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Abstract. The problem of recognizing if a configuration theorem is valid in a given
class C of incidence structures is equivalent to the problem of deciding, for an arbitrary
finite incidence structure I, if I is embeddable in some incidence structure in C.

Evans proved that the word problem is solvable for a given variety of universal
algebras if and only if there exists an algorithm to decide, for any finite partial
algebra A, if A can be embedded in some algebra of the variety [1]. It is shown
below that the problem of deciding the validity of configuration theorems in a
given class of incidence structures can be approached in the same spirit.

Anincidence structure I is atriple (V, B, R), where V = V(I) and B = B(I)
are sets (the sets of points and lines), and B = R(I) is any subsetof V x B, called
the incidence relation. For (P, L) € R we shall also write P € L. No restriction
will be made to finite sets, unless explicitly stated. The members of V and B are
called the elements of I. If no two distinct points are incident with more than one
line, then I is a partial projective plane (called configuration in Hughes and Piper
(2]).

Isomorphism of incidence structures is defined in the obvious way. An inci-
dence structure (V, B, R) is a substructure of (V',B',R) if V C V', B C B’
and R = R' N (V x B). An incidence structure I is embeddable in I' if it is
isomorphic to some substructure of I'. Given a class C of incidence structures,
we say that the embeddability problem is solvable for C if there is an algorithm to
decide, for any finite incidence structure I, if there exists a member I’ of C such
that I is embeddable in I'.

We construct a formal language for incidence structures. Let {p;,pz,... } and
{£y,£,,...} be two disjoint countably infinite sets of symbols, called p-variables
and £-variables. An atomic formula is an expression of the form p; = p;, 4;
={;,orp; € £;. An open sentence is a formal expression obtained by combining
atomic formulas by means of the propositional connectives & (and, conjunction),
v (or), — (not, negation), = (implies). For negations of atomic formulas we shall
write p; # p;, & # £; and p; & £;. A particular class of open sentences are the
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configuration theorems of Marshall Hall, introduced in [4] in a less formal way.
Formally, a configuration theorem is an open sentence of the form

(a1 & ...& ay) =>p;‘€£)',

where oy, ... , &, are arbitrary atomic formulas or negations of atomic formulas.
As noted by Marshall Hall, the theorems of Pappus and Desargues can be writ-
ten as configuration theorems. An interpretation of the variables in an incidence
structure [ is a function assigning to each p-variable a point of I and to each £-
variable a line of I. Given an interpretation in I, each atomic formula becomes
true or false, and hence each open sentence becomes true or false. An open sen-
tence 7 is valid in I if it is true for every interpretation of the variables in I. For
example, the theorem of Desargues is valid in every projective plane coordinatiz-
able over a skewfield. Generally, given a class C of incidence structures, 7 is said
to be valid in C if it is valid in every structure I belonging to C. We say that the
validity problem for open sentences in C is solvable if there is an algorithm to de-
cide, for any open sentence T, if 7 is valid in C. If such a decision algorithm exists
for configuration theorems, then we say that the validity problem for configuration
theorems in C is solvable. This is a priori a weaker condition.

Let a finite incidence structure I be given, with distinct points P, ... P, and
distinct lines Ly,...L,,. Foreachi,j,1 < i < j < n consider the formula
pi # pj. Alsoforeachi,j,1 < i < j < m, consider ; # £;. Let § be the
conjunction of all the p; # p; and &; ¥ £;. Further, for each ( P;, L;) € R(D),
consider the atomic formula p; € £; and for each (P;, L;) ¢ R(I), consider the
formula p; ¢ £;. Let p be the conjunction of all the p; € £; and p; ¢ £;. Then p
is the conjunction of nm atomic formulas or negations of atomic formulas. Also
& is a conjunction of negations of atomic formulas. Let us call the open sentence
(6& p) the descriptor of I. The negation of the descriptor is also an open sentence.
We can now observe that if I’ is another incidence structure, then I is embeddable
in I’ if and only if the negation of the descriptor of I is not valid in I'.

The following is fairly obvious, but shall be useful:

Proposition 1. It is decidable, for any open sentence T and any finite incidence
structure I, if T is valid in I.

Proposition 2. Let C be any class of incidence structures and let T be an open
sentence containing n distinct variables. Then T is valid in C if and only if it is
valid in every finite incidence structure I having at mostn elements and embed-
dable inC.

Proof: Without loss of generality we can assume that the variables occurring in 7
are y,... ,T,. Assume 7 is not valid in C. Then there is an interpretation of the
variables in some incidence structure J in C, assigning elements Z; of J to z; for
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each 1 < i < m, under which 7 is not valid. Let I be the restriction of J to the
elements T, ... ,T,. Clearly 7 is not valid in I.
The converse is obvious. 1

Proposition 3. Let C be any class of incidence structures. If the embeddability
problem is solvable for C, then the validity problem for open sentences in C is
solvable.

Proof: Assume that the embeddability problem is solvable. Let 7 be an open sen-
tence containing n distinct variables. Construct all finite incidence structures with
at most n elements. For each of them decide if 7 is valid in it, and let I;,... , Ix
be those for which the answer is no. By assumption we can determine which I
are embeddable in C. Then 7 is valid in C if and only if none of I},..., I is
embeddable in C. [ |

Let N be the set of non-negative integers. A subset S of N2 is recursive if
there is an algorithm to decide, forany (z,y) € N 2 whether (z,y) € S. Foran
arbitrary set S C N?2, let us define S = {(z,y) € N2: 3(a,b) € S,z < a,
y < b}. Sis called hereditary if S = S. We shall need the following lemma. The
proof uses some elementary facts about recursive sets that can either be discovered
by the reader or found in Rogers [8].

Lemma. Every hereditary subset of N* is recursive.

Proof: The claim is obvious if S = N2 orif § is finite. Assume that S # N? and
that S is infinite. Let

Si={z€N: VbeN 3IJy>b(z,y) €8}
S;={yeN: Va€N 3Fz>a(zy) €S}

Since S # N2, both S} and S, must be finite. Also T = SN(N\S1) x (N\S2)
must be finite. We have S = (S x N) U(N x S, ) UT. From the finiteness of S,
S, and T it follows that S; x N, N x S and T are all recursive. Consequently
their union S must also be recursive. 1
Borrowing from the notation of graph theory, let K, , denote an incidence
structure with n points, m lines and such that all points are incident with all lines.
For any class C of incidence structures, the set of pairs (n, m) such that K, is
embeddable in C is a hereditary subset of N2, and therefore it is recursive. This
means that it is decidable, for any n, m, whether K, ,, is embeddable in C.

Proposition 4. Let C be any class of incident structures. If the validity problem
for configuration theorems in C is solvable, then the embeddability problem is
solvable for C.

Proof: Assume that the validity problem for configuration theorems in C is solv-
able. Let a finite incidence structure I be given, with distinct points Py,... , P,
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and distinct lines Ly, ... , Ly,. If all points are incident with all lines, then I is
isomorphic to some K, ,, and by the previous remark we can decide whether I is
embeddable in C. Otherwise we can assume, without loss of generality, that P, is
not incident with L; . Let o be the descriptor of I. The structure I is embeddable in
C if and only if for some member I’ of C, — v is not valid in I', that is, if and only
if - a is not valid in C. But the descriptor o being a conjunction of atomic for-
mulas or negations of atomic formulas one of which is precisely p; ¢ £, the open
sentence — « is logically equivalent to the configuration theorem « = p; € 4
(that is, true for exactly the same interpretation of variables as o = p; € £4;).
Therefore I is embeddable in C if and only if this configuration theorem is not
valid in C. The Proposition follows. 1

Since configuration theorems are a subset of open sentences, Propositions 3 and
4 combined yield the following:

Proposition 5. For any class C of incidence structures the following statements
are equivalent:

(i) the embeddability problem is solvable for C,
(ii) the validity problem for open sentences in C is solvable,
(iii) the validity problem for configuration theorems in C is solvable.

Let now C be the class of all projective planes. By a construction of Marshall
Hall [4], a finite incidence structure I can be embedded in C if, and obviously
only if, I is a partial projective plane. Thus the embeddability problem is solvable
for projective planes and therefore:

Proposition 6. The validity problem for open sentences in projective planes is
solvable.

It is not known whether every finite partial projective plane can be embedded
in a finite projective plane. (The problem was raised by Evans [2]). If it were so,
then the validity problem for open sentences in finite projective planes would be
solvable. However, a result of Quackenbush [7] implies that every finite partial
projective plane can be embedded in a (finite) balanced incomplete block design
with A = 1, also called (2, k) Steiner system. Since every substructure of such a
design is a partial projective plane, we have the following:

Proposition 7. The validity problem for open sentences in balanced incomplete
block designs with )\ = 1 is solvable.

It was shown by Treash that every partial Steiner triple system can be embedded
in a Steiner triple system [9]. (See also Lindner [6, 3].) This implies the following
result.

Proposition 8. The validity problem for open sentences in Steiner triple systems
is solvable.
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Remark: The above proposition is true regardless whether Steiner triple systems
are understood to be finite, or if they can be also infinite. It can also be viewed as a
generalization of the solvability of the word problem for Steiner quasigroups. This
solvability is a consequence of Evans’ theorem mentioned in the introduction, via
the embedding theorem of Treash for Steiner triple systems.
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