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Abstract. Several measures of the vulnerability of a graph have been examined previ-
ously. These include connectivity, toughness, binding number, and integrity. In this pa-
per the authors examine the toughness and binding number of cycle permutation graphs
(sometimes called generalized prisms). In particular, we determine the binding number
for any cycle permutation graph and find upper and lower bounds for the toughness
of such graphs. A class of cycle permutation graphs where the lower bound is always
achieved and a class of cycle permutation graphs (which are also generalized Petersen
graphs) where the lower bound is never achieved are also presented.

Preliminaries.

Measures of the vulnerability of graphs are currently of growing interest among
graph theorists and network designers. In particular, much has been done recently
on the toughness and binding number of different classes of graphs since these
parameters are more sensitive to the structure of the graph than is the connectivity
of the graph.

The toughness of a graph G, t(G), is defined by t(G) = min { WCI?S__IF)_}’ where
the minimum is taken over all disconnecting subsets S of V(&) and w(G — S) is
the number of components of G — S. The binding number of G, b(G), is defined
by b(G) = min{ INI(T"?)[}, where the minimum is taken over all non-empty subsets
S of V(G) such that N(S) # V(G), where N(S) is the open neighborhood of
S. The connectivity of G, s(G), is the order of a minimum disconnecting set of
vertices.

Given a graph G with vertices labeled 1,2,... ,n and a permutation « in S,,,
the permutation graph P, (&) is obtained by taking two copies of G, say G, with
vertices z1,z2,... ,Z, and G, with vertices y1,12, ... , ya, along with a set of
permutation edges joining z; in G and y4(;) in G,. Note that permutation graphs
are in some ways generalizations of the Cartesian product since if « = (1) then
P,(G) = G x K,. Ifthe graph C,, isan n-cycle labeled 1, 2, ... , n where vertex
1is joinedtoi+ 1 andi— 1 (mod n) then P,(C,) is called a cycle permutation
graph (sometimes called a generalized prism since if o = (1) the graph P,(C,)
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is the n-prism). Cycle permutation graphs have been studicd extensively as gen-
eralizations of the Petersen graph.

Another class of graphs which are generalizations of the Petersen graph are the
generalized Petersen graphs, denoted G(n, k). Forintegersnand k, with1 < k <
n—1and 2k # n, the graph G(n, k) has vertex set {u;,u2,... , un, v1,v2,... ,v5}
and edge set consisting of all pairs of the form (u;, uj1), (ug,v5), or (v;, Vick),
where subscripts are read modulo n and the symbol “n” is zero [6]. The graph in-
duced by the u; is called the outer rim and the graph induced by the v; is called the
inner rim(s). The edges of the form (u;, v;) are called the spokes. The Petersen
graph in this notation is G(5,2). Of particular interest will be those gencral-
ized Petersen graphs which have a single inner rim which is an n-cycle, that is,
gcd(n, k) = 1. In this case there is a natural correspondence between the outer
rim, the inner rim, and the spokes of G(n, k) and the cycle C;, the cycle Cy,and
the permutation edges of P,(C,), respectively.

In this paper the authors find the binding number of cycle permutation graphs
and determine upper and lower bounds for the toughness of these graphs. A class
of cycle permutation graphs where the lower bound is always achieved and a class
of cycle permutation graphs (which are also generalized Petersen graphs) where
the lower bound is never achieved are also determined.

For the remainder of this paper let C; and C, be the two copies of C, in the cycle
permutation graph P,(C,) . Forasct S of vertices in P,(C,) let S; = SNV (C;)
and Sy = SN V(Cy). Since S; and S, form a partition of S, |S;| + |S,| = |S].
Morcover, let N(.S) be the (open) neighborhood of S in P,(C,) andlet N(S: H)
be the neighborhood of S when restricted to the subgraph /, that is, N(S: H)
= N(S) NV (H). The subgraph induced by S shall be denoted (S).

Toughness.
We begin with some useful elementary propositions.
Proposition 1. If S is a disconnecting set of a cycle C then |S| > w(C - S).
Moreover, if S contains two vertices which are adjacent inC then|S| > w(C—-S).
Proposition 2. The following are equivalent:
(i) P.(C,) is bipartite;
(i) nisevenand a(1),a(3),... ,a(n— 1) have thc same parity; and
(iii) P,(C,) contains an indcpendent set S of order n. Furthermore, in this
case, the set V(P,(C,)) — S is also an independent set of order n.

Proposition 3 ([3]). s(P.(C;)) = 3.

Now we determine a lower bound for t( P,(Cy)).

Theorem 4.

1 ifniseven
(Pa(Cy)) 2 { "

S ifnisodd.
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Proof: Let S be adisconnecting set of P, (C,) such thatt( P,(C,)) = TP.,(%.]W'

Then S; and S, are both non-empty; otherwise S is not a disconnecting set. We

examine three cases depending upon the value of |S|.

Case (i): Suppose 3 < |S| < n. By Proposition 1, |S;| > |w(C; — S;)| and

ISyl > lw(Cy — 8y)|. Since |S| < n, there exist vertices u € C; andv € C,

such thatu & S;,v € Sy, and (u,v) is an edge of P,(C,). So w(P,(C,) — S)

<w(Cs = 8) + w(Cy = 8,) < 18] Thus t( Pu(Cp)) = sty > @ >

27 since |S| < n.

Case (ii): Suppose |S| > n. Then w(Pa(Cr) — S) < |[V(Pa(Cp) = 8)| < n
S n

and t( Pa(Cr)) = sopien=sy > sPuen=s) > -

Case (iii): Suppose |S| = n. First we show thatif S, or S, contain adjacent ver-

tices in C; or C,, respectively, then m‘gl)_—s) > =2-. Without loss of gen-

n—-1"
erality assume that S; contains adjacent vertices z; and z;.;. By Proposition
Lw(C: — 8;) < |S;| and w(Cy — Sy) < |Sy| and s0 w(Pa(Cr) — 8) <
w(C; = 8;) +w(Cy = 8,) < |8]. Thus s oL— = . =

If n is odd, either S; or S, contains two adjacent vertices and t( Py(Ch)) =
TPy 2 = fniseven, [V(Pa(Ca) —8) | = nand sow( Pa(Ca) = 8) <
n.Thust(Po,(C,,)) = m‘%l)—_g)-z 1. [ |

Furthermore, this bound is sharp in the sense that for any n-cycle C, there is

always at least one permutation o = ( 1), the identity permutation, for which this
lower bound is achieved.

Corollary 5.
(B (Co)) _{ 1 ifniseven
WA 7 20 ifnisodd.
Proof: ThesetS = {z1,z3,...,Zn1,¥2,%4,... ,ys} forms a disconnecting set

of order n whose removal from P,(C,) leaves:

(i) asubgraph consisting of nisolated vertices if n is even; or
(ii) a subgraph consisting of n — 2 isolated vertices and one copy of K if n
is odd.
|
Moreover, we may characterize exactly those cycle permutation graphs with
toughness equal to 1.

Theorem 6. t(P,(C,)) = 1 ifand only if P,(C,) is bipartite.

Proof: Let P,(C,) be bipartite. Then n is even and a(1),a(3),...,a(n—1)
have the same parity. S0 S={z1,23,... ,Zn1,¥2,¥4,... ,¥a} and T={1;, 74,

1 Tn,Y1,Y3, .., Ys1 }areindependent sets in Po(C,). But Py (Cp) —S=(T)
which implies w( P, (Cy) — 8) = nand t( Po(C,)) = 1.
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Now suppose t( P,(C,)) = 1. In the proof of Theorem 3 it was shown that
this can occur only when:

(i) niseven;

i) |S|=m

(iii) w(Pa(Cy) — S) = n; and

(iv) S; and S, contain no adjacent vertices in C, and C,, respectively.
Thus |S;| = |Sy| = }. LetT = V(P.(C,)) — S. Since |T| = nand w({T))
= w(Py(C,) — S) = m, T is an independent set of order n in P,(C,) and thus
P,(C,) is bipartite. 1

Next, we determine a class of cycle permutation graphs which are also general-
ized Petersen graphs for which the lower bound of Theorem 4 is never achieved.

Proposition 7. If gcd(n, k) = 1, then ged(n,n— k) = 1.
Proposition 8 ([6]). G(n, k) = G(n,n—k).

Proposition 9 ([4]). If gcd(n, k) = 1, then G(n, k) = P,(C,), where o
is given by a(i) = k™! (i + k — 1) and k= is the multiplicative inverse of k
(mod n).

Theorem 10. Ifnisodd, gcd(n, k) = 1,andk ¢ {1,n—1}, thent(G(n, k)) >

n

n-1"

Proof: By Proposition 7 and Proposition 8, we need only consider the case where
k is even. Also, by Proposition 9, we may assume G(n, k) = P,(C,) where
a # (1) is a permutation such that o(i) = k~!(i + k — 1). Since nis odd, by
Theorem 4, t(G(n, k)) > 7=r. Thus suppose t(G(n, k)) = 2. In this case,
S| = n w(C:z — 8z) < |3, andw(Cy — S,) < |3]. In order to have n— 1

components in P,(Cy) — S, both C;, — S, and Cy — S, must have | % | components.
Thus |S;| > |3] and |S,| > |%]. Therefore without loss of generality assume
|Sz| = [3] and |Sy| = | 7]

If there exist vertices v and v in C; — S; such that u and v are adjacent, then
w(C; — S;) < |3], acontradiction. Thus assume V(C; — S;) = {zs2; | j =
0,1,..., %}. In order to have n — 1 components in P,(C,) — S, all of the
vertices in C; — S; must be isolated in P,(C,) — S. Therefore N(V(C; —
S2):Cy) is Sy, thatis Sy = {ya¢is2jy | 7 = 0,1,...,%2}. Since nis odd,
k is even, and k # n — 1, it follows that kK < n — 3. Thus there exists a j’,
0 <j' < 552, suchthatj' = £. Now a(i+2j)') = a(i+k) = k= (i+k+k—1)
=k~ 1(i+k—1)+ k™ k = a(d) + 1. SO ya(sy and ya(is2, are adjacent elements
of S,. Therefore,w(Cy — Sy) < | %] and we obtain the desired contradiction. §

Chvital [1] showed that an upper bound for the toughness of G is ). For

cycle permutation graphs, this upper bound is % This bound may be improved by
considering some of the structure of P,(C,).
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Theorem 11. If P,(C,) = Pg(C,) where B has the property that for some
k<n—2,B(i) =iforalll <i<k,thent(Pu(C,)) < 2.

Proof: We need only show that t(Ps(Cn)) < &2 . For1 < i< k+1,let

z; if4isodd . y; ifiisodd
8; = . andlet ti= o

y; ifiiseven T; ifiiseven.
Then S = {s1,s2,... 5, Sk+1,Yn} is a disconnecting set of Pg(C,) such that
Ps(C,) — S will have k+ 1 components, the subgraphs of Pg(C,) induced by the
sets {tl}, {tz}, ooy {tk},saﬂd {tk-rl yTk+2yTk+3yeee y Ty Yke2, Yk+3, 000, Yn-1 }

| k+2

Thus t( Pﬂ(cu)) S W(P(C—-8) S F:_l' |

In [5], Stueckle presents a set of permutations which generate all nonisomorphic
cycle permutation graphs of C,,, n < 8. The toughness of the corresponding cycle
permutation graphs was determined. For » = 3, all cycle permutation graphs
are isomorphic to P1y(Cs) which, by Corollary 5, has toughness equal to %
For 4 < n < 8, all of the cycle permutation graphs have toughness at most
$. If n > 4 and P,(C,) ¥ Ps(C,), where f(1) = 1 and 8(2) = 2 (that i,
P,(C,) contains an induced 4-cycle containing two permutation edges), Theorem
11 implies t( Po(Cy)) < ‘;—. For those cycle permutation graphs without such an
induced 4-cycle, Theorem 11 implies t( Pa(Cyp)) < % Yet, for4 < n< 8,all
of these cycle permutation graphs also have toughness at most ‘;—. Furthermore,
for all permutation graphs of Cy which have no induced 4-cycle, the toughness
was shown to be at most %. Thus, the evidence seems 1o indicate the following
conjecture,

Conjecture. For n>4,t(Pa(Cy)) < 3.

If this upper bound cannot be obtained, perhaps the following looser upper
bound can be obtained.

Conjecture. Forn > 4,t(P,(C,)) < %

Furthermore, forn=4,5,8, and 9, there exists some permutation « for which
t(Pa(Cp)) = ‘3‘—. Is it possible to construct an infinite class of cycle permutation
graphs for which t( P,(C,)) is equal to %‘? Since G(5,2) and G(9,2) have
toughness equal to ‘31, could such a class be the generalized Petersen graphs when
n=1 (mod 4) and k = 27

Conjecture. If n>5 and n=1 (mod 4), then t(G(n,2)) = %.

Binding number.
In this section we determine the binding number of any cycle permutation graph.
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Proposition 12 ([7)). Let S be a set of vertices in Cy. If|S| € {0,n, 3}, then
IN(S)| > |S| + 1. Furthermore, if|S| € {0,n, 3}, then|N(S)| = |S|.

Proposition 13 ([7]).

1 ifn is even
=1 jfnisodd.

n—

b(Cn) = {

Proposition 14 ([2]). If G is a spanning subgraph of H, then b(G) < b(H).

Proposition 15 ([2]). If G and H are disjoint graphs such thatb(G) = g, and
b(H) = h, thenb(G U H) = min{1,g,h}.

Lemma 16. Let S be a subset of C,, such that |S| < 5 and lct P be a component
of maximum order in (S). If, for some k > 2, P & Py (a path on k vertices),
then|N(S)| > |S|+ 2.

Proof: Suppoe|S| < % and that P isapathon k > 2 vertices. Let C' be the cycle
formed by contracting P to asingle pointin C and let S’ be the vertices in C' which
correspond to S in C. Then |S'| = |S|—k+1 < |S|,|[N(S")| = [N(S)| -k, and
|[V(C") = 8'| = [V(C) — S| > |S|. So, by Proposition 12, [N(S")| > [S'| + 1
=|8| = k+2. Thus [N(S)| = I[N(S)|+ k > |S|+ 2. 1

Theorem 17.

1 if P,(Cy) is bipartite
b(Pa(Cr)) = { 2n—1 P

5= otherwise.

Proof: Since C; U C, is a spanning subgraph of P,(C,), it follows from Propo-
sitions 13, 14, and 15 that b( P,(C,)) > 1. Furthermore, for T = V(P,(C,)) —
Nz}, DL = 2oL 50,5 Pa(C)) < 2=t

Now suppose S is a non-empty subset of V(P,(C,)) such that N(S) #
V(Pa(Ca)) and b(Pa(Cy)) = I < 221 Then [N(8)| > [N(Ss: Ca) |+
IN(Sy: C)| > |S:| +1Sy| = |S| and [N(S)| < |S| + 1 since [N(S)| > |S]+ 2
would imply that L"i‘(s%l > 221 Note that |S;| # nand |S,| # m other-
wisc N(S) = V(P4 (Cyn)). If S; is the empty set, [N(S)| = |[N(S,: C3)|
+|N(Sy: Cy)| > 2|Sy| = 2|S| and lilqu—l > 2 > 3==L a contradiction. Simi-
larly, S, is non-empty.

Suppose |S;| # 3 and |Sy| # &. Then [N(S)| > [N(S:: Co) | +|N(Sy: Cy)| >
(|Sz| + 1) +(|Sy] + 1) = |S| + 2, a contradiction. Thus n is cven and either | Se|
or |S,| is cqual to 2. Without loss of generality assume |S;| = 3. If two vertices
of S, are adjacent, Lemma 16 implics that |[N(Sz: C;)| > |Sz| + 2; thus [N(S)|
> |N(S;: Co)| +|IN(Sy: C)| > (IS:] + 2) +|S,| = |S| + 2. Therefore, S, is
independent in C, and N(S;: C;) = V(C; — S;).
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If|Sy| > 7, some vertex u of S, is adjacent toa vertex v of S;. Thusv € N(S)
and |[N(S)| > IN(Sz: C) |+ |N(Sy: Cy) |+ 1> |8+ (IS, |+ 1) + 1= |S|+2.

If |Sy| < % and S, contains two adjacent vertices it follows from Lemma 16
that |[N(Sy: Cy)l > |S|+ 2; thus [IN(S)| > |N(S::Cy)| +|N(S,:Cp)| >
|Sz|+ (|Sy| +2) = |S|+ 2. Therefore, Sy is independent in C, and N(S,: C,) C
V(C; — Sz). If some vertex u of S, is adjacent to some vertex v of S;, u, v €
N(S) and |N(8)| > IN(S:: Co) |+ |N(Sy: C|+2 > |S,|+|S,|+2 = |S|+2.
So, S is an independent set in P,(C,).

IfIN(S)| = |S] + 1, then |S| = n— 1; otherwise ]%S:f-l > 2=
P, (C,) has the structure given in Figure 1. In this case, Z = SU {v} is a set with
N(2) = N(S) and 2 = L)l < MBI a conuradiction. Thus | N(S)| = |S|

and ) = 1. 1£ |8, | < z,then|N(S)|>|N(S Co)| +IN(S,: C) | > |
+(|Sy| + 1) = |S| + 1, a contradiction. So, |S,| = % and |S| = n. Since S is an
independent set of order n, it follows that P,(C,) is bxparute. Hence, if P,(C,)

is bipartite, b( Po(Cy)) = 1; otherwise b( Po(Cy)) = 22=1 1

S N(SY

Figure 1

295



References

1. V. Chvatal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973),
215-228.

2. V.Kane, S. Mohanty and R. Hales, Product graphs and binding number, Ars
Combinatoria 11 (1981), 201-224.

3. B. Piazza, Connectivity and Hamiltonian properties of permutation graphs,
Ph.D. Dissertation (1985), Clemson University, Clemson, S.C.

4. R.Ringeisen, On cycle permutation graphs, Discrete Math. 51 (1984), 265-275.

5. S. Stueckle, Algebraic and isomorphism properties of cycle permutation graphs,
Ph.D. Dissertation (1985), Clemson University, Clemson, S.C.

6. M. Watkins, A theorem on Tait colorings with an application to the general-
ized Petersen graphs, J.Comb.Theory (B) 6 (1969), 152-164.

7.D. Woodall, The binding number of a graph and its Anderson number, J.
Comb. Theory (B) 15 (1973), 225-255.

296



