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A maximal partial spread in PG(3, g) is a set of mutually skew lines such that
no further lines of PG(3, ¢) are skew to all lines of S.
We shall prove

Theorem. There is no maximal partial spread of size 10 in PG(3,5).

This improves, in the special case g = 5, the following rcsult of Glynn, sec [2]
or [5] p. 85.

Theorem(Glynn). IfS is a maximal partial spread in PG(3,q) then|S| > 2q.

By Example 8.1 of [4] and the result above, we know almost all possible sizes
for a maximal partial spread in PG(3,5). There is no maximal partial spread S
with |S] < 10 or 23 < |S| < 25. There are maximal partial spreads of size n
for all integers n with 13 < n < 22 and for n = 26. However we do not know
whether or not there is any maximal partial spread of size 11 or 12.

For ¢ = 2 and ¢ = 3 all possible sizes are known, see [5] p. 79 and p. 82.

For an upper bound on the number of lines of a maximal partial spread see [3].

Proof of the theorem: Assume that S is a maximal partial spread of size 10 in
PG(3,5). Letn; fori € {1,2,---,6} denote the number of lines of PG(3,5)
that meet exactly 1 lines of S. These numbers satisfy the following four equations:

m+m+m+n+ns+n =79
m+2m+3m+4n + 505 + 6mg = 1800
m+3m+6ng + 1005 + 1506 = 1620

m + 4ng + 10ms + 20mg = 720

(These equations are special cases of the equations that Glynn used to prove the
bound mentioned above; see [2] or [5] p 78)

Multiplying the previous four equations by 4, —3,2 and —1 respectively we
deduce that n; = 304 + ns + ng. Hence my > 304 and thus, for some line ! of
S, therc are at least 31 lines of PG(3,5) that intersect  but no other line of S.
Now, [ is contained in six planes. Hence one of these planes contains at least six of
these 31 lines. Any line of S\{{} intersects this plane in onc and only one point.
The theorem will thus be proved when we show that there is no subset B of nine
points of a projective plane m = PG(2,5) such that seven of the lines of m do not
mect any of the points of B. We shall consider the dual problem.
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Let F be a set of seven points of n. As well known, see ¢.g. Theorem 3.24 of
[1] p. 149, for any k-arc of mk < 6. Further if k = 6 then the k-arc is an oval. As
|F'| = 7, F cannot contain two different ovals, see [1] p 149. It follows that either
there arc at least two lines of 7 meeting at least three points each or at least one
line mecting at least four of the points of F. In both cases, by using elementary
counting arguments, we conclude that F meets at lcast 23 of the 31 lines of 7.

The theorem is now proved.

Remark 1: The author of this paper has, without any success, done some attempt
to construct a maximal partial spread of size 12 in PG(3,5) and to prove the
nonexistence of a maximal partial spread of size 11.

Remark 2: It is not possible to use the same method to improve Glynn'’s result
in general. For example, when ¢ = 7 and |S| = 14, where S is a maximal partial
spread, we would have to prove the nonexistence of a subset B of 13 points of a
projective plane m = PG(2,7) such that there are 13 lines of 7 that do not meet
any point of B. However, such a subset B of  is not so very difficult to construct.

Let GF(7) denote the finite field with seven elements. The 49 elements of
GF(7) x GF(7) as points and the subsets [a, k] = {(q,a + kq)| g€ GF(N}
k,a € GF(7) and [a,00] = {(a,q)| ¢ € GF(7)} a € GF(7) as lines
will constitute an affine plane. (Below we denote the elements of GF(7) by the
elements 0,1,2,---,6 of Z/72.)

If B consists of the points (0, 0),(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),
(2,4),(3,0),(3,6),(5,2),(5,5),and (5,6) then the following 12 lines [4 , oo],
[6,00],[6,1],[5,4],[5,11,[4,3),(5,2],(6,5],[4,4],(3,3],[3,5] and
[4,2] together with the line at infinity will give us 13 lines of 7 that do not meet
any point of B.
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