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1. Introduction.

It is well known that Latin squares and sets of mutually orthogonal Latin squares
(MOLS) are useful in the design of statistical experiments, see Denes and Keed-
well [3]. In [5] Hedayat and Seiden studied a number of properties of frequency
squares and orthogonal frequency squares and showed that these generalizations
of Latin squares, in which repetitions are allowed, are also useful in statistical
design theory.

A frequency square F(m A1, ..., Ap) Of order n is an n x n array consisting
of the numbers 1,2,..., m with the property that for each i = 1,...,m, the
number i occurs exactly ), times in each row and in each column. Clearly n =
M+...+\mandan F(m 1,...,1) frequency square is a Latin square of order n.
Two frequency squares Fi (n; A1,...,Am,) and Fo(m; p1, ... , bm, ) are said to
be orthogonal if upon superposition, each ordered pair (4, j) occurs exactly A; p;
timesfori=1,...,my; j=1,...,ma. Aset{Fi,... ,Fi} of t > 2 frequency
squares is said to be orthogonal if F; is orthogonal to F; whenever 1 #7.

In this paper we present a simple method for the construction of sets of orthog-
onal frequency squares in which the frequency vectors may be non-constant. Our
method involves making substitutions on the symbols within a set of mutually
orthogonal frequency squares (MOFS) to obtain a sct of MOFS with a different
frequency vector.

Because of the statistical properties of sets of MOFS, considerable attention has
been focused by a number of authors on the problem of constructing these sets. In
[11] Pellegrino and Malara showed that if for i = 1,... ,t the square F; contains
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m; distinct symbols, then the maximum number t of MOFS of order = is bounded
by

t
Yomi—t < (n-1)% )
i=1

If t satisfies the bound (1), then the set of MOFS is said to be complete.

To give a flavor of some of the constructions that are available in the literature,
the reader should consult the references in Mullen [10]. Many of these construc-
tions, which deal with squares which have constant frequency vectors, that is,
M1 = ...= )\, are based upon properties of statistical designs, and in particular
on symmetric factorial experimental design theory.

Several papers have been written concerning the problem of constructing sets
of MOFS with varying numbers of symbols. Using symmetric factorial designs,
Mandeli and Federer [8] discussed such complete sets of prime power order while
Lancellotti and Pellegrino [6] discussed such sets of composite order by using a
method of substitution. While the frequency vectors in both cases can vary from
square to square within an orthogonal set, each is constant for any given square.

2. Derived frequency squares.

Given two partitions A = {u1,u2,... 4k} and B = {X1,Xx2,...,2¢} of n
with £ < k, we say that A is a refinement of B if the set A can be partitioned
into £ subsets A;, Az,..., Ag such that if A; = {ui,ui,---, i, } then X; =
Wiy + i + .+, fori= 1,2, ... £ Altenatively we will describe B as being
coarser than A. For example if n = 6, A is the partition 2+ 2+ 1+ 1 and B is
the partition 3 + 3, then A is a refinement of B.

Hedayat and Seiden [5] introduced the concept of a derived frequency square
as follows. A frequency square F of type Fo (m; A1, A2,... ,Ag) is said to be de-
rived from the frequency square F of type Fi(m u1,p2,... ,us) if F> may be
obtained from F; by some mapping of the symbols {1,2,..., k} of F; onto the
symbols {1,2,...,£}. This definition implies that the partition {u1, 2, ... , 4k}
isarefinementof {\1, X\2,..., \¢}. Itis given in [5] that if two frequency squares
F) and F, are orthogonal then any two squares Fy and F5 derived respectively
from them must also be orthogonal. From this it follows that for all n > 2
and n # 6 a pair of orthogonal frequency squares with any combination of fre-
quency vectors will exist. Using the pair of orthogonal frequency squares of types
F(6;1,1,1,1,1,1) and F(6;2,1, 1,1, 1) displayed in [5] to derive other cases
the above observation can be extended to n = 6 provided both squares are not
Latin. Furthermore, if N(n) denotes the largest number of MOLS of order n
currently known, then there exist N(n) MOFS of type F'(m; A1,...,Ag) for any
partition Ay, \2,..., ¢ of n. A table of N(n) for n < 100 as of 1985 can be
found in Beth, Jungnickel, and Lenz [1, pp. 643-644] and for n < 10,000 in
Brouwer [2].
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Hedayat, Raghavarao, and Seiden [4] by the theory of statistical designs and
Mullen [10] by finite field theory, have shown the existence of complete sets of
(p* — 1) /(p*/i — 1) MOFS of type F(p®; p*i=D/i .. p*i=D/i) where p is a
prime and 1 divides s with s > 1. These complete sets can be used in several ways
to derive sets of MOFS with coarser frequency vectors.

Theorem 1. Forp prime and i a divisor of s, there exist (p* — 1)2/(p*/* — 1)
MOFS of type F(p*; c;p*=V/5, ¢y p?G=D/i [ cap®=V/%) where c; + c; +
viitCp=p andm # 1.

Proof: Starting with the (p® — 1)2 /(p*/* — 1) MOFS of type F'(p®; p*"=D/%, . ..,
p*ti=1/%) shown to exist in [4] and [10], we can derive a set with the same number
of MOFS with an arbitrarily selected coarser frequency vector by partitioning the
p*/* symbols into m subsets of sizes c1, ¢z, ... ,Cm-

As an illustration of Theorem 1,let p = 5 and s = 2 so that we are considering
squares with 25 rows and columns. Since there exist 24 MOLS of order 25, when
i = 1, we can construct 24 MOFS of type F\(25;¢1,¢2,... ,cm) Wherecy + ¢ +
...+ cpy is any one of the 1957 non-trivial partitions of 25. For example there are
24 MOFS of type F(25;8,8,4,3,2). If i = 2 we can construct 144 MOFS of
each of the following types by considering the 6 non-trivial partitions of 5.

Partition Frequency vector
4+1 (25; 20, 5)

3+2 (25; 15, 10)
3+1+1 (25; 15,5, 5)
2+2+1 (25; 10, 10, 5)
2+1+1+1 25; 10,5, 5, 5)
1+1+1+1+1 (25;5,5,5,5,5)

From (1) we note that in Theorem 1 the only complete set of MOFS arises from
the finest partition, that is, whenc¢; = 1 fori=1,... ,m.

In the construction from Theorem 1 each square of the initial set produces a
single square in the derived set. Therefore, one would wish to start with as large a
set as possible. This implies starting with as coarse a frequency vector as pos-
sible. For example, in deriving squares of type F'(64;48,16) we can obtain
a mutually orthogonal set of 1323 squares if we begin with a complete set of
F(64;16,16,16,16) squares; 567 from a complete set of F(64;8,8,...,8)
squares and 63 from a complete set of Latin squares of order 64.

In Theorem 1, we restricted = to the prime power case in order to begin with
a complete set of MOFS for some partition of n. The derivation of MOFS will
still apply in the non prime power case if we can find some initial orthogonal set.
There are several ways to obtain sets of MOFS in the non prime power case. We
may prove
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Corollary 2. Forn=p}'p}...pSr wherepl' <py <...<pyrandl1 <j<r,
there are (p}! — 1) (p' — 1)/ (p"* — 1) MOFS of type

F (Ap;’; Ac p;"(i—l)/i, Aczp;’(i_l)/i, . Acmp;’(i_l)/‘)

where i is adivisorof s;, A=TI7_ pi*,andci+ c2 +...cm = p; andm # 1.
k#j

Proof: Laywine [7] has given a construction in the non prime power case which

gives (py — 1) (pf — 1)/ (p}'* — 1) MOFS of type

P ( Ap;;; Ap;;u-l)/s,m , Ap;;u—n/a‘)

where A = l'Ik'= . py:. The result follows by starting with this set of MOFS.

In [9] Manfi’gli and Federer constructed sets of MOFS with non prime power
order by extending MacNeish’s theorem for orthogonal Latin squares. In partic-
ular their construction provides squares in which the frequency vector could vary
from square to square but was constant within a given square. Similarly in [6]
Lancellotti and Pellegrino provided a generalization of the Mandeli and Federer
construction.

If we wish to construct MOFS which have varying frequency vectors, the best
strategy is to use the more numerous coarser squares whenever possible. In par-
ticular we may prove

Theorem 3. Suppose s has divisorsig = 1 < 1} < i3 < ... < i = s. Then
there exists a set of MOFS of cardinalityZ;O Au(p*—-1)/ (p*/i=—1) consisting
of Ao(p* — 1) /(p*/*= — 1) squares of type

F (pst Cal ps(ia—-l)/ia’ Ca2 ps(ia—l)/i,’ L] Corj.p‘g("a—l)/ia)

where Ao + Ay ...+ Ay =p° — 1 andce + Caa + ...+ Caj, = P> fora =0,
1,...,k.

Proof: Partition a complete set of Latin squares of order p® into k + 1 subsets of
cardinalities Ao, A1,...,As. For «=0,1,... k construct A,(p® — 1)/(p’/‘°
—1) MOFS of type :

F(ps; pa(ia-l)/ia . ’ps(in—l)/i,)
from the subset with A, elements. Then use Theorem 1 to obtain the result.

Hedayat, Raghavarao, and Seiden [4] have shown that if F} = Fy(m; Aq,...,
Ap) and Fy = F(m;p1,...,pue) are frequency squares then Fy @ F5 is an
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F(mim; M pi1, ..., M\pig) frequency square where ® is the Kronecker product
of matrices. Furthermore if F; 1 F; and F5 1 Fy,then i @ F5, L F5 @ Fy. We
can combine this operation together with the earlier results to construct various
sets of orthogonal frequency squares in the non prime power case.

As an illustration of the effectiveness of Theorem 1 and Corollary 2 when used
in conjunction with the ® operation, we may build the following table for fre-
quency squares of order 225. In the table we will use the notation b° to represent
b,...,batotal of c times.

Table. Number of mutually orthogonal frequency squares.

Frequency vector Number Construction
(225;e1,... ,em), €1+ ...+ e =225, m>1 8 Reference [2]
(225;37) 24 Thm.1&®
(225;6%,3%) 24 Thm.1&®
(225;155) 32 Thm.1&®
(225;30%,155) 32 Thm.1&®
(225;603%,153) 32 Thm.1&®
(225;120,60,30, 15) 32 Thm.1&®
(225;45%,303) 32 Thm.1&Q®
(225;90,60,45,30) 32 Thm.1&Q®
(225;453,159) 32 Thm.1&®
(225;90,45,30%,152) 32 Thm.1&®
(225;309,15%) 32 Thm.1&®
(225,602,303, 15) 32 Thm.1&Q®
(225;303,15%) 32 Thm.1&®
(225;60,304,153) 32 Thm.1&Q®
(225;150,75) 32 Corollary 2
(225;753%) 32 Corollary 2
(225;180,45) 48 Corollary 2
(225;135,90) 48  Corollary 2
(225;135,452) 48  Corollary 2
(225;902,45) 48  Corollary 2
(225;90,453%) 48  Corollary 2
(225;455) 48  Corollary 2
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