A note on indecomposable Kirkman squares

E. R. Lamken¹

Institute for Mathematics and its Applications University of Minnesota Minneapolis, MN.

Abstract. A $KS_2(v; 1, \lambda)$ is called indecomposable if it is not isomorphic to the direct sum of a $KS_2(v; 1, \lambda_1)$ with a $KS_2(v; 1, \lambda_2)$ for some λ_1 and λ_2 which add to λ . In this note, we show that there exists an indecomposable $KS_2(v; 1, \lambda)$ for $v \equiv 0$ (mod 2), $v \geq 4$ and $\lambda \geq 2$.

1. Introduction

A Kirkman square with index λ , latinicity μ , block size k and v points, $KS_k(v; \mu, \lambda)$, is a $t \times t$ array defined on a v-set V such that

- (1) each point of V is contained in precisely μ cells of each row and column,
- (2) each cell of the array is either empty or contains a k subset of V, and
- (3) the collection of blocks obtained from the nonempty cells of the array is a (v, k, λ) -BIBD.

Necessary conditions for the existence of a $KS_k(v; \mu, \lambda)$ are established in [4]. These are shown to be sufficient for the existence of $KS_2(v; \mu, \lambda)$ with $\mu \geq 2$ in [4, 5]. A $KS_2(v; 1, 1)$ is a Room square of side v - 1 or a RS(v - 1). The existence of Room squares was completed in 1975, [6]; there exists a RS(v - 1) if and only if $v \equiv 0 \pmod{2}$ and $v \neq 4$ or 6. It is easy to construct a $KS_2(v; 1, \lambda)$ for $\lambda \geq 2$ and $v \geq 8$ by taking the direct sum of λ copies of a RS(v - 1). (λ copies of a RS(v - 1) are placed along the diagonal of the array and the other cells are left empty.) The remaining two small cases for $KS_2(v; 1, \lambda)s$, v = 4 and v = 6, were done in [9].

A $KS_2(v;1,\lambda)$ is called indecomposable if it is not isomorphic to the direct sum of a $KS_2(v;1,\lambda_1)$ with a $KS_2(v;1,\lambda_2)$ for some λ_1 and λ_2 which add to λ . W.D. Wallis conjectured in [9] that there exists an indecomposable $KS_2(v;1,\lambda)$ for all $v\equiv 0\pmod 2$. In this note, we show that there exists an indecomposable $KS_2(v;1,\lambda)$ for $v\equiv 0\pmod 2$, $v\geq 4$ and $v\geq 2$.

2. Preliminary definitions and results

Let $S = \{S_1, S_2, \ldots, S_n\}$ be a partition of a set V into n pairs. For $m \ge n$, we define a circulant $m \times m$ matrix on S, $M_m(S_1, S_2, \ldots, S_n)$, as follows. Place the pair S_i in cell (j, i+j-1) for $j=1,2,\ldots,m$ and $i=1,2,\ldots,n$ where the second argument is taken modulo m. The remaining cells of $M_m(S_1, S_2, \ldots, S_n)$ are left empty.

The following lemma on subarrays of $M_m(S_1, S_2, ..., S_n)$ will be important in our constructions.

¹This research was supported by a Postdoctoral membership at the Institute for Mathematics and its Applications.

Lemma 2.1. Let l be a positive integer, $n \le l < m$. Suppose L is an $l \times l$ array with the following properties. (1) L contains l copies of each pair S_i , i = 1, 2, ..., n. (2) Every element of V occurs once in each row and column of L. Then $M_m(S_1, S_2, ..., S_n)$ does not contain L as a subarray.

Proof: Let $M = M_m(S_1, S_2, \ldots, S_n)$. We try to construct a subarray L of M with the required properties. Since every element of V must occur once in each row and column of L, row i of L must contain the n nonempty cells of row i of M. Without loss of generality, we may suppose that the first n cells of row 1 of M are in L. Since the nonempty cells in column 2 of M must now be in L, S_1, S_2, \ldots, S_n in row 2 must also be placed in L. Continuing this process, we see that L must equal M.

We will also use Howell designs to construct indecomposable Kirkman squares. A Howell design of side s and order 2n, or more briefly an H(s,2n), is an $s \times s$ array in which each cell is either empty or contains an unordered pair of elements from some 2n-set, say X, such that

- (1) each row and column is Latin (that is, every element of X is in precisely one cell of each row and column) and
- (2) every unordered pair of elements from X is in at most one cell of the array. It follows immediately from the definition an H(s, 2n) that $n \le s \le 2n 1$. We note that an H(2n-1, 2n) is a RS(2n-1). The spectrum of H(s, n) was completed by D.R. Stinson in [8]. We will use the following existence result for H(2n, 2n+2).

Theorem 2.2. (Schellenberg and Vanstone, [7]). For any positive integer 2n, 2n > 2, there is an H(2n, 2n + 2); furthermore, there is no H(2, 4).

We will also use the existence of some (s,t)-incomplete Room squares ([2, 3]). An (s,t)-incomplete Room square is a Room square of side s which is missing a sub-Room square of side t. (The sub-Room square of side t need not exist.)

Theorem 2.3. (Dinitz and Stinson, [2], Dinitz, Stinson and Wallis, [3]). For all t = 3, 5, 7, and for all odd $s \ge 3t + 2$, there is an (s, t)-incomplete Room square.

3. Indecomposable $KS_2(4; 1, \lambda)$ and $KS_2(6; 1, \lambda)$ for $\lambda \geq 2$

In this section, we construct indecomposable $KS_2(v; 1, \lambda)$ for the two smallest cases, v = 4 and v = 6.

Lemma 3.1. For $\lambda \geq 2$, there exists an indecomposable $KS_2(4; 1, \lambda)$.

Proof: We use circulant matrices to generalize the constructions for indecomposable $KS_2(4;1,2)$ and $KS_2(4;1,3)$ in [3]. Define $3 \lambda \times \lambda$ arrays.

$$K_1 = M_{\lambda}(01, 23)$$

 $K_2 = M_{\lambda}(02, 13)$

$$K_3 = M_{\lambda}(03, 12)$$

The direct sum of K_1 , K_2 and K_3 is a $KS_2(4; 1, \lambda)$. We use Lemma 2.1 to see that it is indecomposable.

Lemma 3.2. For $\lambda \geq 2$, there exists an indecomposable $KS_2(k; 1, \lambda)$.

Proof: An indecomposable $KS_2(6; 1, 2)$ is displayed in [3]. We generalize the construction for the indecomposable $KS_2(6; 1, \lambda)$ for $\lambda \geq 3$. Let H be an H(4,6) defined on the set $\{0,1,2,3,\alpha,\infty\}$ where the missing pairs of the design are $\{0,1\},\{2,3\}$ and $\{\alpha,\infty\}$. The direct sum of λ copies of H and $M_{\lambda}(01,23,\alpha\infty)$ is an indecomposable $KS_2(6;1,\lambda)$. (Again we use Lemma 2.1 to see that the $KS_2(6;1,\lambda)$ is indecomposable.)

4. Indecomposable $KS_2(v; 1, \lambda)$ for $\lambda \geq 2$

We first generalize the Howell design construction used in Lemma 3.2.

Theorem 4.1. If $v \ge 6$ and $v \equiv 0 \pmod{2}$, $v \le 2\lambda$, then there exists an indecomposable $KS_2(v; 1, \lambda)$.

Proof: Let V be a set of v elements, $v \equiv 0 \pmod{2}$, $v \leq 2\lambda$ and $v \geq 6$. Let H be an H(v-2,v) defined on V (Theorem 2.2). Suppose the $\frac{v}{2}$ pairs which do not occur in H are $S_1, S_2, \ldots, S_{\frac{v}{2}}$. The direct sum of λ copies of H and $M_{\lambda}(S_1, S_2, \ldots, S_{\frac{v}{2}})$ is an indecomposable $KS_2(v; 1, \lambda)$.

Lemma 4.2. There exist indecomposable $KS_2(v; 1, \lambda)$ for $\lambda \geq 2$ and v = 8 and v = 10.

Proof (i) v = 8: By Theorem 4.1, there exists an indecomposable $KS_2(8; 1, \lambda)$ for $\lambda \geq 4$. An indecomposable $KS_2(8; 1, 2)$ is displayed in Figure 1 and an indecomposable $KS_2(8; 1, 3)$ in Figure 2. (These designs were constructed using starters and adders ([5]).)

(ii) v = 10: By Theorem 4.1, there exists an indecomposable $KS_2(10; 1, \lambda)$ for $\lambda \geq 5$. An indecomposable $KS_2(10; 1, 2)$ is displayed in Figure 3. Starters and adders ([5]) for an indecomposable $KS_2(10; 1, 3)$ and an indecomposable $KS_2(10; 1, 4)$ are listed in Table 1.

Theorem 4.3. There exists an indecomposable $KS_2(v; 1, \lambda)$ for $\lambda \geq 2$ and $v \equiv 0 \pmod{2}$, $v \geq 4$.

Proof: The cases v = 4, 6, 8 and 10 have been taken care of in Lemmas 3.1, 3.2 and 4.2 respectively.

Let $v \equiv 0 \pmod{2}$ and $v \geq 12$. For $v \geq 12$, there exists a (v-1,3)-incomplete Room square (Theorem 2.3). Let R denote this incomplete RS(v-1). Suppose the missing 3×3 subarray "RS(3)" is defined on the set $\{0,1,2,3\}$. R can be written in the following form.

$$R = \begin{bmatrix} A & B \\ C & E \end{bmatrix}$$
 where E denotes the missing RS(3).

1.0

∞0			15		24		36						
	∞1			26		35		40					
46		$\infty 2$			30				51				
1	50		$\infty 3$			41				62			
52		61		$\infty 4$							03		
İ	63		02		$\infty 5$							14	
		04		13		∞6							25
	24							56		∞3			01
		35					12		60		$\infty 4$		
			46					23		01		$\infty 5$	
				50					34		12		∞6
					61		∞ 0			45		23	
						02		$\infty 1$			56		34
13							. 45		∞2			60	

Figure 1 An indecomposable $KS_2(8; 1, 2)$

Figure 2 An indecomposable $KS_2(8; 1, 3)$

Let K_1 be the $\lambda(v-1) \times \lambda(v-1)$ array constructed by taking the direct sum of λ copies of R. K_1 contains a $3\lambda \times 3\lambda$ empty array K_2 ; the diagonal of K_2 contains the λ copies of E. Place an indecomposable $KS_2(4;1,\lambda)$ defined on $\{0,1,2,3\}$ in K_2 . The resulting array K is a $KS_2(v;1,\lambda)$. Since the $KS_2(4;1,\lambda)$ is indecomposable, K is indecomposable.

∞0						35		12		67				48			
23	∞ 1						46				78				50		
	34	∞2						57				80				61	
68		45	∞3										01				72
	70		56	∞4					83					12			
		81		67	∞5					04					23		
			02		78	∞6					15					34	
				13		80	∞7					26					45
1					24		01	∞8	56				37				
47	26								∞0							58	13
	58	37							24	∞1							60
		60	48						71	35	$\infty 2$						
			71	50						82	46	∞3					
				82	61						03	57	∞ 4				
İ					03	72						14	68	∞5			
						14	83						25	70	∞6		
							25	04						36	81	∞7	
15								36							47	02	∞8

Figure 3 An indecomposable $KS_2(10; 1, 2)$

We conclude with some remarks about the one-factorizations of λK_v ([9, 1]) formed by the rows and columns of a $KS_2(v; 1, \lambda)$. The indecomposable $KS_2(6; 1, 2)$ in [3] has the property that the one-factorization of $2K_6$ formed by the columns is indecomposable ([9]). We can construct an indecomposable $KS_2(v; 1, 2)$ with the property that the one factorization of $2K_v$ formed by its columns is also indecomposable for $v \ge 18$. We take the direct sums of 2 copies of a (v-1,5)-incomplete Room square (Theorem 2.3); then we fill in the empty 10×10 array with the indecomposable $KS_2(6; 1, 2)$ mentioned above.

A one factorization F of λK_v is called simple if it has no repeated one factors. Recently, J. Dinitz has constructed indecomposable $KS_2(2n; 1, 2)$ for $n \ge 6$ where the one factorization of $2K_{2n}$ formed by the columns is indecomposable and simple and the one factorization of $2K_{2n}$ formed by the columns is also indecomposable and simple, [1].

Table 1

Starters and adders for Indecomposable $KS_2(10; 1, \lambda)$ for $\lambda = 3$ and $\lambda = 4$

1. An indecomposable $KS_2(10;1,3)$ is generated by 9 9 \times 9 arrays. The arrays are arranged as follows:

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix}$$

$$A \quad \infty 0 \quad 12 \quad B \quad 57 \quad 38 \quad C \quad 46$$

$$\frac{0}{\infty 0} \quad \frac{1}{23} \quad \frac{0}{57} \quad \frac{1}{40} \quad \frac{7}{24}$$

$$D \quad 30 \quad E \quad \infty 7 \quad 25 \quad F \quad 16 \quad 48$$

$$\frac{4}{74} \quad \frac{3}{\infty 1} \quad \frac{1}{36} \quad \frac{0}{16} \quad \frac{1}{50}$$

$$G \quad 45 \quad 68 \quad H \quad 17 \quad I \quad \infty 0 \quad 23$$

$$\frac{1}{56} \quad \frac{2}{81} \quad \frac{1}{28} \quad \frac{3}{\infty 3} \quad \frac{5}{78}$$

2. An indecomposable $KS_2(10; 1, 4)$ is generated by 16 9 \times 9 arrays. The arrays are arranged as follows.

$$\left[\begin{array}{cccc} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ M & N & O & P \end{array} \right]$$

References

- 1. J.H. Dinitz, *Orthogonal 1-factorizations of the complete multigraph*, Proceedings of the IMA workshop in design and coding theory (to appear).
- 2. J.H. Dinitz and D.R. Stinson, *On the existence of Room squares with subsquares*, Contemporary Mathematics (to appear).
- 3. J.H. Dinitz, D.R. Stinson and W.D. Wallis, *Room squares with holes of size* 3,5, and 7, Discrete Math. 47 (1983), 221–228.
- 4. E.R. Lamken and S.A. Vanstone, The existence of $KS_2(v; \mu, \lambda)$: the main constructions, Utilitas Math. 27 (1985), 111–130.
- 5. E.R. Lamken and S.A. Vanstone, The existence of $KS_2(v; \mu, \lambda)$: special constructions, Utilitas Math. 27 (1985), 131–155.
- 6. R.C. Mullin and W.D. Wallis, *The existence of Room squares*, Aequationes Math. 13 (1975), 1–7.
- 7. P.J. Schellenberg and S.A. Vanstone, The existence of Howell designs of side 2n and order 2n + 2, Congressus Numeratium 24 (1980), 879–887.
- 8. D.R. Stinson, Some Classes of Frames and the Spectrum of Skew Room Squares and Howell Designs, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, Canada (1981).
- 9. W.D. Wallis, Some small Kirkman squares, Ars Combinatoria 27 (1989).