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Abstract. An extension of amethod of Hammer, Sarvate and Seberry is given. Asare-
sult, fromanOD(sy,82,... , ;) of ordernand aw(nm, p) anOD(ps1,psz,--- ,DSr)
of order nm(n + k) for each integer k > 0 is constructed.

1. Introduction

A weighing matrix of weight p and order nis a {0, 1, —1} matrix A of order n
such that A*A = AA! = pI,,, where A® is the transpose of A and I, is the identity
matrix of order n. An orthgonal design of order n and type (s1,52,...,5¢), S;
positive integers, is a complex n x n matrix X, with entries from {0, +z;,+z2,
..., %z, } (the z; indeterminates) satisfying X X* = (Y"1, s;z?) I. An orthgo-
nal design of order n and type (si,s2,... ,s,) Will be denoted by OD(m; s1, s2,
...,8,). Note that if every variable in such a design is replaced by 1, then one
getsa w(n,p), wherep = 37, si.

Hammer, Sarvate and Seberry [2] extended a result of Kharaghani [3] and con-
structed new ODs. In this note we extend their result even further and construct
new ODs. For the application of ODs and details refer to Geramita and Seberry
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2. The main construction
We will start with the following extension of Kharaghani [3, Lemma 1] and Ham-
mer, Sarvate and Seberry [2, Theorem 3.1].

Lemma2.1. IfthereisanOD(w; s1,s2,... ,S;) onthe variablesty,z2,... , Iy
and aw(nm,p) then there existnm maticesCy,Cra,... ,Cin,... ,Ci1,Ci2, ...,
Cin, - - :le yOm2,--+ s Crmn satisfying:

@) CaCl=0ifl#]
(i) 2;‘;1 Ciicfj = (T P8z} ) Tem.
Proof: Let A; denote the j*# row of the OD and By the k** row of the weighing
matrix. For 1 < i < mand1 < j < nletCyj = B}, ;1) % A;. Then
CaCly = (Blrngizty * A1) (Bjentiony X A})
= Bfini-1y Bjenti-1) X AlA]
_ { 0 il

(E;=l sk-""lzc) B;t'ﬂn(i—l) Bjiwi-ny ifl=7,
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because A is an OD(sy, s3,... ,Sy) on the variables z,z3,... , T,. Since Bs
are the rows of a w(nm, p), it follows from [3,Lemma 1] that

m n
E E B;-q»n(s‘—l) Bjeni-1y = plom.

i=1 j=1

Hence from above 3 17) 577 CijChi = (Y4 P53 ) Tom- 1

Theorem 2.2. If there is an OD(n; 1,53, ..., s;) and aw(mm, p), then there
is an OD(ps1,ps2, ... ,psy) of ordernm(n+ k) for each integerk > 0.

Proof: Let k > O be an integer. Let Ly, L3, ... , L, be Latin squares of order
n+ k. Replace n elements of L; by

Ci'l)Cizy'“ ;Cin

constructed in Lemma 2.1, and the rest by the zero matrix of order nm x n,
foreach i, 1 < 14 < m. Call the resulting matrix M;. Then the block matrix
[M1|M2| - |Mp] isan D(psi,ps2,... ,ps,) of order mn(n+ k). I

Corollary 2.3 [Hammer, Sarvate and Seberry]. Suppose there existsanOD(s; ,
82,...,8:), where Y i_, s; = w, of ordern. Then there exists an OD(s,w, sy w,
...,8w) ofordern(n+ k) fork > 0.

Proof: Letm = 1 and p = w in Theorem 2.2.

1 1 1 1
. a b 1 1 - -
Example 24: Leta = ,B = and £ = 1. Then
b —a 1 - 1 -
1 - — 1
n=2,m=2,s0,
a b b —a
a b b —a
Cll = a b )Clz = —b a 3
a b —-b a
a b b —a
_|—a -b _|=b a
Cn = a b and Cy = —-b a
—a -b b —a
1 2 3
LetL, =L, = [3 1 2}. Then for one choice
2 3 1
Cu Ciz O Can Cp O
M=]0 Cun Cn|,M= [ 0 OCn C'zz}.
Cn 0 Cy Cn 0 Cy
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Hence we get

Cih C2 0 Cu Cn O
[MiM2]=| 0 Cu C2 0 Cn Cn
Ca 0 Cu Cn 0 OCn
which isan OD(12;4,4). Note that the method of Hammer, Sarvate and Seberry
doesn’t give this design.

3. Some rectangular designs
In this section we will use a w(gq, p) in which g is not necessarily a multiple of n.

Theorem 3.1. IfthereisanOD(n; s1,s2,... ,S,) onthe variablesz,,z;,... ,z,
and aw(q,p) q > m, then there is a matrix B of ordernq x n*(m + 1) such that
BB'= (L1 psiz}) Ing.-

Proof: Following the line of proof of Theorem 2.3 we get d additional matrices,
where d is a positive integer such that ¢ = mn+ d, d < n. Add one more Latin
Square and fill d of its elements by the d additional matrices and the rest by the
proper zero matrix. |

Example 3.2: Let A = [z _ba],w

1 00
[0 1 0].SOq=3,n=2,m=l,
0 0 1

a b
d=1. ThenCy; = [O 0},012

0 0
[ b —a] , additional matrix = Cj3 =
0 0

0 0

00
[0 0]. Let My = My = [; %},then for one choice we have
a b

_Cun G2 Cis O
[Mlle]_[OIZ Cu O 013}'

Note that again as in Theorem 3.2 one can add an equal number of zero blocks to
each Latin square.

Theorem 3.3. IfthereisanOD(n; s1,82,-.. ,S;) onthe variablesz,,z;,... , T,
and a w(m,p), m < n, then there is a matrix C of order m* x mm such that
CC' = (L, psiz?) Iz -

Proof: LetCy; = BjxAj,1 < j < m,be the matrices constructed in Lemma 2.1.
Form a Latin square of order m and replace its elements by the above matrices. i
Example 3.4: Let

a a a a

A= a —a —a a ,B=[1 1]
a a —a -a 1 -
a —a a -—a
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—a - 1 2
ThenCu=[Z @ e a ,Clz=[a a a —aa]'LCtM=I: ],

a a a —a Q a
then for one choice the design is

a e a a a -—-a —-a a
[Cu Clz}_ a a @ a —-a a a -a
C2 Cu| |a —a -a @ a & a a
-a & a -a & a a a

Note that for @ = 1 this is a BIBD with parameters (4,8,2,1,0). This is not a
coincidence. In fact we have the following result of Shrikhande [7]. See also [4].

Corollary 3.5. Let 2,2t be the order of Hadamard matrices witht > s. Then
there is a BIBD with parameters (4 s* 4 st,2st —t,2s* — s, st — t).

Proof: Normalize the two Hadamard matrices and apply Theorem 3.3.

4. Designs constructed from two circulant block matrices

In this section we will first modify a recent result of the author in [5] and then use
Lemma 2.1 to construct new ODs.

Theoremd4.1. LetCy,C; ... ,Cy, H be matrices with entries of C; from {0 , +z;
+z3,...,+x,} such that:

() HisanOD(mly,l,,... ,l,) onthe variables y1,y3, ... , Y,
(ii) C.-C} =C;Ct=0ifi 47,
(i) 3 GiOf = TF CICi = (T sia?) I,
(ivy HC;=CiH,i=1,2,... k. Then thereisanOD(2nk +2m;2s),2s;,
328,200,210, ... ,21,) whichis constructed from two circulant block
matrices.

Proof: Let A, B be the circulant block matrices with the first row [H,C,C,,...

Cil and [-H,Cy,C,, ... ,Ck] respectively. Then the matrix _’;t ft is

the desired design. To see this, note that B = A4 — [2H,0,0,...,0]. Since
HC; = C;H for each 1, it follows that AB = BA. It is not hard to see that
AA'+ BB' = A'A + B!B =the circulant block matrix with the first row

[(Zzz,.y,?> I + (Ezs;zf) I,,0,0,... ,0] .
i=1 1=1

b
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Theorem 4.2. If there is an OD(n; 51,82, ... ,8y) and aw(n,p), then there is
anOD(2,2psy,2psa, ... ,2ps,) of order2n(n+ k+ 1) foreach integerk > 0.

Proof: LetCi, Cia,... , Cin be the matrices constructed in Lemma 2.1 from the
OD(m 81,52,-.. ,5,) and the w(n,p). Denote Cy; by C; and consider the ma-
trices C1,Ca,... ,Cn,--- ,Ck,y1In, Where Cpe1 = Cpu2 = -+ = Ck = zero

matrix of order n. Apply the preceding theorem. |

Remarks:
(i) Theorem 4.2 provide many new O Ds. For example, froman OD(4;1,1,

1,1), Theorem 4.2 provides OD(40+8k,2,2p,2p,2p,2p),p = 1,2,3,4

and k any integer > 0.
(ii) By applying recent results of the author in [6] and a method similar to the

above one can make more new ODs.
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