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Abstract. A graph G is said to be m-neighbour-connected if the neighbour-connectivity
of the graph, K (G) = m. A graph G is said to be critically m-neighbour-connected if it
is m-neighbour-connected and the removal of the closed neighbourhood of any one ver-
tex yields an (m — 1)-neighbour-connected subgraph. In this paper, we give some up-
per bounds of the minimum size of the critically m-neighbour-connected graphs of any
fixed order v, and show that the number of edges in a minimum critically m-neighbour-
connected graph with order v (a multiple of m) is [muv].

1. Introduction

In 1978 Gunther and Hartnell [4] introduced, and in 1985-86 Gunther [6] [7]
further developed the idea of modeling a spy network by a graph whose vertices
represent the stations and whose edges represent lines of communication. If a
station is destroyed, the adjacent stations will be betrayed so that the betrayed
stations become useless 1o the network as a whole. Therefore instead of removing
only vertices from a communication graph, we want (o consider removing vertices
and all of their adjacent vertices.

Suppose that G is a graph. Let u be any vertex in G. N(u) = {v € V(&) |v ¥
u, v and u are adjacent} is the open neighbourhood of u, and N[u] = {u} U
N(u) denotes the closed neighbourhood of u. A vertex u in G is said 10 be
subverted when the closed neighbourhood N[u] is deleted from G. A set of
vertices S = {u1,uz2,u3,- -, um} is called a subversion strategy if each of the
vertices in S has been subverted. Let G/S be the survival-subgraph left after
each vertex of S has been subverted from G. S is called a cut-strategy of G if
the survival-subgraph G/ S is disconnected, or is a clique, or is §. We define the
neighbour-connectivity, K (G), of G to be the minimum size of all cut-strategics
S of G. A graph G is m-neighbour-connected if K(G) = m.

A graph G is called critically m-neighbour-connected if K (G) = m, and for
any vertex v in G, K(G/{u}) = m — 1. Reliability of a spy network may be
determined by the neighbour-connectivity. In a critically m-neighbour-connected
graph, each communication station is so important that any subversion reduces
the reliability of the corresponding spy communication network. A graph G is a
minimum critically m-neighbour-connected graph if no critically m-neighbour-
connected graph with the same number of vertices has fewer edges than G. In
this paper, we give some upper bounds of the minimum size of the critically m-
neighbour-connected graphs of any fixed order v, and we show that if m is a
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positive integer then the number of edges in a minimum critically m-neighbour-
connected graph with order v (a multiple of m) is [%mu] ; hence a minimum crit-
ically m-neighbour-connected graph with order v (a multiple of m) is m-regular.

|z] is the greatest integer less than or equal to z, and [z] is the smallest integer
greater than or equal to z.

2. A Class of Critically m-Neighbour-Connected Graphs

Now we consider the following operation, say E, on a graph G to create a collec-
tion of graphs, say GE.
A new graph Ge € GE is created by the following:

(i) Each vertex v of G is replaced by a clique C,, of order > deg v.
(ii)) C,, and C,, are joined by, at most, one edge and they are joined by an edge
if, and only if, vertices v; and v, are joined in G.
(iii) Each vertex in C, is incident with, at most, one edge not entirely contained

in C,.
Example 1
3 Cs
G 2 4 Ge: C,
C4
1 C
Figure 1

The connectivity, <(G), of a graph G is the smallest number of vertices whose
removal disconnects G or leaves a single vertex. The graph G is m-connected, if
the connectivity of G, k(G) = m. Thus we apply operation E to an m-connected
graph G to obtain an m-neighbour-connected graph.

Theorem 2.1. LetG be anm-connected graph. Apply operation E to G to obtain
Ge. Then Ge is an m-neighbour-connected graph.

Proof: Observe that deleting any m — 1 neighbourhoods in Ge is equivalent to
deleting the m — 1 corresponding vertices in G. Therefore we obtain the theorem.
|
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Theorem 2.2. For any positive integers mn such thatm > 1,n > m + 1, there
exists a class of critically m-neighbour-connected graphs each of which has n
cliques.

Proof: For any positive integers n, m such that m > 1,n > m + 1, we may
construct a Harary graph H,, , which is a m-connected graph [2] . By Theorem
2.1, we apply operation E t0 Hy, », and t0 Hy, , — {u}, for any vertex v in Hy, »,
to obtain a class of critically m-neighbour-connected graphs H,, ,E each of which
has ncliques. N

G
Example 2
Ca 'Co
Cs Cs
Cs

Figure 2 Hsge

3. The Upper Bounds of the Minimum Size of
Critically m-Neighbour-Connected Graphs

For any given positive integers v, m, and n, withn > m+ 1, we may construct
aclass of graphs, H, . E, each of which is critically m-neighbour-connected with
order v. For convenience, we call this class of graphs G(m, n).

Let the vertices in H, , (Harary graph) be vp, v, v2, -+, va_1, and the corre-
sponding cliques in each of G(m,n) be Co,C1,C,, -+ ,Cy1. Let the number
of vertices in the cliques Cy,C;,Ca,- -+ ,Cn-1 be zo,z1,22,- -+ , Tn1, TESPEC-
tively, where z; > deg v; = m, forallt = 1,2,3,..- 'n—1,z; > degup = m

if at least one of n, m is even, and o > deg vo = m + 1 if both of m and n are
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odd. Hence
n—1
IEEP
i=0

and the number of edges in each of G(m, n) is

3 (E;:ol zi(z;— 1) + mn) , if at least one of m, nis even;

% ( }’;01 zi(z; — 1) + mn+ 1) ,  if both of m and nare odd.

To discuss the minimum size of critically m-neighbour-connected graphs, we
minimize | E(G(m, n))| under the condition 7! x; = v, and we let G(m, n)
be a subclass of G(m,n) having the smallest number of edges, which is denoted
asg(m,n).

Case 1: Atleastone of m,niseven (n> m+ 1).

n—1
min E a:,z +mn—v
z;

i=0
n—1 .
i=0 Ti TV,
subject to3 T; >m,forallt=0,1,2,... ,n—1;
T €Z*, foralli=0,1,2,... ,n—1
Sincez; > m,v = ;‘;01 z,~22}§}m=mn,wehaveng L. nis an integer,
son< |Z].
Case 2: Both of m and nare odd. (n> m + 1).
n—1
: 2
mIl‘n (Zzi+mn—u+l>
i=0
Yo Ti = v;
. To >m+ 1;
subject to )
z; > m, foralli=1,2,3,... n—1;
I, € 2", foralli=0,1,2,3,... ,n—1.
Since v = ::J:,-zm+1+(n—l)m=nm+l,u—l2nm,wehave

n< |22 < L)
By Lagrange’s method, we obtain

z;=QorQ+ 1, foralli=0,1,2,3,--- ,n—1where Q = lEJ
n
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We may rearrange the subscripts of z;, such that

{Q+l, if0 <i<R—1;
% o, fR<i<n—1.
where R = v — nQ).

Therefore, g(m, n)

1(Q+ D?R+Q*(n-R)

_ —v + mn), if at least one of m, nis even;
"] 3@+ 1)*R+Q*(n-R)
—v+mn+ 1), if both of m and nare odd.
$(2QR+ R+ Q*n— v+ nm), if at least one of m, n is even;
- { L(2QR+ R+ @*n—v+nm+1), ifbothof m and nare odd.

Example 3v = 32, m = 4,n= 6 are given. Then we may construct 5(4 ,0)-
graphs, each of which is a critically 4 -neighbour-connected graph with order 32.
Q=2]=5.R=v-nQ=32-6x5=2.

~ )T

G(4,8):

Ks Ks

Figure 3 G(4, 6)

3(4,6) = L(2QR+ R+ Q*n— v+ nm) = 82.
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Example 4 v = 55, m = 5,n= 9 are given. Then we may constructé(S ,9)-
graphs, each of which is a critically 5-neighbour-connected graph with order 55.
Q=|$]=6,R=v—-nQ=55—54=1.

Ks KG

) N

&(5,9): Ke ' Ks
[
v
(5]

Ke \
Figure 4 G(5,9)
3(5,9) = $(2QR+ R+ Q*n—v+nm+ 1) = 164.

Next we find an upper bound of the minimum size of critically m-neigh-

bour-connected graphs with order v. We regard nas a variable,v, m as fixed inte-
gers, and

min f(n)
>m+ 1
subject to{ ne mv

n< %]

where
e { 2QR+ R+ Q*n—v+ nm, if at least one of m, n is even;
n) =
2QR+ R+ Q*n—v+mnm+ 1, ifbothof m and n are odd.

We shall show that the objective function f(m) is decreasing when
m+1<n< L]

Lemma 3.1. For any fixed positive integers m,v, ifm+ 1 < n < l5].Q =
L%, B = v — nQ, then the function f(n) is decreasing.
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Proof: Evaluate the values of f whenn=k,andn=k+ 1. Sincem+1 < n<
L#J’ 14 v
m+1<k<|—]andm+1<k+1<|—],
m m

then
m+1<k<|—]—1.
m
Let
q = L%J,Tl =v—kq,s00<n <k.
g2 = L“Llj,rz =v—(k+1)g,00<ra<k+1.
Then

@ >q02m>0.

We discuss two cases:

Casel: g1 =¢q2
v=kg +1=(k+1)g + . Hence,my = ga+ mp 0orm = q1 + 72,
thenry =71 —¢q.

f(k+1) = f(k)

[242T2+72+q%(k+1)—u+(lc+l)m]
—[2qr + 711+ ¢ k—v+km], ifmiseven;
Rapn+n+agk+1) —v+(k+ Dm+1]
—[2qir1 + 7 + gtk —v+ km], if misoddand & is even;
[(2qar2 + 12+ @3(k+ 1) —v+ (k+ 1)m]

\ —[2qmr+mn+gk—v+km+1], ifbothofm and k are odd.
m—q —q?, if m is even;
{m
m
0.

—q —¢2+1, ifmisoddandk iseven;
—q — g —1, ifbothof m and k are odd.
<

Hence f(k+ 1) < f(k),forallm+ 1< k< |%] -1
Case2: i Fq.(ie.qa >q+1>1)

v=kq +r=(k+1)g+712,80kqi —kgza=qa+T12— 1)

l<g+1<q.s0u(qa+1) <vq
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g+ ) =((k+ D +n)(@+1)=k@d+ @ +ng+ kg +q+m

and
va1 = (kg1 + 1) q1 = kg? + riq1.
Hence
kg + g3 +12q2 + kg + g2 + 12 < kg? + 1y gy

kg3 — kgl + g} + magy — g1 < —(kga + g2 + 13) = —.

Subcase 1: r; > 1. Then,

f(k+1) - f(k)

([2@m+ 1+ g3 (k+1) —v+ (k+ 1)m]

~2grm+n+k—v+km], if m is even;
| Ran+n+gd(k+1) —v+ (k+ Dm+ 1]
- —[2qim + 71 + ¢k — v+ km], if m is odd and k is even;

[2qam + 13 + q%(lcﬁ- 1) —v+ (k+ 1)m]
\ —[2qmn+r+q¢*k—v+km+1], ifbothof m and k are odd.
((2q2m) + q%k+ q% +m+ry —2qm

-1 — g}k, if m is even;
2@m +@k+gi+m+r —2qim

—-n—g¢*k+1, if m is odd and k is even;
2qam + @Gk+ gt +m+ry —2qim
( —-n—-¢*k-1, if both of m and k are odd.
((2q2mp + q%k-i- q% +m+v—(k+1)q

—2qr — v+ kq — ¢k, if m is even;
_ 2+ @Gk+ g +m+v—(k+ g
") —2qgni—vt kg — k41, if m is odd and k is even;
2+ @k+ gt +m+uv—(k+1)g
\ —2qim —v+kg —gik—1, if both of m and k are odd.
(((kgy — kgl + g} + 1202 — 11q1) + (1202
—riq1+ kq1 — kg2) + m — g2, if m is even;
_ ) (k@ — kg + g} + maqr — @) + (12
- —riq1+ kg —k@g)+m—gqy+1, if m is odd and k is even;
(kg3 — kgl + ¢} + 1202 — 11q1) + (1202
. —ng+kq —k@)+m—gq -1, if both of m and k are odd.
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—Vv+rn@p —riqggtrn—n+q
+m — ¢z, if m is even;

—vt+rn@p-—rnqga+rn—n+q

IA

+m—qy + 1, if m is odd and k is even;
—v+n@p —rigitrn—n+q
\ +m-—-q —1, if both of m and k are odd.
L—v+@k+ ) —mg+m—m+m
=—v+rv—qn-—n+m

=—-qm—ri+m
-+ +m
<—(g+1)+m
<0.
Hence f(k+ 1) < f(k),forallm+1 < k< 4] —1.
Subcase 2: r = 0.

Then when m is odd and k is even, we have r, # k or gz # m. Sinceifr; = k
andgy; = m,thenv = kq; = kgz + g2 +m2 = mk+m+k,q =m+ 1+ ¢ € Z*.
Therefore we obtain k|m, a contradiction, since m is odd and k is even.

f(k+1) — f(k)

([2@am + 1+ g3(k+ 1) —v+ (k+ 1)m]
—R2arn+n+¢k—v+km], if m is even;
_ Rapn+n+g@k+ D) —v+(k+Dhm+1]
- —Ran+n+¢k—v+km], if m is odd and k is even;
[2qamp + T2 + q%(lc+ 1) —v+ (k+ 1)m]
. —Ran+n+g¢k—v+km+1], if both of m and k are odd.
(2qar2 + T2 + g3k + g3 + m —¢ik, if m is even;

(2g2r2 + 12+ g3k +q3 + m—qik+1, ifmisoddandk is even;

(2q2m + 2+ g3k + g3 + m—q}k— 1, if both of m and k are odd.

( (g3k—q?k+ g} + 22 — T1q1)
+7r2q2 + 12 + M, if m is even;
| (Bk—glk+ g} + g2 —1q1)
- +raqa+ 2+ m+ 1, if m is odd and k is even;
(3k—qlk+ g3 +mgq —miq)
\ +m@+mn+m-—1, if both of m and k are odd.
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—v+r@p+rv—(k+1)g+m+1, ifmisoddandk iseven;
—v+rqp+v—(k+1)ga + m—1, ifbothofmand k are odd.
r2q2 — kga + (m — q2), if m is even;

292 — kg2 + (m— @)+ 1, ifmisoddandk is even;

1292 — kg2 + (m — ¢2) — 1, if both of m and k are odd.
<0,sincers < k,g2 >m >0 and (r, # kor g # m).

{—V+Tzqz+u—(k+l)q2+m if m is even;

Hence f(k+ 1) < f(k).foralm+ 1< k < L5 - 1.
Lemma3.2. Letv,n, m be three integers,n > m+1. Ifn= | %], thenm = L£].

Proof: nis the quotient of v divided by m. Let R be the remainder of v divided
by m. Sov=nm+ R, where 0 < R < m.

Sincec0 < R<mandm+1<n0< R<nv=mn+ Rand0O < R<n,
hence m is the quotient of v divided by n. Thatis, m = [£]. 1

By using Lemma 3.1, we can obtain an upper bound of the minimum size of
critically m-neighbour-connected graphs.

Theorem 3.3. Let m be a positive integer. If G is a minimum critically m-
nelghbour-connected graph with order v, then [3mv] < |E(G)| < [+mv +
ymR). WhereR= v — | %] m, the remainder of the order v divided by m.

Proof: Let nbe an integer, such thatn > m + 1.

Let the order of each of G(m n)-graphs be v. Hence, g(m,n) =
[3(2QnRn + Ra+ Q2n— v+ nm)), where Q, = %] and R, = v — nQ,,.
By Theorem 2.2, G( m,n) is a class of critically m-neighbour-connected graphs,
hence |[E(G)| < g(m,n).

Ifn > [£], nisan integer, then n > £. We have nm > v. By the con-

struction of G(m, n)-graph, |C;| > m, forall i. Thus v = 377 |Ci| > mn, a
contradiction. Therefore, n < | £].

The function f(n) is a decreasing function of n, form+1 < n < %]. Hence
f(n) has the minimum value, when n = LZ].

ByLemma3.2,n= %] andn > m+ 1, we havem = |¥]. Hence Q, =
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4] =mand R, = v — nQy = v — nm = v — | % |m. The minimum value of

v
f(n) = f([;])
_ { 2mR, + Ry + m*n— v+ nm, if at least one of m, n is even;

2mR, + Ry + m?n—v+mnm+ 1, ifboth of m and n are odd.
2mR, + Ry + m*n— R, —nm

_ +nm, if at least one of m, nis even;
- 2mR, + Ry + m*n— R, —nm
+nm+ 1, if both of m and n are odd.

_ 2mR, + m°n, if at least one of m, nis even;
'{2mR,.+m 2n+ 1, if both of m and nare odd.

m(mn+ R,) + mR,, if at least one of m, n is even;

{ m(mn+ R,) + mR,+ 1, if both of m and n are odd.

mv + mR,, if at least one of m, nis even;

- { mv + mRn + 1, if both of m and n are odd.

Therefore whenn = |Z|,g(m,n) = 2f(n) = [2(mu+ mR)], where R =
Ro=v—|L&]m. |E(G)| < g(m,n) = [3mv+ tmR].

SmceG’ls an m- nelghbour-connected graph, m = K(G) < 6(G)[6], itis easy
to show that [$mv] < |E(G)|.

Since0 < R< m—1, %mu+ %mR < -;-mu+ %m(m— 1) = %m(u+m—l).
It follows that
Corollary 3.4. Let m be a positive integer. If G is a minimum critically m-
neighbour-connected graph, then [ mv] < |E(G)| < [3m(v+m—1)], where
v=|V(G)|.
Corollary 3.5. If the order of G, v, is a multiple of m, and G is a minimum
critically m-neighbour-connected graph, then |E(G)| = ri'ml/]
Proof: Since R = v — | £|m = 0, by Theorem 3.3, we obtain the result. 1
Example 5v = 72,m = 7,G is a minimum critically 7-nelghbour-connected
graph with order 72, then by Theorem 3. 3,252 = [{mv] < |BE(G)| £ [3my +
-mR] = 259.
Example 6 v = 32, m = 4,G is a minimum crmcally 4-nenghbour-connected
graph with order 32, then by Corollary 35, |B(Q)| = [§mv] =
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