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Abstract. Following up on the bipartite analogue of an interval graph developed in a
previous work, we investigate several possibilities for a bipartite analogue of the con-
cept of a split graph. We also give bipartite analogues of threshold graphs and of perfect
graphs. '
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1. Introduction.

In [6], Harary, Kabell and McMorris defined a bipartite intersection graph as a
bipartite graph in which each partite set of vertices is represented by some family
of distinct subsets of a universal set, and two vertices are adjacent if and only if
their corresponding sets are in different families and have a nonempty intersection.
This led naturally to the notion of a bi-interval graph, and a natural analogue of the
results of Lekkerkerker and Boland[8]. Attempts to extend a bipartite iritersection
graph analogy to bi-chordal graphs (bipartite graphs with no induced cycles Cy, for
n > 4) following the result of Buneman(1], Gavril[4], and Walter[12] failed when
it was shown, by applying a result of McMorris and Shier(11] on the intersection
graph of subtrees of a star K ,. Upon reflection, this is not really surprising, as
it corresponds to the obvious observation that every graph is an intersection graph
of complete subgraphs of a complete graph. (A star is the bipartite version of
a complete graph when we require all edges to be adjacent instead of all vertices
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adjacent. Of course, the other bipartite version of a complete graph is the complete
bipartite graph which corresponds to the case of all edges present.)
We now investigate bipartite analogues for split, threshold and perfect graphs.

2. Bi-split graphs.

The natural question left unanswered by [6] was, of course, just how far can such
an analogy extend? As noted above, a result about split graphs caused our search
for a bipartite intersection graph characterization of bi-chordal graphs to break
down. This suggests that class of graphs as a possible starting point, and so we
begin by examining various definitions for bi-split graphs. The class of split graphs
was first characterized by Foldes and Hammer(3] as those having the property that
the vertices may be partitioned into two sets, one of which induces a complete
subgraph while the other induces a set of independent vertices. They derived from
this two equivalent conditions. First, split graphs are precisely the chordal graphs
(no induced C, for n > 3) that have chordal complements. Second, split graphs
are characterized by the set of forbidden induced subgraphs {C4,Cs,2 K, }. In
(11}, it was shown that they are also precisely the intersection graphs of subtrees
of K , for some n.

Upon which of these properties should the definition of bi-split be based? We
would like to retain as many of these properties as possible: We want our bi-split
graph to have a bi-split bipartite complement , to be bi-chordal and have a bi-
chordal bipartite complement (i.e. no induced Ce.Cs, or 3K,), and we want our
bi-split definition to be hereditary (i.e., every induced subgraph of a bi-split graph
should be bi-split). We have already seen (6] that we cannot use the characteriza-
tion in [11] since it yields all bipartite graphs.

McKee[10] gives us logical reasons as to why the various “intuitive” bipartite
analogies often break down, so let us start by looking at a definition for bi-split
very similar to one proposed by him. First recall that the bipartite complement
of a bipartite graph is the bipartite graph with the same bipartition, but with the
complement edge set. An independent bipartite graph is a bipartite graph with no
edges. Now suppose we require a bipartite graph to have its vertex set partitioned
into a complete bipartite graph and an independent bipartite graph. Keeping in
mind that the bipartition for such a graph is fixed, this property is preserved under
bipartite complementation and is hereditary, but is not necessarily bi-chordal so it
does not accomplish what we would like.

Since edge conditions play an important role in bi-chordal graphs[5], it is nat-
ural to try various edge partitions. Unfortunately, there does not seem to be a
choice for which the property thus defined is hereditary, or preserved under bi-
partite complementation. Thus the only recourse we have is to try to find some
vertex partition that “forces” our bi-split graph to be bi-chordal. The following
definition does the trick. Call a bipartite graph “bi-split” if and only if the vertex
sct can be partitioned into a complete bipartite graph and an independent bipartite
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graph, and does not contain 2 K as an induced subgraph. Because Cs, Cg, and
3 K, all contain 2 K, this guarantees that our bi-split graphs are bi-chordal and
have bichordal bipartite complements. Thus we have a definition that satisfies all
our requirements. We have the following result.

Proposition. A bipartite graph is bi-split if and only if it docs not contain2 K
as an induced subgraph.

Proof: One way comes from the definition of bi-split while the other follows from
the observation that if G is a bipartite graph that contains no 2 K3, then G has at
most one nontrivial connected component G and in G, there exists vertices in
both partite sets that are adjacent to all the vertices in the other part. To see this,
simply take a vertex z of maximum degree in one of the partite sets X . Suppose
that there exists a vertex y in the other set Y that is not adjacent to z. Since Gh
is connected, there exists a vertex z in X adjacent to y. Since z has maximum
degree, there is a w in Y adjacent to z but not z. But now the edges zw and zy
induce 2 K.

Now if G contains no nontrivial component, then the “split” is obvious. Other-
wise, consider any vertex in one of the parts in the nontrivial connected component
which is adjacent to all the vertices in the other part. This defines the complete
part of the “split”, while the remaining vertices are independent and hence G is
bi-split.

From this result, it can be easily seen that bi-split graphs are precisely bipar-
tite graphs with one non-trivial component that is a complete bipartite graph with
possibly the center of a star identified with one vertex in each partite set.

3. Bi-threshold graphs.

The class of graphs most closely related to the split graphs are the threshold graphs
introduced by Chvatal and Hammer[2]. These are the graphs for which there exists
a weighting of the vertices such that a set of vertices is independent if and only
if the sum of its weights does not exceed some fixed threshhold value. It is also
known that a graph is a threshold graph if and only if it does not contain any of
the graphs from {Cy, P4,2 K, } as induced subgraphs.

Recall that two edges are adjacent if they share a common vertex and nonad-
jacent otherwise. We say that a set of edges is independent if the edges in the set
are pairwise nonadjacent. Call a bipartite graph bi-threshold if and only if there
exists a weighting of the edges such that a set of edges is independent precisely
when the sum of its weights does not exceed some fixed threshold value. Call a
K , with exactly one edge subdivided a star with one subdivided edge. Such a
graph is shown in Figure 1 with labels on the edges added.
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Figure 1

We can now show that very few graphs are bi-threshold.

Theorem. A connected bipartite graph is bi-threshold if and only if it is a star
with possibly one subdivided edge.

Proof: Let G be a bi-threshold graph. We first show that G does not contain Cy
as an induced subgraph. Suppose it does, and let the weights of the edges of Cs
be a, b, ¢, d in cyclic order. Assume the threshold value is ¢. Then it must be the
casethata + b+ c+ d < 2t. Onthe other hand, a + b > t,and c+ d > t, s0 we
alsohave a + b+ ¢+ d > 2t, a contradiction. A similar argument will show that
G cannot contain an induced path of length 4. Thus G must be a tree of diameter
3 or less. (i.e., the “largest” that G can be is two stars that share a common edge.)
It remains to show that G cannot contain two adjacent vertices of degee three or
more. Suppose uv is an edge and deg( u) ,deg(v) > 3. Label the weights of two
edges incident with u (other than uv) by a and b, and two edges incident with v
(other than uv) by c and d. Then we get exactly the same contradiction as above.

The converse follows from the weighting of the star with one subdivided edge
giveninFigure 1, and the observation that every induced subgraph of a bi-threshold
graph is bi-threshold.

This theorem together with the structural characterization of bi-split graphs
gives us that all bi-threshold graphs are bi-split graphs.

4. Bi-perfect graphs.

Since chordal graphs, and hence split and threshold graphs, are perfect, we will
now analyse this concept in the bipartite setting. Recall that a graph G is perfect if
and only if for every induced subgraph H of G, the chromatic number of H is equal
to the clique number of H (the number of vertices in a maximum clique of H.)
Lovasz[9] showed that this is equivalent to the complement of G being perfect.

That is, for every induced subgraph H of G, the minimum number of complete
subgraphs needed to partition the vertices of /1 is equal to the order of the largest
independent set of vertices of H. Two bipartite versions of chromatic number’
and clique number are edge-chromatic number and maximum degree respectively
and Konig[7] showed that these parameters are equal in all bipartite graphs. The
minimum number of complete subgraphs needed to partition the vertices of a graph
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translates to the minimum number of stars(K ; ,’s) required to partition the vertices
of a bipartite graph, while the order of the largest independent set of vertices of
a graph translates to the size of a maximum matching of a bipartite graph. In
order to have the standard relationship between these parameters, we make the
following definition. The star cover number of a bipartite graph G, s(G), is the
minimum number of stars which partition the non-isolated vertices of G. If we
let m(G) denote the size of a maximum matching of G, then clearly we have
s(G) < m(G) for all bipartite graphs G. Also note that if we let I denote the
set of isolated vertices of G, then s(G) is just the classical domination number of
G- Ig.

Call a bipartite graph G weakly bi-perfect if s(G) = m(G). As in the case
of weakly perfect graphs, weakly bi-perfect is not an hereditary property. For
example, if G is an arbitrary bipartite graph with n vertices, we can form the
graph G* by adding n new vertices, each adjoined to exactly one vertex of G. Itis
easy to see that G* is bipartite and s(G*) = m(G*). Thus no forbidden subgraph
charactization of weakly bi-perfect graphs is possible. A bipartite graph is bi-
perfect if every induced subgraph of G is weakly bi-perfect. We first note that
an analogue of Lovasz’s theorem does not exist, for Pe (the path with 6 vertices)
is not bi-perfect whereas the bipartite complement of P is P4 U K, which is
bi-perfect. We now characterize bipartite graphs that are bi-perfect.

Theorem. A bipartite graph is bi-perfect if and only if it does not contain Ps as
a subgraph.

Proof; Let G be a bipartite graph that contains P as a subgraph, and let H be an
induced subgraph containing a Ps in G. Clearly, s(H) < 2, while m(H) = 3 so
that G is not bi-perfect.

For the converse, suppose that G is a bipartite graph that does not contain a Ps.
Since the only possible cycles in G are Cs’s, we break the remainder of the proof
into two cases: G a forest and G containing a Cy.

Assume G is a forest, so each component of G is a tree. Recall that the center of
a tree consists of either one central vertex or two adjacent central vertices. Since
G does not contain Ps, the vertices in the center of each component tree areé a
distance at most two from all the other vertices in the component. It follows that
each component is of the form of a star with an arbitrary number of vertices of
degree one adjoined. Such graphs are easily seen to be bi-perfect so that every
component of G is bi-perfect and hence G itself is bi-perfect.

Now suppose that G’ is a componet of G that contains a C4. Let z,y, z, w be
vertices in G' that induce Cs, with =y, yz, zw, wz edges. If there were additional
vertices adjacent to two consecutive vertices on this Cy, then Ps world be a sub-
graph of G. Thus we may assume that each vertex in G' noton this Cjy is adjacent
only to z or to z or to both. Using this we have if A is an induced subgraph of
G', and C4 is a subgraph of H, then s(H) = m(H) = 2 and so H is weakly bi-
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perfect. If Cy4 is not a subgraph of H then H is a forest and our previous case gives
that H is weakly bi-perfect. Therefore we have again shown that every component
of G is bi-perfect and the proof is complete.

Corollary. A bipartite graph G is bi-perfect if and only if every subgraph of G
is weakly bi-perfect.
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