The minimum size of critically m-neighbour-connected graphs

Shu-Shih Y. Wu and Margaret B. Cozzens

Department of Mathematics Northeastern University Boston, MA 02115

Abstract. A graph G is said to be m-neighbour-connected if the neighbour-connectivity of the graph, K(G) = m. A graph G is said to be critically m-neighbour-connected if it is m-neighbour-connected and the removal of the closed neighbourhood of any one vertex yields an (m-1)-neighbour-connected subgraph. In this paper, we give some upper bounds of the minimum size of the critically m-neighbour-connected graphs of any fixed order ν , and show that the number of edges in a minimum critically m-neighbour-connected graph with order ν (a multiple of m) is $\lceil \frac{1}{2} m \nu \rceil$.

1. Introduction

In 1978 Gunther and Hartnell [4] introduced, and in 1985-86 Gunther [6] [7] further developed the idea of modeling a spy network by a graph whose vertices represent the stations and whose edges represent lines of communication. If a station is destroyed, the adjacent stations will be betrayed so that the betrayed stations become useless to the network as a whole. Therefore instead of removing only vertices from a communication graph, we want to consider removing vertices and all of their adjacent vertices.

Suppose that G is a graph. Let u be any vertex in G. $N(u) = \{v \in V(G) | v \neq u, v \text{ and } u \text{ are adjacent}\}$ is the **open neighbourhood** of u, and $N[u] = \{u\} \cup N(u)$ denotes the **closed neighbourhood** of u. A vertex u in G is said to be **subverted** when the closed neighbourhood N[u] is deleted from G. A set of vertices $S = \{u_1, u_2, u_3, \cdots, u_m\}$ is called a **subversion strategy** if each of the vertices in S has been subverted. Let G/S be the survival-subgraph left after each vertex of S has been subverted from S. S is called a **cut-strategy** of S if the survival-subgraph S is disconnected, or is a clique, or is S. We define the **neighbour-connectivity**, S is S of S to be the minimum size of all cut-strategies S of S. A graph S is S is S is S in S in S in S is S in S in

A graph G is called **critically** m-neighbour-connected if K(G) = m, and for any vertex u in G, $K(G/\{u\}) = m - 1$. Reliability of a spy network may be determined by the neighbour-connectivity. In a critically m-neighbour-connected graph, each communication station is so important that any subversion reduces the reliability of the corresponding spy communication network. A graph G is a **minimum** critically m-neighbour-connected graph if no critically m-neighbour-connected graph with the same number of vertices has fewer edges than G. In this paper, we give some upper bounds of the minimum size of the critically m-neighbour-connected graphs of any fixed order ν , and we show that if m is a

positive integer then the number of edges in a minimum critically m-neighbour-connected graph with order ν (a multiple of m) is $\lceil \frac{1}{2} m \nu \rceil$; hence a minimum critically m-neighbour-connected graph with order ν (a multiple of m) is m-regular.

 $\lfloor x \rfloor$ is the greatest integer less than or equal to x, and $\lceil x \rceil$ is the smallest integer greater than or equal to x.

2. A Class of Critically m-Neighbour-Connected Graphs

Now we consider the following operation, say E, on a graph G to create a collection of graphs, say GE.

A new graph $Ge \in GE$ is created by the following:

- (i) Each vertex v of G is replaced by a clique C_v of order $> \deg v$.
- (ii) C_{v_1} and C_{v_2} are joined by, at most, one edge and they are joined by an edge if, and only if, vertices v_1 and v_2 are joined in G.
- (iii) Each vertex in C_v is incident with, at most, one edge not entirely contained in C_v .

Example 1

Figure 1

The **connectivity**, $\kappa(G)$, of a graph G is the smallest number of vertices whose removal disconnects G or leaves a single vertex. The graph G is m-connected, if the connectivity of G, $\kappa(G) = m$. Thus we apply operation E to an m-connected graph G to obtain an m-neighbour-connected graph.

Theorem 2.1. Let G be an m-connected graph. Apply operation E to G to obtain Ge. Then Ge is an m-neighbour-connected graph.

Proof: Observe that deleting any m-1 neighbourhoods in Ge is equivalent to deleting the m-1 corresponding vertices in G. Therefore we obtain the theorem.

Theorem 2.2. For any positive integers m,n such that $m > 1, n \ge m + 1$, there exists a class of critically m-neighbour-connected graphs each of which has n cliques.

Proof: For any positive integers n, m such that $m > 1, n \ge m+1$, we may construct a Harary graph $H_{m,n}$ which is a m-connected graph [2]. By Theorem 2.1, we apply operation E to $H_{m,n}$, and to $H_{m,n} - \{u\}$, for any vertex u in $H_{m,n}$, to obtain a class of critically m-neighbour-connected graphs $H_{m,n}E$ each of which has n cliques.

Figure 2 H_{4,6} e

3. The Upper Bounds of the Minimum Size of Critically m-Neighbour-Connected Graphs

For any given positive integers ν , m, and n, with $n \ge m+1$, we may construct a class of graphs, $H_{m,n}E$, each of which is critically m-neighbour-connected with order ν . For convenience, we call this class of graphs G(m,n).

Let the vertices in $H_{m,n}$ (Harary graph) be v_0 , v_1 , v_2 , \cdots , v_{n-1} , and the corresponding cliques in each of G(m,n) be C_0 , C_1 , C_2 , \cdots , C_{n-1} . Let the number of vertices in the cliques C_0 , C_1 , C_2 , \cdots , C_{n-1} be x_0 , x_1 , x_2 , \cdots , x_{n-1} , respectively, where $x_i \geq \deg v_i = m$, for all $i = 1, 2, 3, \cdots, n-1$, $x_i \geq \deg v_0 = m$ if at least one of n, m is even, and $x_0 \geq \deg v_0 = m+1$ if both of m and n are

odd. Hence

$$\sum_{i=0}^{n-1} x_i = \nu$$

and the number of edges in each of G(m, n) is

$$\begin{cases} \frac{1}{2} \left(\sum_{i=0}^{n-1} x_i (x_i - 1) + mn \right), & \text{if at least one of } m, n \text{ is even;} \\ \frac{1}{2} \left(\sum_{i=0}^{n-1} x_i (x_i - 1) + mn + 1 \right), & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

To discuss the minimum size of critically m-neighbour-connected graphs, we minimize |E(G(m,n))| under the condition $\sum_{i=0}^{n-1} x_i = \nu$, and we let $\widetilde{G}(m,n)$ be a subclass of G(m,n) having the smallest number of edges, which is denoted as $\widetilde{g}(m,n)$.

Case 1: At least one of m, n is even $(n \ge m + 1)$.

$$\min_{x_i} \left(\sum_{i=0}^{n-1} x_i^2 + mn - \nu \right)$$

$$subject \ to \left\{ \begin{array}{ll} \sum_{i=0}^{n-1} \ x_i &= \nu; \\ x_i & \geq m, \ \text{for all} \ i=0,1,2,\cdots,n-1; \\ x_i & \in Z^+, \ \text{for all} \ i=0,1,2,\cdots,n-1 \end{array} \right.$$

Since $x_i \ge m$, $\nu = \sum_{i=0}^{n-1} x_i \ge \sum_{i=0}^{n-1} m = mn$, we have $n \le \frac{\nu}{m}$. n is an integer, so $n \le \lfloor \frac{\nu}{m} \rfloor$.

Case 2: Both of m and n are odd. $(n \ge m + 1)$.

$$\min_{x_i} \left(\sum_{i=0}^{n-1} x_i^2 + mn - \nu + 1 \right)$$

subject to
$$\begin{cases} \sum_{i=0}^{n-1} x_i &= \nu; \\ x_0 \ge m+1; \\ x_i \ge m, & \text{for all } i=1,2,3,\cdots,n-1; \\ x_i \in Z^+, & \text{for all } i=0,1,2,3,\cdots,n-1. \end{cases}$$

Since $\nu = \sum_{i=0}^{n-1} x_i \ge m+1+(n-1)m=nm+1, \nu-1 \ge nm$, we have $n \le \lfloor \frac{\nu-1}{m} \rfloor \le \lfloor \frac{\nu}{m} \rfloor$.

By Lagrange's method, we obtain

$$x_i = Q$$
 or $Q + 1$, for all $i = 0, 1, 2, 3, \dots, n-1$ where $Q = \left| \frac{v}{n} \right|$.

We may rearrange the subscripts of x_i , such that

$$x_i = \begin{cases} Q+1, & \text{if } 0 \le i \le R-1; \\ Q, & \text{if } R \le i \le n-1. \end{cases}$$
where $R = \nu - nQ$.

Therefore, $\tilde{g}(m, n)$

 $\tilde{G}(4,6)$:

$$= \begin{cases} \frac{1}{2}((Q+1)^2R + Q^2(n-R) \\ -\nu + mn), & \text{if at least one of } m, n \text{ is even;} \\ \frac{1}{2}((Q+1)^2R + Q^2(n-R) \\ -\nu + mn + 1), & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

$$= \begin{cases} \frac{1}{2}(2QR + R + Q^2n - \nu + nm), & \text{if at least one of } m, n \text{ is even;} \\ \frac{1}{2}(2QR + R + Q^2n - \nu + nm + 1), & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

Example 3 $\nu = 32$, m = 4, n = 6 are given. Then we may construct $\widetilde{G}(4,6)$ -graphs, each of which is a critically 4-neighbour-connected graph with order 32. $Q = \lfloor \frac{32}{6} \rfloor = 5$. $R = \nu - nQ = 32 - 6$ x5 = 2.

 $\tilde{g}(4,6) = \frac{1}{2}(2QR + R + Q^2n - \nu + nm) = 82.$

Example 4 $\nu = 55$, m = 5, n = 9 are given. Then we may construct $\widetilde{G}(5,9)$ -graphs, each of which is a critically 5-neighbour-connected graph with order 55. $Q = \lfloor \frac{55}{9} \rfloor = 6$, $R = \nu - nQ = 55 - 54 = 1$.

Figure 4
$$\widetilde{G}(5,9)$$

 $\widetilde{g}(5,9) = \frac{1}{2}(2QR + R + Q^2n - \nu + nm + 1) = 164$.

Next we find an upper bound of the minimum size of critically m-neighbour-connected graphs with order ν . We regard n as a variable, ν , m as fixed integers, and

$$\min_{n} f(n)$$

$$subject to \begin{cases} n \ge m+1; \\ n < \lfloor \frac{\nu}{n} \rfloor. \end{cases}$$

where

$$f(n) = \begin{cases} 2QR + R + Q^2n - \nu + nm, & \text{if at least one of } m, n \text{ is even;} \\ 2QR + R + Q^2n - \nu + nm + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

We shall show that the objective function f(n) is decreasing when $m+1 \le n \le \lfloor \frac{\nu}{m} \rfloor$.

Lemma 3.1. For any fixed positive integers m, ν , if $m+1 \le n \le \lfloor \frac{\nu}{m} \rfloor$, $Q = \lfloor \frac{\nu}{n} \rfloor$, $R = \nu - nQ$, then the function f(n) is decreasing.

Proof: Evaluate the values of f when n = k, and n = k + 1. Since $m + 1 \le n \le \lfloor \frac{\nu}{m} \rfloor$,

$$m+1 \leq k \leq \lfloor \frac{\nu}{m} \rfloor \text{ and } m+1 \leq k+1 \leq \lfloor \frac{\nu}{m} \rfloor,$$

then

$$m+1 \le k \le \lfloor \frac{v}{m} \rfloor - 1$$
.

Let

$$q_1 = \lfloor \frac{\nu}{k} \rfloor, r_1 = \nu - kq_1, \text{ so } 0 \le r_1 < k.$$

$$q_2 = \lfloor \frac{\nu}{k+1} \rfloor, r_2 = \nu - (k+1)q_2, \text{ so } 0 \le r_2 < k+1.$$

Then

$$q_1 \geq q_2 \geq m > 0.$$

We discuss two cases:

Case 1:
$$q_1 = q_2$$

 $\nu = kq_1 + r_1 = (k+1)q_2 + r_2$. Hence, $r_1 = q_2 + r_2$ or $r_1 = q_1 + r_2$, then $r_2 = r_1 - q_1$.

$$f(k+1) - f(k)$$

$$= \begin{cases}
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m + 1] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is odd and } k \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km + 1], & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$= \begin{cases} m - q_1 - q_1^2, & \text{if } m \text{ is even;} \\ m - q_1 - q_1^2 + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\ m - q_1 - q_1^2 - 1, & \text{if } b \text{ oth of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$< 0.$$

Hence
$$f(k+1) \le f(k)$$
, for all $m+1 \le k \le \lfloor \frac{\nu}{m} \rfloor - 1$
Case 2: $q_1 \ne q_2$. (i.e. $q_1 \ge q_2 + 1 > 1$)

$$\nu = kq_1 + r_1 = (k+1)q_2 + r_2$$
, so $kq_1 - kq_2 = q_2 + r_2 - r_1$

$$1 < q_2 + 1 < q_1$$
, so $\nu(q_2 + 1) \le \nu q_1$

$$\nu(q_2+1)=((k+1)q_2+r_2)(q_2+1)=kq_2^2+q_2^2+r_2q_2+kq_2+q_2+r_2$$
 and

$$\nu q_1 = (kq_1 + r_1)q_1 = kq_1^2 + r_1q_1.$$

Hence

$$kq_2^2 + q_2^2 + r_2q_2 + kq_2 + q_2 + r_2 \le kq_1^2 + r_1q_1$$

$$kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1 \le -(kq_2 + q_2 + r_2) = -\nu.$$

Subcase 1: $r_1 > 1$. Then,

$$f(k+1) - f(k)$$

$$=\begin{cases}
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m + 1] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is odd and } k \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km + 1], & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$\begin{cases}
2q_2r_2 + q_2^2k + q_2^2 + m + r_2 - 2q_1r_1 \\
-r_1 - q_1^2k, & \text{if } m \text{ is even;} \\
2q_2r_2 + q_2^2k + q_2^2 + m + r_2 - 2q_1r_1 \\
-r_1 - q_1^2k + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
2q_2r_2 + q_2^2k + q_2^2 + m + r_2 - 2q_1r_1 \\
-r_1 - q_1^2k - 1, & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$\begin{cases}
2q_2r_2 + q_2^2k + q_2^2 + m + \nu - (k+1)q_2 \\
-2q_1r_1 - \nu + kq_1 - q_1^2k, & \text{if } m \text{ is even;} \\
2q_2r_2 + q_2^2k + q_2^2 + m + \nu - (k+1)q_2 \\
-2q_1r_1 - \nu + kq_1 - q_1^2k + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
2q_2r_2 + q_2^2k + q_2^2 + m + \nu - (k+1)q_2 \\
-2q_1r_1 - \nu + kq_1 - q_1^2k - 1, & \text{if } m \text{ is odd and } k \text{ are odd.} \end{cases}$$

$$\begin{cases}
(kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1) + (r_2q_2 - r_1q_1 + kq_1 - kq_2) + m - q_2, & \text{if } m \text{ is even;} \\
(kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1) + (r_2q_2 - r_1q_1 + kq_1 - kq_2) + m - q_2 + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
(kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1) + (r_2q_2 - r_1q_1 + kq_1 - kq_2) + m - q_2 + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
(kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1) + (r_2q_2 - r_1q_1 + kq_1 - kq_2) + m - q_2 + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
(kq_2^2 - kq_1^2 + q_2^2 + r_2q_2 - r_1q_1) + (r_2q_2 - r_1q_1 + kq_1 - kq_2) + m - q_2 - 1, & \text{if } \text{ both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$\leq \begin{cases} -\nu + r_2 q_2 - r_1 q_1 + r_2 - r_1 + q_2 \\ +m - q_2, & \text{if } m \text{ is even;} \\ -\nu + r_2 q_2 - r_1 q_1 + r_2 - r_1 + q_2 \\ +m - q_2 + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\ -\nu + r_2 q_2 - r_1 q_1 + r_2 - r_1 + q_2 \\ +m - q_2 - 1, & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$\leq -\nu + q_2 (k+1) - r_1 q_1 + r_2 - r_1 + m$$

$$= -\nu + \nu - q_1 r_1 - r_1 + m$$

$$= -q_1 r_1 - r_1 + m$$

$$= -r_1 (q_1 + 1) + m$$

$$\leq -(q_1 + 1) + m$$

Hence f(k+1) < f(k), for all $m+1 \le k \le \lfloor \frac{\nu}{m} \rfloor - 1$.

Subcase 2: $r_1 = 0$.

Then when m is odd and k is even, we have $r_2 \neq k$ or $q_2 \neq m$. Since if $r_2 = k$ and $q_2 = m$, then $\nu = kq_1 = kq_2 + q_2 + r_2 = mk + m + k$, $q_1 = m + 1 + \frac{m}{k} \in \mathbb{Z}^+$. Therefore we obtain $k \mid m$, a contradiction, since m is odd and k is even.

$$F(k+1) - f(k)$$

$$= \begin{cases}
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m + 1] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km], & \text{if } m \text{ is odd and } k \text{ is even;} \\
[2q_2r_2 + r_2 + q_2^2(k+1) - \nu + (k+1)m] \\
-[2q_1r_1 + r_1 + q_1^2k - \nu + km + 1], & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$= \begin{cases}
(2q_2r_2 + r_2 + q_2^2k + q_2^2 + m - q_1^2k, & \text{if } m \text{ is even;} \\
(2q_2r_2 + r_2 + q_2^2k + q_2^2 + m - q_1^2k + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
(2q_2r_2 + r_2 + q_2^2k + q_2^2 + m - q_1^2k - 1, & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$= \begin{cases}
(q_2^2k - q_1^2k + q_2^2 + r_2q_2 - r_1q_1) \\
+ r_2q_2 + r_2 + m, & \text{if } m \text{ is even;} \\
(q_2^2k - q_1^2k + q_2^2 + r_2q_2 - r_1q_1) \\
+ r_2q_2 + r_2 + m + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\
(q_2^2k - q_1^2k + q_2^2 + r_2q_2 - r_1q_1) \\
+ r_2q_2 + r_2 + m - 1, & \text{if } m \text{ is odd and } k \text{ are odd.} \end{cases}$$

$$\leq \begin{cases} -\nu + r_2 q_2 + \nu - (k+1)q_2 + m, & \text{if } m \text{ is even;} \\ -\nu + r_2 q_2 + \nu - (k+1)q_2 + m + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\ -\nu + r_2 q_2 + \nu - (k+1)q_2 + m - 1, & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$= \begin{cases} r_2 q_2 - kq_2 + (m - q_2), & \text{if } m \text{ is even;} \\ r_2 q_2 - kq_2 + (m - q_2) + 1, & \text{if } m \text{ is odd and } k \text{ is even;} \\ r_2 q_2 - kq_2 + (m - q_2) - 1, & \text{if both of } m \text{ and } k \text{ are odd.} \end{cases}$$

$$\leq 0, \text{ since } r_2 \leq k, q_2 > m > 0 \text{ and } (r_2 \neq k \text{ or } q_2 \neq m).$$

Hence $f(k+1) \le f(k)$, for all $m+1 \le k \le \lfloor \frac{\nu}{m} \rfloor - 1$.

Lemma 3.2. Let ν , n, m be three integers, $n \ge m+1$. If $n = \lfloor \frac{\nu}{m} \rfloor$, then $m = \lfloor \frac{\nu}{n} \rfloor$.

Proof: n is the quotient of ν divided by m. Let R be the remainder of ν divided by m. So $\nu = nm + R$, where $0 \le R < m$.

Since $0 \le R < m$ and $m+1 \le n, 0 \le R < n$. $\nu = mn + R$ and $0 \le R < n$, hence m is the quotient of ν divided by n. That is, $m = \lfloor \frac{\nu}{n} \rfloor$.

By using Lemma 3.1, we can obtain an upper bound of the minimum size of critically m-neighbour-connected graphs.

Theorem 3.3. Let m be a positive integer. If G is a minimum critically m-neighbour-connected graph with order ν , then $\lceil \frac{1}{2} m \nu \rceil \leq |E(G)| \leq \lceil \frac{1}{2} m \nu + \frac{1}{2} m R \rceil$. Where $R = \nu - \lfloor \frac{\nu}{m} \rfloor m$, the remainder of the order ν divided by m.

Proof: Let n be an integer, such that $n \ge m + 1$.

Let the order of each of $\widetilde{G}(m,n)$ -graphs be ν . Hence, $\widetilde{g}(m,n) = \lceil \frac{1}{2}(2Q_nR_n + R_n + Q_n^2n - \nu + nm) \rceil$, where $Q_n = \lfloor \frac{\nu}{n} \rfloor$ and $R_n = \nu - nQ_n$. By Theorem 2.2, $\widetilde{G}(m,n)$ is a class of critically m-neighbour-connected graphs, hence $|E(G)| \leq \widetilde{g}(m,n)$.

If $n > \lfloor \frac{\nu}{m} \rfloor$, n is an integer, then $n > \frac{\nu}{m}$. We have $nm > \nu$. By the construction of G(m,n)-graph, $|C_i| \geq m$, for all i. Thus $\nu = \sum_{i=0}^{n-1} |C_i| \geq mn$, a contradiction. Therefore, $n \leq \lfloor \frac{\nu}{m} \rfloor$.

The function f(n) is a decreasing function of n, for $m+1 \le n \le \lfloor \frac{\nu}{m} \rfloor$. Hence f(n) has the minimum value, when $n = \lfloor \frac{\nu}{m} \rfloor$.

By Lemma 3.2, $n = \lfloor \frac{\nu}{m} \rfloor$ and $n \geq m+1$, we have $m = \lfloor \frac{\nu}{n} \rfloor$. Hence $Q_n = \lfloor \frac{\nu}{n} \rfloor$

 $\lfloor \frac{\nu}{n} \rfloor = m$ and $R_n = \nu - nQ_n = \nu - nm = \nu - \lfloor \frac{\nu}{m} \rfloor m$. The minimum value of

$$f(n) = f(\lfloor \frac{\nu}{m} \rfloor)$$

$$= \begin{cases} 2mR_n + R_n + m^2n - \nu + nm, & \text{if at least one of } m, n \text{ is even;} \\ 2mR_n + R_n + m^2n - \nu + nm + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

$$= \begin{cases} 2mR_n + R_n + m^2n - R_n - nm \\ + nm, & \text{if at least one of } m, n \text{ is even;} \end{cases}$$

$$= \begin{cases} 2mR_n + R_n + m^2n - R_n - nm \\ + nm + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

$$= \begin{cases} 2mR_n + m^2n, & \text{if at least one of } m, n \text{ is even;} \\ 2mR_n + m^2n + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

$$= \begin{cases} m(mn + R_n) + mR_n, & \text{if at least one of } m, n \text{ is even;} \\ m(mn + R_n) + mR_n + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

$$= \begin{cases} m\nu + mR_n, & \text{if at least one of } m, n \text{ is even;} \\ m\nu + mR_n + 1, & \text{if both of } m \text{ and } n \text{ are odd.} \end{cases}$$

Therefore when $n = \lfloor \frac{\nu}{m} \rfloor$, $\widetilde{g}(m,n) = \frac{1}{2}f(n) = \lceil \frac{1}{2}(m\nu + mR) \rceil$, where $R = R_n = \nu - \lfloor \frac{\nu}{m} \rfloor m$. $|E(G)| \leq \widetilde{g}(m,n) = \lceil \frac{1}{2}m\nu + \frac{1}{2}mR \rceil$. Since G is an m-neighbour-connected graph, $m = K(G) \leq \delta(G)$ [6], it is easy

Since G is an m-neighbour-connected graph, $m = K(G) \le \delta(G)[6]$, it is easy to show that $\lceil \frac{1}{2} m\nu \rceil \le |E(G)|$.

Since $0 \le R \le m-1$, $\frac{1}{2}m\nu + \frac{1}{2}mR \le \frac{1}{2}m\nu + \frac{1}{2}m(m-1) = \frac{1}{2}m(\nu + m-1)$. It follows that

Corollary 3.4. Let m be a positive integer. If G is a minimum critically m-neighbour-connected graph, then $\lceil \frac{1}{2} m \nu \rceil \leq |E(G)| \leq \lceil \frac{1}{2} m (\nu + m - 1) \rceil$, where $\nu = |V(G)|$.

Corollary 3.5. If the order of G, ν , is a multiple of m, and G is a minimum critically m-neighbour-connected graph, then $|E(G)| = \lceil \frac{1}{2} m \nu \rceil$.

Proof: Since $R = \nu - \lfloor \frac{\nu}{m} \rfloor m = 0$, by Theorem 3.3, we obtain the result. **Example 5** $\nu = 72$, m = 7, G is a minimum critically 7-neighbour-connected graph with order 72, then by Theorem 3.3, $252 = \lceil \frac{1}{2} m \nu \rceil \le |E(G)| \le \lceil \frac{1}{2} m \nu + \frac{1}{2} m R \rceil = 259$.

Example 6 $\nu=32$, m=4, G is a minimum critically 4-neighbour-connected graph with order 32, then by Corollary 3.5, $|E(G)|=\lceil\frac{1}{2}m\nu\rceil=64$.

Acknowledgement

We acknowledge an unusually cogent referee's report on an earlier version of this paper.

References

- 1. J. A. Bondy and U.S.R. Murty, "Graph Theory with Applications", The Macmillan Press Ltd, (1976).
- 2. M. B. Cozzens and S.S.Y. Wu, On Minimum Critically n-Edge-Connected Graphs, SIAM J. Alg. and Disc. Meth. 8(4) (October 1987), 659–669.
- 3. S. Goodman and D. Shier, On Designing a Reliable Hierarchical Structure, SIAM J. Appl. Math. 32(2) (March 1977), 418–430.
- 4. G. Gunther and B. L. Hartnell, On Minimizing the Effects of Betrayals in a Resistance Movement, Proc. Eighth Manitoba Conference on Numerical Mathematics and Computing (1978), 285–306.
- 5. G. Gunther and B. L. Hartnell, *Optimal K-secure Graphs*, Discrete Applied Math. 2 (1980), 225–231.
- 6. G. Gunther, Neighbour-Connectivity in Regular Graphs, Discrete Applied Math. 11 (1985), 233-243.
- 7. G. Gunther, On the Existence of Neighbour-Connected Graphs, Congressus Numerantium **54** (1986), 105–110.
- 8. B. L. Hartnell, *The Optimum Defence Against Random Subversions in a Network*, Proc. Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton (April 1979), 293–299.