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Abstract. We classify the finite partially ordered sets which satisfy certain homogene-
ity conditions. One of the conditions considered is that the automorphism group of the
partially ordered set acts multiply transitively on the set of elements of the same height.

1. Introduction.

Homogeneous partially ordered sets have been widely investigated (see, for ex-
ample, [4] and the references given there). It is clear that whenever a partially
ordered set (X, <) has a transitive automorphism group then X is infinite or the
order is trivial. This suggests the consideration of somewhat weaker conditions
on homogeneity for finite sets.

Let (X, <) be a finite partially ordered set (in short, a poset). For z € X the
height h(z) of z is defined to be the maximum cardinality of a chain in {yve X |
y < z}. Leth(X) be one less than the maximum cardinality of a chain in (X, <).
Note that h(X) is the maximum of all h(z) forz € X. For0 <1 < h(X) let
Hi(X) = {z € X | h(z) = i}. Clearly, each H;(X) is an antichain in (X, <).
If4,7 are such that 0 < i < j < h(X) then let H;;(X) = Hi(X) U H;(X).
Note that the automorphism group Aut( X, <) of (X, <) leaves each of the sets
H{(X), H,‘j(X) invariant.

Let k > 1. We say that (X, <) is k-height-homogeneous if whenever S. T
are subsets of X with |S| = |T| < k and f:§ — T is an order-isomorphism
such that h(z) = h(zf) for all z € S then there exists g € Aut(X, <) such
that zf = zg forall z € S. We say that (X, <) is height-homogeneous if it is
k-height-homogeneous for all k > 1. The following posets play a vital role in our
results. For n > 2 define the poset (A4,,<) by A, = {0,1}x{0,1,... ,n— 1}
with (i,7) < (#,;') ifand only if j = ;' and 1 < . For m > 3 let (Bm, <)
be the poset of 1-element and (m — 1)-element subsets of {0, 1,...,m — 1}
ordered by set-thcoretic inclusion. Define the posct (Cpy, <) forp, ¢ > 1 by
Cpe = {(0,4) |0 <i<p}U{(1,9) |0 <j < g} where(1,7) < (¢, if and
only if i < 7' or (4,7) = (d',j'). The diagrams of some posets of this form are
given in Figure 1. Note that (4, <) is isomorphic to (C1, <) and this is the only
isomorphism between those posets as we define By, only for m > 3 (otherwise we
would also have ( Az, <) isomorphic to ( B2, <)). Note thatif (X, <) is a poset
isomorphic to some (A,,<) respectively (B, <) then there exists a bijection
b: Ho(X) — H1(X) suchthatforz € Ho(X) andy € H,(X) wehavez < y
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ifandonlyif y = xzb (for (An, <)), respectively y # zb (for ( By, <)). Finally, we
note that there is a direct decomposition of the automorphism group Aut( X , <)
of a poset in which ( H;;41(X), <) is isomorphic to some (Cpg, %)

Lemma 1.1. Let(X, <) bea finite poset such that ( H; j+1(X), <) is isomorphic
t0(Cpq,<) forsomep,q > 1. LetY = {z € X | h(z) < i}andZ = {z € X |
h(z) > i+ 1}. Then Aut( X, <) = Au(Y, <) x Aut( Z,<).

Proof: Note that we have y < z whenevery € Y and z € Z. It follows that
ifg € Au(Y,<) and h € Aut(Z,<) we can construct g, h' € Aut(Y,<) by
zg' = zgand zh' = zifz € Yand zg' = zand zh' = zh ifz € Z. As g’
and b’ commute, it follows that Aut( X, <) contains a subgroup isomorphic to
Au(Y,<) x Aut(Z,<), and it is easy to see that this is, in fact, the whole of

Au(X,<). 1
B C
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Figure 1

2. Multiple transitivity on elements of the same height.

Before considering height-homogeneous posets we shall deal with the weaker
condition that the automorphism group is as transitive as possible on elements of
the same height. In order to do this, it is useful to consider incidence structures
whose automorphism group is multiply transitive on the sets of points and blocks.

Lemma 2.1. Let(P, B, I) be an incidence structure (with |P|,|B| > 1) whose
automorphism group G ismin(3, | P|) -transitive on P andmin (3, | B]) -transitive
on B. Then either every point is incident with every block, or there exists a bijec-
tionb: P — B such that eitherz I y if and only ify = zb, orz I y ifand only if
y#zbforz € P, y € B.

Proof: As G is transitive on B, it follows that there exists k > 1 such that every
block is incident with & points, and as G is transitive on P, it follows that there
exists 7 > 1 such that every point is incident with r blocks. Furthermore, as G is
2-transitive on P, there exists A > 0 such that any two distinct points are incident
with A blocks, and as G is 2-transitive on B, there exists A > 0 such that any two
distinct blocks are incident with X points. 1
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Let X = 0, and note that we then must have k = 1. If » > 1 then there exist two
distinct points y; , y, and 4 distinct blocks z1;, 712, T21 , T22 such that Tjj I y;. But
as G is 2-transitive on P, there exists g € G such that 119 = z;; and z12g = 731,
which gives a contradiction, as from the first equality it follows that y; g = y;, and
from the second it follows that y;g = y». Thus r = 1, and hence there exists a
bijection b: P — B such thatz I y if and only if y = zb forz € P,y € B. The
same follows if X = 0. _

We now can assume that A > 1 and A > 1, thus both the incidence struc-
ture ( P, B, I) and its dual structure ( B, P, I'*) are block designs. Furthermore, if
|P| = k then also | B| = r, and every point is incident with every block. Thus, we
can also assume that k < |P| (and also r < |B|).

Application of Fisher’s inequality (see, for example, 1.8.6 in [1]) for (P, B, I)
gives |P| < |B|, and for ( B, P, I*) gives | B| < |P|, thus we have |P| = | B, and
also r = k, that is, the design is symmetric. Now let k + 1 = |P|, and thus also
r+ 1 = |B|. Itis then easy to see that there is a bijection b: P — B suchthatz I y
ifandonlyify # zbforz € P,y € B.

We now assume that |[P| > k+ 1. If A = 1 then it is easy to see that (P, B, I)
is a projective plane. However, there is clearly no isomorphism carrying three
collinear points onto three points which form a triangle, and thus this case can-
not occur. If A > 1 then by the Dembowski-Wagner theorem (see XI1.2.13 in
[1]) it follows that ( P, B, I) is isomorphic to a projective space, but by a similar
argument as above, this case cannot occur either. 1

Theorem 1. Let (X, <) be a finite poset. Then the following are equivalent.

(1) Aut(X, <) induces Sym( H;(X)) on H(X) for0 < i< h(X).

(2) Ift =min(3,|H(X)|) then Au( X, <) actst-transitively on H;( X)) for
0 <i<hX).

(3) Wheneveri,j are such that0 < i < j < h(X) then H;j(X) is isomor-
phic to one of the posets A, Bm or Cpy for somen > 2, m > 3 or
p,q > 1. Furthermore, if H;;( X) and H;(X) are both isomorphic to A,
forn >3 then H;(X) is not isomorphic to B,,.

Proof: Clearly, (1) implies (2). Assume (2),let4,j besuchthat0 < i< j <
h(X) and consider H;;(X). Let G be the group of automorphisms induced by
Aut(X, <) on (Hij(X),<). If |[Hi(X)|=1o0r |H;(X)| = 1 then, as G is tran-
sitive on both H;(X) and H;(X) itis clear that H;;( X) is isomorphic to a poset
C,, respectively Cpy . Thus we can assume that |H;(X)| > 1 and |H;(X)| > 1.
Consider the incidence structure ( P, B, I) with point set P = H;(X), block set
B = H;j(X),and where z I y ifand only if z < y. Note that every automorphism
of this incidence structure is induced by an order-automorphism of ( H;( X), <).
By Lemma 2.1 it follows that H;;(X) is isomorphic to a poset A, Bm 0r Cp 4.
Suppose there exist ¢, j, k with0 < 1 < j < k < h(X) such that H;;(X) and
Hj(X) are both isomorphic to A, for n > 3 and H;:(X) is isomorphic to Bs,.
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Without loss of generality, let H,(X) = {(u,1),...,(u,n)} foru € {i,,k}
such that (i,v) < (J,v) and (j,v) < (k,v) for1 < v < m There exists
a fixed-point free permutation b of {1, ... ,n} such that (i,v) < (k,w) if and
only if w # vb. It follows that there exist distinct vy, v2,v3 € {1,...,n} such
that v1b = v3. Then there exists g € Aut( X, <) such that (i,v;)g = (1,v2),
(4,v2)g = (4,v1) and (3,v3)g = (4,v3). As H;;(X) and Hy(X) are both
isomorphic to A,,, it follows that (j,v3)g = (7,v3) and (k,v3)g = (k,v3). As
(1,v1) and (k,vs3) are incomparable, it thus follows that ({,v1)g = (1,v2) and
(k,v3)g = (k,v3) are also incomparable. As H;(X) is isomorphic to B,, by
definition of b we get v2b = v3 = v b, and thus v; = v,, which is a contradiction.
This shows that (3) holds.

Now suppose that (3) holds. Let: € {0,... ,n}and f € Sym( H;(X)). Define
g: X — X in the following way. Let zg = zf for all z € H;(X). Suppose we
have defined g on H;(X) withjo < j < ji suchthatz < yifandonlyif zg < yg
forallz,y € {z € X | jo < h(z) < /1}. If jo > O thendefinegon H;,_;(X) in
the following way. If Hj,_; j,(X) is isomorphic to some Cyp, then zg = z for all
z € Hjy_1(X). If Hjy_1 j,(X) is isomorphic to some A, (respectively By,) then
there exists a bijection b: H;,_1(X) — Hj,(X) such that for z € Hj,_1(X),
y € H;(X) we have z < yif and only if y = zb (respectively y # zb). Now
define zg = zhgb~! forallz € Hj,_1(X).

We claim that z < y if and only if zg < yg forall z,y € {z € X |
Jo —1 < h(2) < j1}. By construction, it is sufficient to take z € Hj,_,(X) and
y € H;(X) forsome j with jo < j < j1. The claim s trivial if H;,_; ;( X) is iso-
morphic to some Cy,q. If Hj,_1 j,(X) is isomorphic to A,, then z < y if and only
if zb~! < y, hence, by induction the claim follows. Finally, if both H. jo—14o0 (X)
and Hj,_; j(X) are isomorphic to By, then either j = jo or Hj, ;(X) is isomor-
phic to A, and thus z < y if and only if zb=! £ y, and again the claim follows.
If 1 < h(X) then define g on Hj,+1(X) analogously. It is then clear that g €
Aut(X), hence (1) holds, which concludes the proof of the theorem. 1

3. Height-homogeneous posets.

In this section, we consider posets which satisfy the stronger condition of height-
homogeneity, and we give a classification similar to that in Theorem 1.

Theorem 2. Let (X, <) be a finite poset. Then the following are equivalent.
(1) (X, <) is height-homogeneous.
(2) (X, <) is 3-height-homogeneous.
(3) Wheneveri,j are such that0 < i < j < h(X) then H(X) is iso-
morphic to one of the posets A,, Bm or Cpy forsomen > 2, m > 3 or
p,q > 1, and the following conditions hold.
(@) Wheneversi, j, k are such that0 < i < j < k < h(X) and H;;( X)
respectively H; (X) is isomorphic to A, withn > 2 then Hy.(X)
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is isomorphic to H;(X) respectively H;;( X).
(b) There do not existi,j, k with0 < 1 < j < k < h(X) such that
H;;j(X) and H;(X) are both isomorphic to B, withm > 3.

Proof: Clearly (1) implies (2). Assume that (2) holds. Then (X, <) satisfies
condition (2) of Theorem 1. By Theorem 1, every H;;( X) is isomorphic to some
An, B or Cpq.

Leti,j,kbesuchthat0 < i < j < k < h(X), and suppose H;;(X) is iso-
morphic to A,. There exists a bijection b: H;(X) — H;j(X) suchthatz < y
ifand only if zb = y forz € Hi(X),y € H;(X). We claim that the map-
ping ¢t Hix(X) — H;x(X) given by zc = zb for z € Hy(X) and zc = z for
z € Hy(X) is an isomorphism. Clearly, it is bijective and its inverse is order-
preserving. On the other hand, let z € Hy(X) andy € H¢(X) suchthatz < y.
Let y' € Hx(X) such that zb < y'. By 3-height-homogenity, there exists g €
Aut(X,<) such that zg = z and yg = y'. Hence, also zbg = zb, and we have
zb = zbg~! < y/g~! = y. Therefore c is order-preserving, and thus Hy(X) is
isomorphic to H;x(X). If Hj(X) is isomorphic to A, then the result follows
similarly. Thus (a) holds.

Finally, suppose that both H;;(X) and H;x(X) are isomorphic 0 By, (m >
3), then clearly H;(X) is isomorphic to Cpm. Let by: Hi(X) — H;(X) and
byt Hj(X) — Hi(X) be bijections such that z < y, respectively y < z, if and
only if y # zb;, respectively z # yby,forz € Hi(X),y € H;j(X), z € H(X).
Letz € Hi(X) andy € H(X)\{zbi1b2}. Asz < zh1 b, and z < y, there exists
g € Aut(X,<) with zg = z and b b, g = y. But zb, is incomparable with both
z and zb; by, whereas each element of H;(X) is comparable with z or y, which
gives a contradiction. Therefore (b) holds, which concludes the proof of (3).

Now suppose that (3) holds. We prove (1) by induction on A(X). It is trivial
if h(X) = 0. Suppose thatn= h(X) > 0. LetS, T C X and f:S — T be
an order-isomorphism with h(z) = h(zf) for all z € S. If there exists 7 with
0 < i < h(X) such that H;;,;(X) is isomorphic to Cp, then let X; = {z €
X | h(z) € i}and X2 = {z € X | h(z) > i+ 1}. Note that f induces
order-isomorphisms f;: SN X; — T N X; fori € {1,2}. By the induction
hypothesis, there exists g; € Aut( X;, <) withzg; = zf; = zf forz € SN X; for
i € {1,2}. If we define g by zg = zg; forz € X; (1 € {1,2}) thenitis clear
thatg € Aut(X,<) and zg = zf for all z € S. Next suppose that H,_1 ,(X)
is isomorphic to A, (m > 2), and let b: H,(X) — H,_1(X) be a bijection
such thaty < z ifandonly if y = zbforz € Ho(X), y € Hao1 (X). Let
Xo={z€ X |h(z) <n},andlet So = Xo N(SU{zb |z € SN Ha(X)})
andTo = Xo N(TU{zb | r € TN Ha(X)}). Define fo by zfo = zf for
z€ SNXoandzfo = zb~'fbforz € {zb |z € SN H(X)}. Itis easy to
see that fy: So — Tpo is well-defined and an order-isomorphism. By the induction
hypothesis, there exists go € Aut( Xo, <) suchthat zge = z fo for z € Sp. Define
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