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Abstract. In a \-design D, the points 1,2, ... ,n are divided into two classes with
replications r; and r;, respectively. Forany 1 < 4, j < n, let r;; be the number of the
blocks containing { and j. It is proven that D is type-1 iff for any i, j (1 # /) in the
same class, r¢; depends only on the class.

1. Introduction.

A \-design is a family of subsets S;,S3,...,S, of {1,2,...,n} suchthat|S;|
=k >XA>0,(1<i<n),|SiNSi|=X(1<1i# ;< n),andnotall k;’s are
equal. In terms of the point-block incidence matrix, it is equivalentto an n X n
(0, 1)-matrix A such that

A'A = 2]+ diag[k1 = ),... ko — ).

Ryser [8] and Woodall [10] proved that such an A has precisely two row sums ry
andry (r1 > rp) withr; + 7, = n+ 1. Let AA! = (ry;). 1 is said of class 1
(class 2) if Tis = T1 (T,‘,‘ = 7‘2) .

The only known examples of \-designs are of type-1, namely, obtained from
(v, k, \')-designs by complementing with respect to a fixed block. It was con-
jectured that all \-designs are of type-1. The conjecture has been verified for
1 < X < 9 ([21,141,[5],[6],(8]) and for all prime values of X\ ([9]). On the
other hand, work has also been done to seck characterizations of type-1 A-designs
([11,[31,[77). The following two characterizations are in terms of r;;:

Theorem 1.1. (Kramer [7]). A \-design is type-1 iff ry; (i # j) depends only
on the classes of i and j.

Theorem 1.2. (Bridges [3]). A \-design is type-1 iffr;; = X for all pairsi,j of
different classes.

Here we prove an improvement of Theorem 1.1: “A X-design is type-1 iff for
any 1,7 (i # ) in the same class, r;; depends only on the class.”™

The notations and most of the basic results used in this paper are from (2] and
[8].
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2. The characterization.

For any X-design A, we always assume that its first e; rows have row sum T1, the
remaining e; rows have row sum r, .

Lemma 2.1. Let A be a )\ -design, and

E, E
t_ 1 2
A4 _[Fl Fz]
where E is of size e; x ey, Fy is of size e; x ey. If one of Ey and E, has

constant row sums, so does [ E\, E;). Same is true for[ Fy, F;].

Proof: Let A = (a,;). Without loss of generality, assume E| has constant row
sums. Then for any 1, j of class 1,

a“ki + ...+ Ct,'“k:l = a,-lk'l + ...+ ajnk;.

Sinceaji + ...+ aim=T1=aj1 + ...+ ajp, and k! = 2etD—kn we pave
] j m o1

ank + ...+ a;,‘k,. = aﬂkl + ...+ ajnkn

which means [ E;, E,] has constant row sums. [}

Theorem 2.2. A \-design A is type-1 iff for any i, j (i # j) in the same class,
ry; depends only on the class.

Proof: The necessity is obvious. We only prove the sufficiency. Ignoring the
trivial case n = 2, we can assume n > 2. Since

r_|E1 B
A4 _[Fl Fz}

where E| and F; are of sizes e; x e; and e; X ey, and have constant row sums,
by Lemma 2.1 and Theorem 8 of [7], A has two column sums. Write A as

_lA1 B
4[5 5]

where A; and B, are of sizes e; x f) and ey X f5, [A;, B1],[A;, By] have row
sums r; and r;, ﬁ;] , [g;] have column sums k; and k, (k; > k3), A;, Az, By,
B; have column sums ki, kf, kj, k3. Clearly, A,, B;, A2, B, have constant row
inner products, say A1, A2, A3, As.

Ifer # ez or fi # fa, one of Ay, A,, By, B;, say A, has more rows than
columns. Hence, A; = 0 or J. Then ry; is constant for all 1, j of different classes.
By Theorem 1.1, A is type-1.
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Therefore, it is sufficient to eliminate the case “e; = ez = fi = o = 3”. In
this case, one can find that

a 201+ p)2—2p
n= 21 . 3.1

Since A;, A;, By, B, are all symmetric designs, and A1 + A3 = X = Az + Ag, We
have

ki(ki—1) = (;—1))\;, i=1,2 (3.2)
kr(kr—1) = (;—1)()\—>\.~), i=1,2. (33)

Adding (3.2) and (3.3), we have
KK, — 1) + kf(kf—1) = (§-1>,\, i=1,2. (3.4)

Using kj = 2=k g = eh=XptD), and (3.1) in (34), we have

k? —(n+ Dk + M1+ +(p=1D2(1+p+p®)]1=0, i=1,2.

(0* +1)?
Solve to get
k= Llne1+ 22 /o D2+ ax (3.5)
1=2 " pP+1 P P :
-1 L=l - Dr+ar
k2—2[n+1 T (p—DZ+4xp|. (3.6)

Letp = ¢, where a, b € Z (the set of integers), (a, b) = 1. Then

;—1%\/(,)_1)2+4x =;2)—T:2\/(b—a)2+4>\ab GB.7)

is an odd integer. We claim b — a is odd. Otherwise, both a and b are odd. Since
a? + b? = (b—a)? + 2ab, we have 4 J (a? + b*). Then the right side of (3.7) is
even. Contradiction. Now by (3.7), 30 < z € Z, such that

(b—a)? +4Xab=22 (3.8)

and
(a? + b))z (3.9)
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(since (b — a,a? + b?) = 1). Multiplying (3.8) by 22, we get
22(b—a)? + 422a%8% = (22 —2)ab)2.

Hence 3z,y € Z,z >y > 0, such that

2(b—a) =z* — ¢?

2Xab=21zy
22 —2xab=z%+¢?

or

z=zT+y
-
" ab

b—a=z—y.
Now we can express n, k; — X, k; — ) in terms of a, b, z, y:

_2zy(a+b)?  2ab
" ab(a? + %) a? + b2

k2 =)= ya(:: 7
Hence,
k= 50— (k- 2) = a(i(fzf)[afzfia
b=~ Do (k= 0] = a(i(fzaﬁ;fiylzy
By (3.2),

1 ! 1 ! !
A2 — A = (%—_1)-[/62(’% =1 —ki(k — 1]

_ ab(a+ b)(z+ y)(2zy — ab)
" (a? + B)[zy(a + b)% — ab(a® + B2 + ab)]

€EZ.
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Multiplying by (a + b), we have
ab(a + b)2(z + y)(2zy — ab)
(a2 + b2)[zy(a + b)2 — ab(a? + b? + ab)]

_ ab(z+y)[2zy(a+ b)? — aba+ b)?]
" (a? + B®)[zy(a + b)? — ab(a? + b? + ab))

_ 2ab(z + y) + ab(z + y)[2ab(a? + b + ab) — ab(a + b)?]

a? + b2 (a2 + b2)[zy(a+ b)2 — ab(a2 + b2 + ab)]
_ 2ab(z+y) a?b?(z +y) cz
T a2+ b2 zy(a + b)2 — ab(a? + b2 + ab) :

But 228§(=9) ¢ Z by (3.9), hence,

a?b?(z+y)
zy(a + b)2 — ab(a? + B2 + ab)

€EZ.

Therefore,
zy(a+ b)% — ab(a® + b + ab) < &*B*(z + y)

which implies

—a)%(a+ b)? + b)*
(=+9) [z: y(a+b)2_azb2 < ab(02+bz+ab)+(b a)4(a+ ) = 4 ) .
By (3.9), z + y > a? + b%. Then the above inequality implies
2 2 (@t D) (a+h)?
(a“ + b°) Tz < 2 )
Contradiction. .
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