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Abstract. Given a graph G and a positive integer k, a graph H is a k-Folkman graph
for G if for any map m: V(H) — {1,... ,k}, there is an induced subgraph of H iso-
morphic to G on which 7 is constant. J. Folkman (SIAM. J. Appl. Math. 18 (1970),
pp. 19-24) first showed the existence of such graphs. We provide here a new construc-
tion of k-Folkman graphs for bipartite graphs G via random hypergraphs. In particular,
we show that for any fixed positive integer k, any fixed positive real number and any
bipartite graph G, there is a k-Folkman graph for G of order O(|V(G)|**%) without
triangles.

Folkman [5] proved the following vertex partition result. For any graph G and
positive integer k, there is a graph H such that

for any map m: V(H) — {1,... ,k}. thereis a monochromatic induced copy
of G, that is, there is an induced subgraph G’ of H that is isomorphic to G
all of whose vertices are assigned the same colour under 7.

We write H —¢ G for such a graph H and call H a k-Folkman graph for G (for
various results on k-Folkman graphs, see [9], [3], [6], and for the poset analogue
(7D.

Several constructions are known for k-Folkman graphs (5, 9, 10, 8, 3, 4]. We
shall describe a new construction of k-Folkman graphs, via random hypergraphs,
for bipartite graphs G; in particular, we construct for each bipartite graph G a
k-Folkman graph without triangles that also has chromatic number k + 1; these
graphs have much smaller order than previous known constructions.

The Construction.

Let k be a fixed positive integer and G = (X,Y, E) be a bipartite graph (our
notation for a bipartite graph is a triple, with the first two components being a
partition of the vertex set and the final component being a set whose restriction to
the cartesian product of the first two sets is the edge set). We construct a graph
F' (of small order) such that F —} G in two steps. The key to both of these is
the existence of certain hypergraphs. In the proof of the following proposition we
will often make use of standard bounds for binomial coefficients (c.f. [2, p. 255]).
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Proposition. Let H be a hypergraph on vertex set Vi U...U V; (|V;| = n for all
i=1,...,t=|nd] forsome fixed§ > 1) with M = |n J edges (for some fixed
£ > 1 ) whose edges are chosen randomly from then' edges e such that|eNV; |=1
foralli. Let C be the following property (for fixed real numbersp,r > 2 ):

For any set S C E(H) of size | % |, there are at least (1- 1)t of the

Vi's that have every vertex on an edge of S.
Then almost every hypergraph H has property C.
Proof: If C fails, then there is a set of L = |_M 2] edges and Q = | ] vertices in
distinct V;’s such that none of these vertices and edges are adjacent. These vertices
can be chosen in (Q) n? ways, and the edges can be subsequently chosen in at
most ("7 (1) ways. Since (&) n@ < 2tnt/2 and (V) (7))
< eMntM(21)QLl (M_IL) —, we have (for n sufficiently large)

L -1
Prob(C) < 2tni/2eMptM n-1)° ! w
- n LL(M - L)M-L\ M

L M
< otp/mm (M1 Q 1 a2 (M
- n LL(M - L)M-L 2
<2t+1nteu<"—l>QL MM
B n (Bt M

n
<exp {Cm‘s log n+ Conf + Cynd*e! log (n— 1 ) }

n
< exp{Cin’ log n+ Cynf — Cyn®*s"1}
=o(1)
(here all C;’s are positive constants). Thus almost every hypergraph H has prop-
erty C. 1
Returning to our problem, let |X| = nand |[Y'| = m; we may assume n > m
and that n is sufficiently large. Let X = {2!,...,z"}. We take a hypergraph H
as determined in the proposition above with p = 4k and r = 2 k, and form a new
bipartite graph G = (X!, Y, E') such that
(i) Y'! is the disjoint union of ¢ = |_n5J copiesof Y,sayYi U...UY5;
(i) X' = E(H);
(iii) For h € X' = E(H) and i € {1,...,t},if h NV is the jth vertex of
Vi, we join h to precisely the image of the neighbourhood of z/ in the ith
copy of Y.
Then G! has the following property:
(*) For any X' — {1,...,k} and for any colour class C with |C|
> [&IX!|), there is a subset Z C C such that for some 1 < i < t,
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the bipartite subgraph (Z,7;, E') induced by Z and Y; is isomorphic to
G.
This follows from the proposition, since if Z’' C C and |2'| = | 4 |X|] = | ],
there is an 1 such that Z' meets every vertex of V; (the proposition in fact states
much more). Let Z C Z' be a set of n edges such that every vertex of V; lies on
an edge of Z. By construction, (Z,Y;, E') ¥ G. Note that [Y'!| = m|n®] and
|X!| = |n].

We now iterate the process with X ! in the place of Y to form G2 = (X2,Y? =
X{u..UX,, E%), where s = ||[Y¥] = [(m|n®])¥] and |X?]| = ||V']
= [(m|n])¢] (here 8, &', € and &' are fixed real numbers greater than 1). Then
G? has order [(m|n®])?] || + [(m|n®])¥]. Moreover, we now show G*
satisfies the following:

(++) For any map m: V(G?) — {1,...,k}, if C; and C, are, respectively,

colour classes of X? and Y2 of orders at least | | X2 || and | - £|Y2],
then there is an induced copy of G in the induced subgraph (X NG, Y2 N
Cy, E?) of G2.
Note thatas |C1 | > | Z|X?|], by the proposition there are at least (1 — 2)sof the
copies of X1, say X1,..., X} (g = [(1— 5)s]) such that (X2 N Cy, X}, E?)
contains an induced copy of G!. Now |C2 N X}| > |771X}|) for some i €
{1,...,q}, since otherwise

((1 - F)s+ D|X!

G (X]uU...uX))|<

4k
and s
G2 — (X} u...UX)I < o 1X,
s0|Ca| < XY (3 — & + &+ 3) < 341X, a contradiction as |C;| >

4§. .ﬂxl |]. Now (X2naC, X}, E?) contains an induced copy of G!, and from
(x) there is an induced copy of G contained in (X% N C1,Y? N Cy, E?).

Now we choose 8, &', € and ¢ > 1 such |[X2| = |Y'2]|. We have assumed

n > m, so by increasing the order of G (by embedding G in a larger bipartite

2
graph) we also suppose n= m. Wetake § = & = ¢ > 1 and &' = £2€ 10 get

12| = |(nln]) ) and [Y2| = |(nl#])%)- 7). Then |V (G?)| < 20 2.
X? and Y'? are very close in order, so we add in points to get sets X2 D X? and
2 5 Y2 such that | X2| = [72| = |n"*2¢] (both | X?| — |X?| and |¥2| - V2|
are at most O(n€**€)). We extend G2 10 G, on X2 and ¥'2. It is not hard to see
that (+%) holds for G, and C; and C, being largest colour classes of X% and ¥2
respectively as well (since |Gy N X2| > - 11X2| > | &|X?|) and |G NY?| >
o ¥V
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To complete the construction of the k-Folkman graph for G, we take a fixed
(k+1)-chromatic graph H ., that has no triangles (such graphs are known to exist
by various means — see Sachs [11]), replace each vertex v by an independent set
A, of size [nfz"zfj ,and form a graph F} on vertex set U{A,: v € V(H+1) } such
that for every edge uv of Hy.1, the subgraph induced by A, U A, is isomorphic
10G,. fmV(F) — {1,...,k} is any map and C, is a largest colour class
in A,, then for some edge uv of Hs1, 771(Cy) = 7~1(C,). From (xx) we
conclude there is a monochromatic induced copy of G in colour class 7= (C,).
Thus F, —} G and Fy has order O( e +2¢) for all sufficiently large bipartite
graphs G of order n+ m < 2n. Clearly, F; has clique number 2 and is (k + 1) -
colourable, so we have shown the following.

Theorem. For any fixed number k of colours, any fixede > 0 and any bipartite
graph G, there is a k-Folkman graph Fy for G of order O(|V (G)|**¢) that has
cliqgue number 2 (and moreover is (k + 1) -colourable).

We remark that a k-Folkman graph with small clique number have been con-
structed for any graph G by a number of methods [5, 8, 9, 10]; however, even
for bipartite graphs G, these graphs have order at least exponential in |V (G) | for
fixed k > 3, while our graphs are of order polynomial in |[V(G)|. For k = 2,
there is a construction in [8] that produces for bipartite graphs G a 2-Folkman
graph with clique number 2 of order |V (G)|*, but our result here is still an im-
provement. It is still of interest to determine whether one can construct for any
graph G a k-Folkman graph of reasonably small order that has the same clique
number as G. In [4] we construct, for each fixed & > 2, k-Folkman graphs of
order O(n? log2 n) for any graph G of order n, but the constructed graphs do not
necessarily have small clique number.
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