1 = s) then
if (JU| = 1) or(3z € U such that (U — {z},2) > s)
then U « U U {v;}
endif
J—1
endif
end loop
end Algorithm 2.1

Theorem 2.3. If T is a tree and v and s are two positive integers such that
s < r+ 1, Algorithm 2.1 finds a minimum (r, s) -dominating set for some subtree
of T.

Proof: Note that each vertex u in U — {v; } is required to be in U by an end-vertex
descendant of u. If v; € U, then v; is required to be in U to insure that U is an
(7, s)-dominating set of the subtree T,; of T with root v;. 1

The (r, s) -domination number of a disconnected graph can be very large, for
example, 6,:(G) = |V(G)| for G = mK,, m > 1. Itis easy to see that mK,
is the only graph with this property. Cockayne et al [1] have shown that for a
connected graph of order n > 3, §:(G) < 2n/3.
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Before presenting a generalization of this result, we define an r-star. An r-
star is a graph which can be obtained from a set of disjoint paths of length r by
identifying one end-vertex of each path to some fixed end-vertex of a path in the
set. Thus each star is a 1-star.

Theorem 2.4. Let G be a connected graph of ordern > 2, and r and s be two
positive integers such thats < r+ 1. Then

8, s(G) < max{2n/(r+ s+ 1),2}.
Furthermore, this bound is sharp.

Proof: By Theorem 2.2, we need only show that for any tree T of order n > 2
ands<r+1, 6(T) < max{2n/(r+s+1),2}.

The proof is by induction on n. Let T = (V, E) be a trec of order n > 2.
Ifrad T < r, then by Lemma 2.1, §, ,(T) = 2 < max{2n/(r + s+ 1),2}.
Consequently, 6, ,(T") = 2, for any nontrivial tree of order at most 2r + 1.

Now suppose that for any tree T’ of order m,2 < m < n,

8ro(T') < max{2m/(r+ s+ 1),2},

and T is a tree of order nsuch thatrad T > r. Let P be alongest path in T, u and
v be the end-vertices of P, and k be the lengthof P. SinceradT > r, k > 2r+1.

Let z and y be the vertices of P such thatd(z,u) = r andd(y, u) = r+ s, and
the x — y subpath of P is: z = vy, vy,... ,us = y.

In the following, the tree T is treated as a rooted tree with root v. Use Algorithm
2.1 1o find a minimum (r, s) -dominating set U of some subtree T, v; Of T with root
vj, where j is the integer returned from Algorithm 2.1. For each vertex v in U,
there is a set S, of vertices such that [S,| > r + 1 for v # v,, and |S,| > s for
v = v, if vy € U. Each vertex in S, is within distance r and v, and S, N Sy = ¢
1f the corresponding vertices v and v' in U are different. Lett = dp(U, v;) and

= U] = &,,(T,;). Ift = 0, then [V(Ty,)| > (d—1) -(r+ 1) + s; otherwise
IV(T I >dlr+1) +t.

Let T’ be the subtree of T" obtained from T" by removing the subtree rooted at
v; (including vertex v;) from T, and let ' be the order of T'. Then @ < n, by
the inductive hypotheses, §,,(T") < max{2n'/(r+ s+ 1),2}.

We consider threc cases:

Case 1: 2n//(r+s+ 1) < 1.

Sinccs<r+ 1,7 < (r+s+1)/2 <r+1,itfollows that ' < 7.

Ift+ 7 < r, then U is an (r, s)-dominating set of T". Since U is a minimum
(7, s)-dominating set of T,,;, U is necessarily a minimum (r, s) -dominating set of
T. By the inductive hypotheses,

brs(T) = 6,5(T,;)
<2n—n)/(r+s+1)
<2nf(r+s+1).
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Otherwise, t + n' > r + 1. Since ' < r, ¢t > 1. This implics that |V(T,)|
> d-(r+ 1) + t. Therefore n = |V(T)| = V(T )+ 7 >(d+1) -(r+1).
Note that U’ = U U {v,} is an (r, s)-dominating set of T. Since s < r+ 1, we
have

6rs(T) < |U'|
=d+1
=(d+ )(r+s+1)/(r+s+1)
L2(d+ D)(r+D/(r+s+ 1)
<2nf/(r+s+1).

Case2: 1 <27 /(r+s+1) <2.

In this case # < r+ s+ 1. Since 7’ is a positive integer, n’ < r + s.

Ift+n <r+s,letS = {ve V(T)|dr(U,v) = s}. If S’ # ¢, then let v’
be a vertex in ', otherwise let u’ be any fixed vertex in 7. Then U U {u'} is an
(7, s)-dominating set of T", thus

8rs(T) < 1+ |U]
<2n/(r+s+1)+|U|
L2n/(r+s+ 1) +2(n—n)/(r+s+1)
=2n/(r+s+1).

Otherwise, t+7 > r+s+1. Sincen < r+s,t > 1. So|[V(T,;))| > d(r+1)
+t. Itfollows that n = |V(T)| = [V(Ty) |+ 7 > (d+ 1)-(r+ 1) + 5. Let S
= {v € V(T") |dr(vj,v) = s}. If S’ # ¢, then let v’ be a vertex in S, otherwise
let u’ be a fixed vertex in the center of T”. Then UU{v;, u'} is an (r, s) -dominating
setof T, thus

8ro(T) < |U|+2
=d+2
=d(r+s+ 1) /(r+s+1)+2
<2d-(r+ 1) /(r+s+1)+2
=2{(d+1)-(r+ D) +s}/(r+s+1)
<2n/(r+s+ 1),

where s < r+ 1.
Case 3: 2n//(r+ s+ 1) > 2.

In this case 6,,(T") < 27/(r + s+ 1). Note that the union of an (r, s)-
dominating set of T’ and an (r, s) -dominating set of T, is an (7, s) -dominating
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setof T'. Thus, by induction

6rs(T) < 6:6(T) + 8:4(T,,)
L2d/(r+s+1)+2(n—n)/(r+ s+ 1)
=2n/(r+s+1).

By mathematical induction,
8:s(T) < max{2n/(r+s+1),2},
for all trees T of order n > 2 and s < r + 1. Thus
6rs(G) <max{2n/(r+s+1),2},

for all connected graphs G of order n > 2 and positive integers r and s such that
s<r+1.

Now we show that this bound is sharp. We need only show that the bound
2n/(r+ s+ 1) is obtainable under the assumption that n >r+s+1.LetBri 2
be the set of graphs each of which can be obtained by taking an end-vertex from
an (r + s+ 2)-star graph. By observation, for n > r + s + 1, the upper bound
2n/(r+ s+ 1) is obtainable by all the graphs in S, ,.2. Thus the bound is sharp.

|

The graph G represented by Figure 2.2 is a graph in 8,,,.2, where r = 3 and
s =2. G has order n = 24. The set of solid vertices is an (r, s) -dominating set
of G of cardinality 8, ,(G) which is equal to 2n/(7 + s + 1).

Figure 2.2
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As a consequence, we have that for any (r+ s+ 2)-star G of order nand positive
integers r and s suchthats < r + 1,

8 s(G) =2(n—1)/(r+s+1).

Theorem 2.5. Let G be a connected graph of ordern > 2, and r and s be two
positive integers such that s > v + 1. Then

brs(G) < max{n/(r+1),2}.

Furthermore, this bound is sharp.

Proof: Since s > r+ 1, by Lemma 2.2 and Theorem 2.4, we have

8:5(G) € 8y p41(G)
< max{n/(r+1),2}.

To show this bound is sharp, we need only show that the bound n/(r + 1) is
obtainable under the assumption that n > 2(r + 1). Let 8,+; be the sct of graphs
each of which can be obtained by taking an end-vertex from an (r + 1) -star graph.
By observation, for n > 2(r + 1), the upper bound n/(r + 1) is obtainable by all
the graphs in B,.;. Thus the bound is sharp. 1

The following result has been obtained by Cockayne et al [1]: If G is a con-
nected graph of order n such that A(G) < n— 1, then §:(G) < n— A. This
result is generalized by Theorem 2.6.

Denote the set of end-vertices of a tree T by End(T") . By observation, | End(T')|
> A(T). Theorem 2.6 relates the (r, s)-domination number and the maximum
degree of a graph.

Theorem 2.6. LetG be a connected graph of ordern > 2 with maximum degree
A = A(Q), andr and s be two positive integers such that s < v+ 1. Then

6.5(G) <max{2,n—(r+s+A)+2}.

Proof: Let r and s be two positive integers such that s < r+ 1. By Theorem 2.2,
it is sufficient to show that §, ,(T) < max{2,n— (r+ s+ A) + 2}, for any trce
T of order n > 2 with maximum degree A = A(T).

Ifrad T < r, then by Lemma 2.1, §,,(T) = 2. So we may assume that rad
T > r. Let P be a longest path in 7" with end-vertices u and v. Then there exist
vertices z and y of P such that d(z,u) = r and d(y,u) = r + s. Let P’ be the
u — y subpath of P, V! = V(P') — {z,y},and U = V(T) — (V'U End(D)).
Then {z,y} C U, it follows that [U| > 2. Thus U is an (r, s) -dominating set of
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T. Since v € V'NEnd(T") and | End(T")| > A(T), where End(T) is the set of
end-vertices of T', we have

8:4(T) < [V(T)| - [V'U End(T)|
< V(D] - V'] - | End(T)| + 1
<n—(r+s=1D)-A(T) +1
=n—(r+s+A(T)) +2. [}

Corollary 2.6. Let G be a graph of order n which contains no isolated vertices
and there exists a component C of G such that A(C) = A(G) and |V(C)| >
T+ s+ A(G), wherer and s are positive integers such thats < r + 1. Then

5 s(G) <m—(r+s+A)+2.
Proof: Let U be a minimum (r, s) -dominating sct in a component C of G such
that A(C) = A(G) and @ = |[V(C)| > r+ s+ A(G). Since G contains no

isolated vertices, (V(G) — V(C)) U U is an (r, s)-dominating set of G. By
Theorem 2.1,

6:5(G) < |V(G) = V(O)|+ |U|

=n—n+ ‘Sr,s(c)
=n—n+d —(r+s+A(C)) +2
=n—(r+s+A(G)) +2. 1

The following theorem gives a lower bound for &, s(G) in terms of the diameter
ofagraph G and r, s.

Theorem 2.7. LetG be a graph which contains no isolated vertices, and r and s
be two positive integers. Then 6, (G) > 2 | diam(G) + 1)/(2r+ s+ 1) |

Proof: Let u be a vertex in G = (V, E) such that e(u) = diam (G) and U be a
minimum (r, s) -dominating set of G. Then 6,,(G) = |U|. Define L; = {v €
V| d(u,v) =1}, 0 < i <diam(G),and L; = ¢, j > diam(G). A sct L;
is said to be dominated by some set S if each element in L, is dominated by S.
Observe that any two vertices in U alone can dominatc at most 27 + s+ 1 L;’s
in G within distance r. Therefore, [U N (Lx U Lgsy U...U Lgs2r45)| > 2, for
k=0,2r+s+1,..., (| (diam(G) + 1)/2r+s+ 1) = 1) -(2r+ s+ 1). It
follows that

8,4(G) = U] > 2|(diam(G) + 1) /(27 + s+ 1) . i
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3. Summary.

This paper has extended the definition of total dominating sets to (r, s) -dominating
sets in graphs and digraphs. Various bounds on the (r, s)-domination number of
a graph have been investigated.
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