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ABSTRACT. Let X be a finite set of order mn, and assume that the points of X are
arranged in an array of size m x n. The columns of the array will be called groups.
In this paper we consider a new type of group divisible designs called modified group
divisible designs in which each {z,y} C X such that z and y are neither in the same
group nor in the same row occurs ) times. This problem was motivated by the problem
of resolvable group divisible designs with k = 3, X = 2, [1], and other constructions
of designs.

1. Introduction

1.1 Designs

Let X be a finite set of order vand 8 = {B; : i € I} be a family of subsets B; of
X called blocks. The pair (X, 8) is called a design.

1.2 Balanced incomplete block designs (BIBD)

Letv > k£ > 2 and ) be positive integers. A design (X, ) is called a balanced
incomplete block design (BIBD) B[ k, A, v] if
@ | X|=v
(ii) the blocks are of size k
(iii) every {z,y} C X is contained in exactly X blocks.

We shall use the following

Theorem 1.1. (Hanani [2]) Let A andv > 3 be positive integers. Necessary and
sufficient conditions for the existence of a BIBD B[3,\,v] are that \(v — 1) =
0 (mod 2) and \v(v —1) =0 (mod 6).

Let adesign (X, B) be given. A parallel class of blocks is a subfamily P C 8
of pairwise disjoint blocks, the union of which equal X. A BIBD B[k, \,v] is
called resolvable and denoted by RBI k, \,v] if its blocks can be partioned into
parallel classes.

1.3 Modified group divisible designs
We shall consider designs of the form (X, Y, P) where X is a finite set of points,
Y is a parallel class of subsets of X called groups and ‘P is a family of subsets of
X called blocks.

Let m, k, X and v be positive integers. A design (X,Y, P) is called a modified
group divisible design and denoted by MG D[ k, A\, m,v] if

M) |X|=v
(ii) |Gs| = mforevery G; € Y
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(iii) |Bj| = k forevery B; € P
(iv) |Gin Bj| < 1 forevery G; € Y and every B;eP
(v) every {z,y} C X such that z and y are neither in the same group nor in
the same row is contained in exactly ) blocks of P. (We may look at the
points of X as the points of an array of size m x nand then the groups of
(X,Y,P) are precisely the columns of A).

If in the definition of a modified group divisible design the condition (v) is
changed as follows (v') every {z,y} C X such that z and y belong to distinct
groups, is contained in exactly A blocks then the design (X, Y, P) will be called
a group divisible design.

1.4 Modified transversal designs

A modified group divisible design MG D[ k, A, m, km] is called a modified trans-
versal design and denoted by MT[ k, X, m], and a group divisible design GD[ k, A
m, km] is called a transversal design and denoted by T'[k, \, m].

Lemma 1.1. Letp and q be prime numbers and assume that ¢ > p. Then there
existsa MGDlq,1,q,pql.

Proof: Let X = Z; x Z,, then the required blocks are
<(0,0),(1,0),(2,2¢),(3,30),...,(¢-1,a(g - 1)) >
mod (—,p) =1,2,...,p—1.

’

Lemma 1.2. If there exists a Latin square of size n such that a;; = i, then there
existsa MT[3,1,n].

Proof: Let X = Z3 x Z,. Then the required blocks are
< (1,i),(2,]'),(3,a,-,-) >, 1#]
Lemma 1.3. There exists a MT[3,1,n] for every positive integern+ 2.

Proof: It is well known that for every n # 2 or 6 there exist two orthogonal
Latin squares A = (a;;) and B = (bij) of order n (see for example Hanani [2]).
Permute the elements of the two orthogonal Latin squares such that a; j=bhj=7j,
1 < j < n Itisclear that the two Latin squares are still orthogonal. Let X = Z3 x
Zy. Then the required blocks of MT[3,1,7] are < (1,7),(2, a;;),(3,bi5) >
2 <i<n 1< < n Tocomplete the proof of Lemma 1.3 we have to
prove the existence of MT([3,1,6]. Apply Lemma 1.2; we only have to prove
the existence of a Latin square of order 6 such that a;; = 1, and this is done below

1 3 4 6 2 5
4 2 51 6 3
6 1 3 5 4 2
2 56 4 3 1
36 1 2 5 4
5 4 2 3 16
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2. Pairwise balanced designs

Let v and ) be positive integers and K a set of positive integers. A design (X, 8)
is a pairwise balanced design B[ K, A, v] if
O |X|=v

(i) {|Bi|]: Bie B} C K

(iii) every {z,y} C X is contained in exactly )\ blocks of .

The set of all integers n for which a B[ K, 1, n] exists will be denoted by
B(K,1).

We shall use the following

Lemma 2.1. Hanani [2]: () If n =0 or1 (mod 3) thenn € B[{3,4,6},1]
(ii) foreveryn > 3 ne B(K,1) where K = {3,4,5,6,8}.

Assume there exists a T[4, 1, n] and remove (n — m) points from one of its
groups (where 0 < m < m) to get a GD[{3,4},1,{n,m},3n+ m]. Cal
the underlying pointset of this design X, so that | X| = 3n + m, and construct
GD[3,1,{2n,2m},2(3n+m)] on X x I, by taking for each group of the origi-
nal design anew group G x I and for each block B the blocks of GD[3,1,2,2|B]|]
constructed on B x I in such a way that it has groups {b} x I, forb € B. The
constructions of GD[3,1,2,6]and GD[3, 1,2, 8] are very easy, see Hanani [2].
The above discussion enables us to prove the following.

Lemma 2.2, There exists a B [{3, 5*} 1, v] for everyv = 5 (mod 6), where *
means there is exactly one block of size 5.

Proof: This lemma is a special case of a known result see [3]. The proof given
here is completely different. We distinguish two cases.

Case 1: v = 17 (mod18), v > 53. Since v = 5 (mod6) then (v — 1) is
even. On (v— 1) /2 points construct GD[{3,4},1,{n,5},3n+ 5] by removing
(n — 5) points from one group of a T[4, 1,n]. Simple calculations show that
n=1(mod 3). ConstructaGD[3,1,{2n,10},2(37+5)] on X x I, asabove.

Now to construct a B[{3,5*},1,v] add an extra point co to the groups of the
GD[3,1,{2n,10},2(3n + 5)], and on the groups of size 2n with the extra

point oo constructa B[3,1,2n+ 1] (Note that 2n+ 1 = 3 (mod 6)), and on 11

points construct a B[{3,5*},1,11]. (We shall see later thata B[{3,5*},1,11]
exists). The blocks of the G’D[3, 1,{27,10},2(3n+ 5)] and the blocks of the
designs constructed on the groups of the GD [3 ,1,{2n,10},2(3n+ 5)] with oo
are the blocks of the B[{3,5*},1,v].

Case2: v=5or1l( mod 18), v # 41. Inthis cae on (v—1) /2 points construct
aGD[{3,4},1,{n,2},3n+2] by removing (n— 2) points from one group of a
T'[4,1,n] n# 6, and the proof of case 2 now is the same as case 1. To complete
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the proof of Lemma 2.2 we have to prove the existence of a B[{3,5*}, 1,v] for
v=11,17,35,41.

Toconstructa B[{3,5*},1,11] let X = Zg U{oo;}, i=1,2,...,5, thenthe
required blocks are

<0,1,00; > <0,2,007 > <0,3,003 >
<2,3,001 > <1,4,00; > <1,5,003 >
<4,5,001 > <3,5,00 > <2,4,003 >
< 0,4,004 > <1,3,004 > <2,5 004 >
<0,5,005 > <1,2,005 > < 3,4,005 >

< 001, 002,003,004, 005 >

For B[{3,5*},1,17] see Hanani [2, p. 363].

For B[{3,5*},1,35] letX = Z;3U{o0;}, i = 1,2,...,17. On Z;3 construct
a RB[2,1,18]. There are precisely 17 parallel classes, to each parallel class
add a point co; and then construct a B[{3,5"}, 1, 17] on the 17 points oo;, 1 =
1,2,...,17.

For B[{3,5},1,41] take T[3, 1, 12] and add five points to the three groups
and construct a B[{3,5*},1,17] on each group with the 5 points.

3. Constructions

It is clear that the necessary conditions for the existence of modified group di-
visible designs are different from those of group divisible designs. The following
lemma will state the necessary conditions for the existence of modified group di-
visible designs.

Lemma3.1. Letm, \,v and k be positive integers. The necessary conditions for
the existence of modified group divisible designs are thatv = 0 (mod m), v >
km, m >k, M(v+1—m—n)=0(mod(k—1)) and \v(v+1—m—n) =

0 (mod k(k — 1)), wheren= v/m.

Proof: v = 0 (modm), v > km and m > k follow from the definition of
modified group divisible designs. Further, \(v + 1 — m — m)/(k — 1) is the
replication number of every point and Av(v + 1 — m — n) /k(k — 1) is the total
number of blocks.

The conditions of Lemma 3.1 are not sufficient for the existence of an M GD([ k,
X, m,v]. Forexamplean MGDI[4,1,6,24] does notexistbecause ifan MGD([4,
1,6,24] did exist, then the rows and the blocks of the MGD[4,1,6,24] arc the
blocks of a GD[4,1,6,24]. But it is well known that a GD[4,1,6,24] does
not exist [3].

The main purpose of this paper is to prove the following.
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Theorem 3.1. Letm, )\ and v be positive integers. The necessary and sufficient
conditions for the existence of amodified group divisible design MGD[3, ), m, v]
are that

v=0(modm), v>3m, m>3, M(v+1—-m—n) =0 (mod?2)

and \v(v+1—-—m—mn) =0 (mod6).

It is clear that to prove Theorem 3.1 we need only to handle the cases A =
1,2,3,6.
First we need the following lemmas.

Lemma 3.2, If there exist a B[ k,\,n] and a MT[k,1, m] then there exists a
MGD[k,)\, m, mn].

Proof: On n groups of size m construct B[ k, A, n] and then on each block, where
the points of the blocks are groups of size m, constructan MT[k, 1, m].

The above lemma can be generalized as follows.

Lemma 3.3. If there exists a pairwise balanced design B[ K, \,n) and if for ev-
eryk € K thereexistsan MG D[ r, 1, m, km] then there existsan MG D[r,\, m,
mnj.

Proof: The proof of this lemma is similar to the proof of the previous lemma.
Lemma 3.4. There exists an MGD[3,1,m,4m] for every m odd.

Proof: That m is odd follows from the necessary conditions. To prove this lemma
we distinguish two cases.

Case 1: m =1 or 3 (mod 6). In this case there exists a B[3, 1, m] by Theorem
1.1 and there exists a MT'[3, 1, 4] by lemma 1.3. From lemma 3.2, it follows that
there exists an MGD[3,1,m,4m] form =1 or3 (mod6).

Case 2: m = 5 (mod6). In this case there exists a B[{3,5*},1, m]. From
Lemma 3.3, we only have to prove the existence of an MGD([3,1,4,12] and an
MGDI[3,1,4,20]. Butan MGD[3,1,4,12] isan MT[3, 1,4] and this exists
by Lemma 1.3. :
Toconstructan MGD[3,1,4,20],let X = Zs x Z4. Then the required blocks
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are

<(0,0),(1,3),(2,2) > (mod(—,4))
<(0,0),(1,2),(3,1) > (mod(—,4))
<(0,0),(1,1),(4,3) > (mod(—,4))
<(1,0),(2,2),(3,1) > (mod(—,4))
<(1,0),(2,3),(4,1) > (mod(—,4))
<(0,0),(2,1),(3,2) > (mod(—,4))
<(0,0),(2,3),(4,2) > (mod(—,4))
<(0,0),(3,3),(4,1) > (mod(—,4))
<(1,0),(3,2),(4,3) > (mod(—,4))
<(2,0),(3,2),(4,1) > (mod(—,4))

Lemma 3.5. There exists a MGD(3, 1,m,5m] foreverym = 0 or1 (mod
3).

Proof: That m = 0 or 1 (mod3) follows from the necessary conditions. To
prove this lemma we distinguish two cases.

Casel: m =1 or3 (mod6). In this case apply Lemma 3.2 and then the proof
of this case is the same as case 1 of Lemma 3.4.

Case2: m =0 or4 (mod6). By Lemma 2.1 there exists a B[{3,4,6},1,m].
Now apply Lemma 3.3. According to this lemma we only have to prove the exis-
tenceofan MGDI[3,1,5,15],an MGD[3,1, 5, 20] andanMGD[3,1,5,30].
Butan MGD[3,1,5,15] is the same as aMT(3,1,5], which exists by Lemma
1.3,and an MGD[3,1,5,20] is the same as an MGD[3,1,4,20] and this de-
sign exists by Lemma 3.4. For an MGD([3,1,5,30],1etX = Zs xZsU{oos} i =
0,1,...,4. Then the required blocks are

<(0,0),(1,1),(2,3)> (mod(—,5)) <(0,0),(2,1),(4,2)> (mod(—,5))
<(1,0),(2,3),(3,2)> (mod(-,5)) <(0,0),(1,3),(3,1)> (mod (—,5))
<(2,0),(3,1),(4,4)> (mod (-,5)) <(1,0),(2,1),(4,3) > (mod (-,5))
<(0,0),(3,2),(4,1)> (mod (-,5)) <(0,0),(2,2),(3,4)> (mod (—,5))
<(0,0),(1,2),(4,3)> (mod(-,5)) <(1,0),(3,1),(4,2)> (mod (-,5))
<(0,0),(1,4), oo4> (mod(-,5)) <(0,0),(2,4), oo03> (mod (-, 5))
<(2,0),(3,3), 004> (mod(-,5)) <(1,0),(4,4), oo3> (mod(—,5))
<(0,0),(3,3), o01> (mod(—,5)) <(0,0),(4,4), o02> (mod(—,5))
<(2,0),(4,3), ocor> (mod(-,5) <(1,0),(3,4), ooz > (mod(—,5))
<(1,0),(2,4), o00> (mod(-,5))

<(3,0),(4,2), o0p> (mod(-,5))
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Lemma 3.6. There exists an MGD[ 3,1, m,6m] for every m odd.

Proof: That m is odd follows from the necessary conditions. Again to prove this
lemma we distinguish two cases.

Case 1: m = 1 or 3 (mod6). The proof of this case is the same as case 1 of
Lemma 3.4.

Case 2: m = 5 (mod 6). By Lemma 2.2 there exists a B[{3,5*},1,m]. From
Lemma 3.3, we only have to prove the existence of MGD[3,1,6,30]. But an
MGDI[3,1,6,30] is the same as MGD[3,1,5,30], and the construction of an
MGDI[3,1,5,30] was given in Lemma 3.5.

Now we are able to prove the following

Theorem 3.2. The necessary conditions for the existence of an MGD[k,\, m,
mn] are sufficient in the case A = 1 and k = 3.

Proof: We distinguish four cases.

Casel: n=1 or3 (mod 6). Apply Lemma 3.2. We have to prove the existence
ofa B[3,1,n] and an MT[3,1,m]. Buta B[3,1,n] exists by Theorem 1.1
and an MT[3, 1, m] exists by Lemma 1.3.

Case2: n=0 or4 (mod 6). In this case m should be odd. By Lemma 2.1 there
existsaB[{3,4,6},1,n]. FromLemma3.3, we have to prove the existence of an
MGD([3,1,m,3m],an MGD[3,1,m,4m] andan MGD[3, 1, m,6m]. But
an MGD[3,1,m,3m)] isan MT[3,1, m] and the other designs were shown to
exist in Lemmas 3.4 and 3.6 respectively.

Case 3: n = 2 (mod6). In this case m should be congruent to 1 or 3 modulo
6 (m = 1or3 (mod6)), so there exists a B[3,1,m] by Theorem 1.1 and a
MT[3,1,n] also exists for every n by Lemma 1.3. Now from Lemma 3.2,itfol-
lows that there exists an MGD[3,1, m, mn] form = 1 or 3 (mod 6). Notice
that in this case instead of “breaking” n into a pairwise balanced design, we broke
m.

Case 4: m = 5 (mod6). In this case m = 0 or 1 (mod3). By Lemma 22
there exists a B[{3,5*},1,n|. Now apply Lemma 3.3. We only have to prove
the existence of an MGD([3,1,m,3m] and an MGD[3,1,m,5m]. But an
MGD[3,1,m,3m]isan MT[3,1,m] andan MGDI[3,1,m,5m] was shown
to exist in Lemma 3.5.

Theorem 3.3. The necessary conditions for the existence of an MGD[ k, X, m,
mmn) are sufficient in the casek = 3 and \ = 2.

Proof: We distinguish two cases.
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Case1: n= 0 or 1 (mod 3). By Theorem 1.1 there exists a BI[3,2,n] and by
Lemma 1.3 there exists an MT[3, 1, n], so we apply Lemma 3.2 to getour result.

Case 2: n=2 (mod 3). In this case m should be congruent to O or 1 (mod 3).
Again by Theorem 1.1 there exists a B[3,2,m], and the proof of this case is the
same as that of case 1.

In order to prove a similar result in the case A = 3 we need the following lemma:
Lemma 3.7. Foreveryv >3, v € B(K,3) where K = {3,4,6}.

Proof: By Lemma2.1foreveryv > 3, v € B(M, 1) where M = {3,4,5,6,8}.
But5,8 € B(4,3). Hence forevery v > 3, v € [{3,4,6},3].

Theorem 3.4. The necessary conditions for the existence of an MG D[ k,\,m,
mn] are sufficient in the casek = 3 and ) = 3.

Proof: We distinguish the following cases

Case 1: nis odd. In this case there exists a B[3, 3,n]. From Lemmas 3.2 and
1.3 it follows that an MGD(3,3,m, mn] exists for every odd n and any m.

Case 2: mis even. In this case m should be odd. By Lemma 3.7 there exists a
B[{3,4,6},3, n] for every n. Apply Lemma 3.3. We have to prove the exis-
tence of an MGD[3,1, m,rm] where r = 3,4 ,6. Forr = 3 this is precisely
T[3,1,m]. Forr = 4,6 this was done in Lemmas 3.4 and 3.6.

Theorem 3.5. The necessary conditions for the existence of an M GD[k,\,m,
mn] are sufficient in the casek = 3 and ) = 6.

Proof: There exists a B[3, 6, n] for every n > 3 (Theorem 1.1). From Lemmas
3.2 and 1.3 it follows thata MG D[ 3,6, m, mn] exists for every n > 3 and any
m.

Now the proof of Theorem 3.1 follows from Theorems 3.2, 3.3, 3.4 and 3.5.
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