Improved bounds for the union-closed sets conjecture
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Abstract. It has been conjectured that for any union-closed set A there exists some
element which is contained in at least half the sets in A. This has recently been shown
to hold if the smallest set in A has size one or two, and also to hold if the number of sets
in A is less than eleven. It is shown that the smallest set size approach is unproductive
for size three. It is also shown that the conjecture holds for other conditions on the sets
in A, and an improved bound is derived: the conjecture holds if the number of sets in
A is less than 19.

1. Introduction

A union-closed set is defined as a non-empty finite collection of distinct non-
empty finite sets, closed under union. The following conjecture is rephrased from
(11

Conjecture. Let A = {Ai,..., A} be aunion-closed set. Then there exists an
element which belongs to at least [n/2]] of the sets in A, where

n/2 if niseven
[n/2] = { o

(n+1)/2  if nisodd
2. Minimal size 3
The authors in [2] showed that if there exists a set of size 1 or 2 in A, one of
its elements occurs in at least half the sets of A. However, for minimal size 3 it
is possible to construct a union-closed set A such that no element of the set of
minimal size occurs in half the sets in A. This does not of course disprove the
conjecture, but it does show that this approach is not immediately useful. Such a

case is the following:
A= {A],... ,A27}, with

A ={1,2,3} A ={1,6,7,8,9}

A2 ={1,2,3,6,7,8,9} Ay ={1,4,6,7,8,9}

A3 ={1,2,3,4,6,7,8,9} A ={1,4,5,6,7,8,9}
As={1,2,3,4,5,6,7,8,9} Ap={2,4,58,9}
A5={1,2,3,4,5,8,9} A20={2,4,5,6,8,9}
As=1{1,2,3,4,5,6,8,9} Ay =1{2,4,56,7,8,9}
A7={1,2,3,4,5,6,7} Ap ={3,4,5,6,7}

Ag ={1,2,3,4,5,6,7,8} Apn =1{3,4,5,6,7,8}

Ag = {6,7,8,9} A =1{3,4,56,7,8,9
A10={4,6,7,8,9} A25={1:214»5’6:7»8»9}
An ={4,5,6,7,8,9} Ax ={1,3,4,5,6,7,8,9}
Ap ={4,5,8,9} An ={2,3,4,5,6,7,8,9}
Ap =1{4,5,6,8,9}

A =1{4,5,6,7}

Ais ={4,5,6,7,8}
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Here each of the elements of the minimal set {1, 2,3} occurs exactly 13 times
in 27 distinct sets. (The conjecture still holds - for example, the element 4 occurs
in 23 of the 27 sets.)

A more restricted result is still possible here:

Theorem 1. The conjecture holds provided a minimal set of size three has non-
null intersection with all other sets.

Proof: Let A = {4i,...,A,} be union-closed with |4;| = 3 minimal such that
AINA; #0,i=1,2,... ,n Set A; = {1,2,3}. Fori=1,2,3 let z; be the
number of sets whose intersection with A, is {i}; let y1, y2, y3 be the number of
sets whose intersection with A4, is {1,2}, {1,3},{2,3} respectively and lett be
the number of sets which contain A;.

Nowt+zi+zo+Ta+y1+y2 +ys =n Ift+ 1 + y1 + y2 > n/2 then the
conjecture holds: assume otherwise. Thus z3 + z3 + y3 > n/2: we wish to show
thatt > z,.

Sincet > 1, we mayassume z; > 1. Let A;, A3 be any sets whose intersection
with A; is {2}, ordered such that |A2| > |A3]. Let z # 2 be an element of A4,
but not of A3. This implies A; U A, # A U As: hencet > z;.

Thus t + z3 + y3 > n/2 and hence element 3 is in more than half the sets.

3. Further restrictions on set sizes

For A = {4;,... As},setw; = 44|, 4 =1,...,n Assume A ordered such
thatw; < wy < ... < wy.

Theorem 3 in [2] shows that the conjecture holds whenever w; > w, /2. This
can be improved by the following result:

Theorem 2. The conjecture holds whenever w; + wy > w,.

Proof: Without loss of generality, assume A, = {1,... , w1}, 4, = {1,... ,w,}.
By Theorem 3 in [2] it is only necessary to consider the case where w; < w,/2:
create A’ = {Aj},...,A,} by adjoining w, + 1,...,2(w, — wy) to the sets
containing the element 1. Now w| = w, — w;, w, = 2(w, — w;), and hence the
conjecture holds for A’ (again by Theorem 3 in [2]) provided w} is still minimal.
Assuming this proviso, the conjecture must also hold for A since the additional
elements occur exactly as many times as does the element 1 in A.
The proviso will hold if wy > w, — wy: thatis, if wy + wa > wy.

Corollary. If nf.‘:lA; % 0 the conjecture holds whenever w, + Wwis1 > W

Proof: Without loss of generalAily, assume 1 € nf.;lA;. Adjoin as above the ele-
ments w, + 1,...,2(w, — w;) toall sets containing 1. Now w} = w}, /2 is still
minimal provided w, — w1 < Wk+1.
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4. Improved bounds on n

Theorem 1 in [2] shows that the validity of the conjecture for odd = leads to its
validity for n+ 1. In this section, assume A = {4;,... , A} for odd n, with |4, |
minimal, |A,| maximum.

Let B= {A1 UA;,i=1,2,...,n}. Let b equal the number of distinct sets in
B: since A, always occurs, b > 1. Let these sets be Ay, , ... , Ag,. Assume A,
arises r; times, j = 1,... ,b.

If b > (n— 1)/2 then the conjecture holds for A, for then A; is a subset of b
distinct sets in B (and hence in A) as well as of A; itself, a total of at least (n+ 1) /2
sets in A. It is thus only necessary to consider the cases b= 1,...,(n— 3) /2.

This technique allows us to improve the bound of 11 derived in [2] to 19, via
the following theorems.

Theorem 3. The conjecture holds for b < S.

Proof. Case b = 1: Here A; U A4; = A, fori=1,2,... n Thus there exists at
least one element common to each of the A; (not in A;), a total of n — 1 sets.

Case b = 2: Now A; U A; € {4k, A}, i=2,...,nfork; # 1orn
Since Ai, C Ag, there exists at least one element (not in A;) common to each of
these A;.

Case b = 3: Assume A, occurs r3 times. If either of r, r; is greater than
or equal to (n — 1) /2 then we are done, for this leads to (n— 1) /2 sets with an
element in common (not in A; ), this element also appearing in A,.

Assume otherwise. Now r, < (n— 3)/2,and hence

rn+r>(n—-1—-(n-3)/2=(n+1)/2.

Again, each A; giving A, or A, has an element in common: this element thus
occurs in (n+ 1) /2 setsin A.

Case b = 4: Let A, arise r4 times. If r; > (n—1)/2 foryj = 1,2,3
then the conjecture holds, since r4 > 1. Assume not: then each of r4 + v + 72,
T4 + T1 + T3, T4 + T2 + 73 is greater than or equal to (n+ 1) /2.

For the conjecture to be not satisfied, it is necessary that each pairwise intersec-
tion of Ay, , A, , A, be exactly A, since otherwise there would exist an clement
common to the A; leading to each of the pair and also common to those lcading
10 A,: atleast (n+ 1)/2 such.

Consider the three pairwise unions of Ay, , Ak, , Ak,. These cannot be any of
Ay, » Ak, Ay, nor can they be one of the A; leading to these via A; U A; (by the
intersection property). Thus each must be an A, or an A; leading 0 A,. Butif
two are A, or two are A; leading 10 A, their pairwise intersection contains more
than A;, a contradiction.

Case b = 5: Let A, arise rs times. Order Ay,,..., Ag, such that r; >
T2 > 713 > 14, SinCE T+ T2+ T3+ T4+ TS = n—1,1 +7m+ (rs/2) >
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(n—1)/2 and hence since rs > 1,71 + 2 + 15 > (n+ 1)/2. Similarly,
1+ 713+ 15 > (n+ 1) /2. By the same argument as in the previous case, for the
conjecture to not hold this necessitates Ag, N Ag, = A1, Ak, N Ay, = Ay

Consider Ay, U Ay, , Ax, U Ag,. These cannot be equal, since this implies
Ay, = Ag,. They cannot be any of Ay, , Ax,, A, Or an A; leading to these, by the
intersection property. Thus each must be one of Ay, A,, or one of the A; leading
to A,,. The last is impossible, since for the first union this implies

AjUA, UA, = A UAL, = A,

And similarly for the second.
Thus one must be Ay, , and one A,,.

Consider the case
Ak, UAy, = Ak,} with {Akl ﬂAk, = A
Ag, UAg, = A, A, NA, = A

This implies Ay, C As,, Ar, C Ai,. Butthen r; + r3 + 14 + 75 set have an
element in common (the A; leading to Ay, , Ax,, Ak, and A,). Now

rnm<(n=3)/4dandr +p+13+14+15=n—1

implies 2 + r3 + 14 + 14 > (n+ 1) /2, and thus the conjecture holds.

A similar argument covers the second case, where Ay, U Ay, = A, and 4;, U
A, = Ay, .

Notice that this proves the validity of the conjecture to n = 13 and hence to
n= 14 by Theorem 1 of [2].

Theorem 4. The conjecture holds for b > (n— 5)/2.

Proof: In the preamble for this section, it was shown that the conjecture holds for
b> (n—1)/2. Itis thus only necessary to examine the following two cases:
Case b = (n—3)/2. Assumer; > 7 > ... > . A; is a subset of itself
and of Ay, to A, : (n— 1)/2 sets. For the conjecture to be invalid here it is
then necessary that A; N A; = @ for A4; not one of these. Suppose A; U A =
A1 U Ay, = Ay, for some kj, Ay N A, = Ay N Ay, = 0. Then 4;, = A, : this
implies r; < 2. Butr; +...+ 7, = n—1 then implies 2 b > n— 1, a contradiction.
Case b = (n—5) /2. We seek an element occurring in (n+ 1) /2 sets. Already,
A; is a subset of itself and of Ay, to Ay,, atotal of (n— 3)/2 sets. If two more
can be found with an element in common, also in A, , then we are done.
ri+...+mp=n—1.8etr=max(r;,;=1,...,b). Then br > n— 1 implies
thatr > 3.
Suppose r > 5. Then the ordering in A can be rearranged such that A, U 4, =
AlUA3 = AiUAs = Al UAs = A U Ay, = Ay, allof Ay, Az, A3, Ay, As,
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Ay, distinct. No two of Ay to As can have null intersection with A, since this
would imply that they were equal: assume A, to A4 have non-null intersection
with A;. Let z be an element common to A, and A, : if we can find one more set
containing z then we are done. Now A, U A3, A; U A4 contain z and hence must
coincide with some set already containing z, and this can only be Ag,. But now
A, must be a subset of both these unions: A; cannot be a subset of A, since this
would imply A; = A, and hence A;, A3 and A4 have an element in common.

We may thus assume » < 4. Considering first the case r = 4, as above rear-
range A such that

AlUAy = AjUA3 = At UAs = Ay U A, = Ay,

Again, notwo of A;NAjz, AyNA3, AjNA4 canbe null, and no two of these inter-
sections can have elements in common without validating the hypothesis. Assume
the first two intersections non-null: as above this implies A; C Az U As.

Suppose there exists another r;-value of at least 3. Then for say As, Ag we
again have A; N As, A; N Ag not both null: we thus have (n+ 1) /2 distinct sets
with a common element. Hence a maximum r-value of 4 implies all others two
or less: a simple counting argumenton r; + ...+ r, = n— 1 shows this leads to
a contradiction.

We may now assume these ordered such that A; N A,, A; N A4 are not null.
But then 4; N A4 NA; must be null to invalidate the hypothesis, and also A, U A4
must be Ay, for some j: this implies A; must be a subset of A, U A4. But this
then implies no other r;-values are of size 3, and again a counting argument shows
this is impossible, leading as it does to a contradiction via6 + 2(b—2) > n— 1.

The conjecture is now valid forb < 5 andforb > (n—5)/2: thusupton = 18
by Theorem 1 in [2].
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