Edge Contractions in 3-Connected Graphs

William McCuaig¹

Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, N2L 3G1 CANADA

Abstract. For $v \ge 4$ we determine the largest number f(v), such that every simple 3-connected graph on v vertices has f(v) edge contractions which result in a smaller 3-connected graph. We also characterize those simple 3-connected graphs on v vertices which have exactly f(v) such edge contractions.

Preliminaries.

We use the notation and terminology of Bondy and Murty [2]. We restrict ourselves to simple graphs.

Let $e = x_1x_2$ be an edge in a graph G. The graph, $G \cdot e$, obtained by *contracting* e is defined to be

$$(G - \{x_1, x_2\}) + \{x\} + \{xy \mid x_1y \in E(G) \text{ or } x_2y \in E(G), x_1 \neq y \neq x_2\}.$$

If G is simple, then so is $G \cdot e$. We say G is obtained from $G \cdot e$ by vertex splitting at x. Note that more than one graph can be obtained from a given graph by vertex splitting at a particular vertex. If the minimum degree of G is at least 3, then we define the graph (G - e) obtained by reducing at $e = x_1 x_2$ as follows: In G - e we contract one edge incident with x_i if $d_{G-e}(x_i) = 2$, i = 1, 2. We note that (G - e) may have double edges even if G is simple. If $N_{G-e}(x_i) = \{y_i, z_i\}$, then the edge $y_i z_i$ of (G - e) is referred to as e_{x_i} , i = 1, 2. We say G is obtained from (G - e) by edge addition.

If G is 3-connected, then we say that e is *contractible* (respectively, reducible) if $G \cdot e$ (respectively, $(G - e)^{-}$) is 3-connected. Let $E_c = E_c(G)$ be the set of contractible edges of a 3-connected graph G, and let $|E_c| = \epsilon_c$.

A 3-connected graph G is *critically* 3-connected if no proper spanning subgraph of G is 3-connected.

The following three classical theorems are due to Tutte [3, Ch. 4].

¹Support from NSERC is gratefully acknowledged.

Theorem 1. If G is 3-connected and $G \neq K_4$, then $G \cdot e$ is 3-connected for some e in E(G).

Theorem 2. Let G' be 3-connected. If G is obtained from G' by edge addition, then G is 3-connected. If G is obtained from G' by vertex splitting and G has minimum degree at least 3, then G is 3-connected.

Theorem 3. If G is 3-connected, $G \neq K_4$, and $e \in E(G)$, then $(G - e)^{\sim}$ or G e is 3-connected.

Theorem 3 has the following corollary:

Corollary 1. If G is a critically 3-connected graph and e in E(G) joins vertices of degree at least four, then $G \cdot e$ is 3-connected.

Some lemmas.

Let $e_i = u_i v_i$, i = 1, 2 be edges of G such that u_1 and u_2 are distinct. We say that

$$(G - \{e_1, e_2\}) + \{x_1, x_2\} + \{x_1u_1, x_1v_1, x_2u_2, x_2v_2, x_1x_2\}$$

is obtained from G by adding an edge across e_1 and e_2 . We say that

$$(G - \{e_1\}) + \{x\} + \{xu_1, xv_1, xu_2\}$$

is obtained from G by adding an edge obliquely across e_1 and e_2 .

An independent 3-edge cut S is an edge cut consisting of three pairwise non-adjacent edges. We say that an edge is (obliquely) added across S if an edge is (obliquely) added across two edges in S.

A triangle of G is a K_3 subgraph of G.

Lemma 1. Let xu be a non-contractible edge of a 3-connected graph G. Suppose d(z) = 3 for every z in $V(G) - \{x\}$, and xu is not on a triangle of G. If d(x) = 3 (respectively, d(x) = 4), then $G' = (G - xu)^T$ is a cubic 3-connected graph and G is obtained from G' by adding an edge (respectively, adding an edge obliquely) across an independent 3-edge cut S.

Proof: Since xu is not contractible, Theorem 3 implies that G' is 3-connected. By the assumptions on the vertex degrees of G, G' is cubic.

There exists some vertex v such that $\{x, u, v\}$ is a 3-vertex cut because xu is not contractible. Then $d_G(v) = 3$ implies that there exists some edge e incident with v which is a cut edge of $G - \{x, u\}$.

If d(x) = 3, then $S = \{e_x, e_u, e\}$ is a 3-edge cut of G'. Since xu is not on a triangle in G, e_x and e_u are not adjacent. The 3-connectivity of G' then implies that S is independent. G is obtained from G' by adding an edge across S.

If d(x) = 4, then x is a cut vertex of $G' - \{e_u, e\}$. Then $d_{G'}(x) = 3$ implies there exists an edge f incident with x such that $S = \{e_u, e, f\}$ is a 3-edge cut of

G'. Since xu is not on a triangle of G and G' is 3-connected, S is independent. G is obtained from G' by adding an edge obliquely across S.

Let $V_t(G)$ (respectively, $E_t(G)$) be the set of vertices (respectively, edges) of G which are in $V(K_3)$ (respectively, $E(K_3)$), for some triangle K_3 of G such that $d_G(v) = 3$, for each v in $V(K_3)$. If $G \neq K_4$ and G is 3-connected, then every vertex in V_t is incident with a unique edge in $E - E_t$.

Suppose $e \in E_t(G)$ and $e \in E(K_3)$. We say $(G - e)^{\sim}$ is obtained from G by contracting K_3 to vertex. Suppose $d_G(v) = 3$. The graph obtained from G by adding an edge across two edges incident with v is said to be obtained by replacing v by a triangle.

Lemma 2. Let G be a 3-connected graph such that $G \neq K_4$. If $v \in V_t(G)$, then the only contractible edge incident with v is the edge in $E - E_t$. If $d_G(v) = 3$ and $v \notin V_t(G)$, then v is incident with at least two contractible edges.

Proof: Let $e_i = vx_i$, i = 1, 2, 3 be the edges incident with v.

Suppose $v \in V_t(G)$, $e_1 \in E - E_t$, and e_2 , $e_3 \in E_t$. It is easy to see that e_1 is not reducible and e_2 and e_3 are not contractible. By Theorem 3, e_1 is contractible.

Suppose $v \notin V_t(G)$ and $G \cdot e_3$ is not 3-connected. Then $\{v, x_3, y\}$ is a 3-cut for some y in V(G). Let H_1 and H_2 be the components of $G - \{v, v_3, y\}$, where $x_i \in V(H_i)$, i = 1, 2.

Suppose $v(H_1) = 1$. Then x_1 is adjacent to v, x_3 , and y. Since $v \notin V_t$, $d(x_3) \ge 4$. Therefore, $G \cdot e_1 = (G - e_3)^{-}$. By Theorem 3, $(G - e_3)^{-}$ is 3-connected, and so e_1 is contractible.

Suppose $v(H_2) \ge 2$. Then $\{x_3, y\}$ is a 2-cut of $(G - e)^{-}$, and so e_1 is not reducible. Therefore, e_1 is contractible by Theorem 3.

Similarly, e₂ is contractible.

Lemma 3. Let G be a critically 3-connected graph such that $G \neq K_4$. Suppose $d_G(v) = 4$. If v is not on a triangle, then v is incident with at least two contractible edges. If v is not incident with a contractible edge, then v is only adjacent with vertices of degree three and v is on two edge-disjoint triangles.

Proof: Suppose v is not on a triangle. Suppose some edge e incident with v is not contractible. By Theorem 3, $(G-e)^-$ is 3-connected. If v is on a triangle in $(G-e)^-$, then it is on a triangle in G, a contradiction. Hence, $v \notin V_t((G-e)^-)$ and v has degree 3 in $(G-e)^-$. Therefore, v is incident with two contractible edges, e_1 and e_2 , in $E((G-e)^-)$ by Lemma 2. Hence, $(G-e)^- \cdot e_i$ is 3-connected, i=1,2. But since v is not on a triangle in G, $(G-e)^- \cdot e_i = ((G\cdot e_i) - e)^-$, i=1,2. Then $G\cdot e_i$ is obtained from the 3-connected graph $((G\cdot e_i) - e)^-$ by edge addition, and so $G\cdot e_i$ is 3-connected by Theorem 2, i=1,2.

Suppose v is not incident with a contractible edge. Since G is critically 3-connected, Corollary 1 implies that all neighbours of v have degree 3. By the first

part of Lemma 3, v is on some triangle vu_1u_2 . Let u_3 and u_4 be the other two neighbours of v. Since $vu_3 \notin E_c$, there exists y in V(G) such that $\{v, u_3, y\}$ is a 3-cut of G. Since $d(u_3) = 3$, $G - \{v, u_3, y\}$ has two components, G_1 and G_2 . Vertices u_1 and u_2 can not be in different components of $G - \{v, u_3, y\}$ because $u_1u_2 \in E$, and so we may assume that $u_1, u_2 \in V(G_1) \cup \{y\}$. Then $u_4 \in V(G_2)$ since G is 3-connected. If $v(G_2) \geq 2$, then $\{u_3, y\}$ is a 2-cut of $(G - e_4)$. But then Theorem 3 implies that $G \cdot e_3$ is 3-connected, a contradiction. Thus, $V(G_2) = \{u_4\}$. Then $u_3u_4, u_4y \in E$ since $d(u_4) = 3$.

Main theorems.

Let G be a 3-connected graph. Let $V_3 = V_3(G) = \{v \in V(G) \mid d(v) = 3\}$ and $V_f = V_f(G) = \{v \in V(G) \mid d(v) \geq 4\}$. Let $v_3 = v_3(G) = |V_3|$ and $v_f = v_f(G) = |V_f|$. Let $V_3^i = V_3^i(G)$ be the set of vertices in V_3 that are adjacent to exactly i vertices in V_f and let $v_3^i = v_3^i(G) = |V_3^i|$, i = 0, 1, 2, 3. Let $V_f^i = V_f^i(G)$ be the set of vertices in V_f that are adjacent to exactly i vertices in V_f and let $v_f^i = v_f^i(G) = |V_f^i|$, $i = 0, 1, \ldots, v - 1$.

Theorem 4. If G is a critically 3-connected graph and $G \neq K_4$, then $|E_c(G)| \geq \frac{1}{2}(v+3v_f)$.

Proof: Let $E_{3,3}$, $E_{3,f}$, and $E_{f,f}$ be the sets of contractible edges joining two vertices in V_3 , a vertex in V_3 to a vertex in V_f , and two vertices in V_f , respectively. Let A_i be the set of vertices in V_3^i that are only joined to vertices in V_f by contractible edges, let $a_i = |A_i|$, and let $B_i = V_3^i - A_i$, i = 1, 2.

By Lemma 2, every vertex in V_3^0 is incident with an edge in $E_{3,3}$. Suppose $v \in V_3^1$ and v is incident with at most one contractible edge. Then Lemma 2 implies $v \in V_t$ and the edge joining v to the vertex in V_f is contractible, and so $v \in A_1$. Thus, every vertex in B_1 is incident with two contractible edges, and by the definition of B_1 these two edges are in $E_{3,3}$. By Lemma 2, every vertex in B_2 is incident with two contractible edges, and by the definition of B_2 , one of these two edges is in $E_{3,3}$. Thus,

$$|E_{3,3}| \ge \frac{1}{2} \left[v_3^0 + 2(v_3^1 - a_1) + (v_3^2 - a_2) \right].$$

By definition every vertex in A_i is incident with i edges in $E_{3,f}$. By Lemma 2 every vertex in B_2 or V_3^3 is incident with two contractible edges. Therefore, every vertex in B_2 is incident with at least one edge in $E_{3,f}$ and every vertex in V_3^3 is incident with at least two edges in $E_{3,f}$. Thus,

$$|E_{3,f}| \ge a_1 + 2a_2 + (v_3^2 - a_2) + 2v_3^3$$
.

By Corollary 1, every edge joining two vertices in V_f is in E_c , so $|E_{f,f}| = \frac{1}{2} \sum_{i=1}^{v-1} i v_f^i$.

Thus,

$$|E_{c}| = |E_{3,3}| + |E_{3,f}| + |E_{f,f}|$$

$$\geq \frac{1}{2} [v_{3}^{0} + 2(v_{3}^{1} - a_{1}) + (v_{3}^{2} - a_{2})]$$

$$+ [a_{1} + 2a_{2} + (v_{3}^{2} - a_{2}) + 2v_{3}^{3}] + \frac{1}{2} \sum_{i=1}^{\nu-1} i v_{f}^{i}$$

$$= \frac{1}{2} \sum_{i=0}^{3} v_{3}^{i} + \frac{1}{2} \left(\sum_{i=1}^{3} i v_{3}^{i} + \sum_{i=1}^{\nu-1} i v_{f}^{i} \right) + \frac{1}{2} a_{2}$$

$$\geq \frac{1}{2} v_{3} + \frac{1}{2} \sum_{v \in V_{f}} d(v) \geq \frac{1}{2} (v - v_{f}) + \frac{1}{2} \cdot 4 v_{f} = \frac{\nu + 3 v_{f}}{2}.$$
(A)

We will construct sets of graphs Γ_i , $i=0,1,\ldots,5$, such that for every $G_i\in\Gamma_i$, $\nu(G_i)\equiv i\pmod 6$ and

$$\epsilon_c(G_i) = \begin{cases} \frac{v}{2}, & \text{if } i = 0\\ \frac{v}{2} + 1, & \text{if } i = 2, 4\\ \frac{v + 3}{2}, & \text{if } i = 1, 3, 5 \end{cases}$$

In Figure 1 we give an example of each of these constructions.

Let K be the triangular prism. Let Γ_0 be the union of $\{K\}$ and the set of all graphs obtained by replacing all vertices of a 3-connected cubic graph by triangles.

Let Γ_1 be the set of all graphs obtained in the following two ways:

- i) In a graph in Γ_0 , add an edge obliquely across an independent 3-edge cut.
- ii) Let *H* be a 3-connected graph in which one vertex has degree 4 and all other vertices have degree 3. Replace all vertices of *H* of degree 3 by a triangle.

Let Γ_2 be the set of all graphs obtained by adding an edge across an independent 3-edge cut of any graph in Γ_0 .

Let Γ_4 be the set of all graphs obtained by replacing v(G) - 1 vertices in a 3-connected graph G by triangles.

Let Γ_3 be the set of all graphs obtained in the following three ways:

- i) Let $\{e_1, e_2, e_3\}$ be an independent 3-edge cut in some G in Γ_2 such that e_1 is incident with a vertex v not in $V_t(G)$, and add an edge from v across e_2 to obtain a graph H.
- ii) Let H in Γ_3 be obtained as in (i) such that $V V_t$ is a 3-vertex cut. Add an edge to H joining the two vertices in $V V_t$ of degree three.
- iii) In a graph in Γ_4 , contract an edge incident with the vertex which is not in $V_t(G)$.

Let Γ_5 be the set of all graphs obtained in the following two ways:

- i) Let $\{e_1, e_2, e_3\}$ be an independent 3-edge cut in some G in Γ_4 such that e_1 is incident with the vertex v not in $V_t(G)$, and add an edge from v across e_2 .
- ii) In a graph H in Γ_0 , contract an edge in $E(H) E_t(H)$. Let $\Gamma = \bigcup_{i=0}^5 \Gamma_i$.

Theorem 2 has the following corollary:

Corollary 2. Let G be a simple 3-connected graph. Any graph obtained from G by adding an edge across two edges, adding an edge from a vertex across an edge, or replacing a vertex of G by a triangle is 3-connected.

Theorem 5. If $G \in \Gamma_i$, $0 \le i \le 5$, then G is 3-connected, $v(G) \equiv i \pmod{6}$, and

$$\epsilon_c(G) = \begin{cases} \frac{v}{2}, & \text{if } i = 0\\ \frac{v}{2} + 1, & \text{if } i = 2, 4\\ \frac{v + 3}{2}, & \text{if } i = 1, 3, 5 \end{cases}.$$

Proof: Corollary 2 implies that the graphs in Γ are 3-connected. For graphs in Γ_3 and Γ_5 obtained from graphs in Γ_4 and Γ_0 , respectively, by contracting an edge e, we must also use Lemma 2 to show that e is contractible. It is easy to see that $v(G) \equiv i \pmod{6}$ by using the fact that any graph has an even number of vertices of odd degree.

Using Lemma 2, we see that $\epsilon_c(G_0) = \frac{v}{2}$, $\epsilon_c(G_1) = \frac{v+3}{2}$, and $\epsilon_c(G_4) = \frac{v}{2} + 1$ for all graphs G_i in Γ_i , i = 0, 1, 4, except those in Γ_1 obtained from graphs in Γ_0 by edge addition.

Consider graphs G_2 in Γ_2 , G_3 in Γ_3 , and G_5 in Γ_5 obtained from graphs H_0 in Γ_0 , H_2 in Γ_2 , and H_4 in Γ_4 , respectively, by adding an edge e = uv. Since e is added in such a way that $\{u,v\}$ is contained in a 3-vertex cut of G_i , $e \notin E_c(G_i)$, i=2,3,5. Let f=ux be the edge in $E(H_2)$ that was added to a graph in Γ_0 to obtain H_2 . Then $\{u,x,y\}$ is a 3-cut for some y in $V(H_2)$. Then $\{u,x,y\}$ is a 3-cut in G_3 , since e is incident with u. Hence, $f \notin E_c(G_3)$. Lemma 2 implies that the edges joining vertices in $V_t(G_i)$ are not in $E_c(G_i)$, i=2,3,5. Thus, we have shown that $E_c(G_i) = \frac{v}{2}$ and $E_c(G_i) = \frac{v}{2}$, and by Theorem 1, $E_c(G_i) \ge \frac{v}{2} + 1$ and $E_c(G_i) \ge \frac{v}{2} + 1$ and $E_c(G_i) \ge \frac{v+3}{2}$, $E_c(G_i) \ge \frac{v+3}{2}$. If $E_i(G_i) \ge \frac{v+3}{2}$, $E_c(G_i) \ge \frac{v+3}{2}$. If $E_i(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$, $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i) \ge \frac{v+3}{2}$. If $E_c(G_i) \ge \frac{v+3}{2}$ in $E_c(G_i)$ in $E_c(G_$

Consider a graph G_1' in Γ_1 obtained from a graph in Γ_0 by adding an edge e = uv, and consider graphs G_3' in Γ_3 and G_5' in Γ_5 obtained from graphs in Γ_4 and Γ_0 , respectively, by contracting an edge e. Since e is added in such a way that $\{u, v\}$ is contained in a 3-cut of G_1' , $e \notin E_c(G_1')$. For G_1' , G_3' , and G_5' , the edges

Figure 1

incident with the vertex of degree 4 and on a triangle are not contractible. Lemma 2 implies that the edges joining vertices in $V_t(G_i')$ are not in $E_c(G_i')$, i=1,3,5. Thus, we have $\epsilon(G_i') - \epsilon_c(G_i') \ge v-1$, i=3,5. As before this implies that $\epsilon_c(G_3') = \epsilon_c(G_5') = \frac{v+3}{2}$.

Theorem 6. Let f(v) be the largest integer such that every 3-connected graph on v vertices has f(v) contractible edges, $v \ge 5$. Then

$$f(v) = \begin{cases} \frac{v}{2}, & \text{if } v \equiv 0 \pmod{6} \\ \frac{v}{2} + 1, & \text{if } v \equiv 2, 4 \pmod{6} \\ \frac{v + 3}{2}, & \text{if } v \equiv 1, 3, 5 \pmod{6} \end{cases}.$$

If $\epsilon_c(G) = f(v(G))$, then $G \in \Gamma$.

Proof: Theorem 5 shows that the given values are upper bounds for f(v). By Theorem 4, $f(v) \ge \frac{v+3v_f}{2}$. Thus, $f(v) = \frac{v}{2}$ when $v \equiv 0 \pmod{6}$. If v(G) is odd, then the vertices of G cannot all have odd degree 3, and so $v_f(G) \ge 1$. Thus, $f(v) = \frac{v+3}{2}$ when $v \equiv 1, 3, 5 \pmod{6}$.

Suppose $\varepsilon_c(\bar{G}) = \frac{v}{2}$. By Theorem 4, $V(G) = V_3$, so Lemma 2 implies that every vertex is incident with a contractible edge. Since $\varepsilon_c(G) = \frac{v}{2}$, every vertex is incident with exactly one contractible edge. Now Lemma 2 implies $V = V_t$. If $G \neq K$, Theorem 3 implies that the graph obtained by contracting all the triangles to vertices is 3-connected. Therefore, $G \in \Gamma_0$.

Since Theorem 4 implies $f(v) \ge \frac{v}{2}$, and $\epsilon_c = \frac{v}{2}$ implies $v \equiv 0 \pmod{6}$, $f(v) \ge \frac{v}{2} + 1$ when $v \equiv 2$, 4 (mod 6). Hence, $f(v) = \frac{v}{2} + 1$.

Suppose G_i is a critically 3-connected graph such that $v(G_i) \ge 5$, $v(G_i) \equiv i \pmod{6}$, and $\epsilon_c(G_i) = f(v(G_i))$, i = 1, ..., 5.

Consider G_2 and G_4 . Since $\epsilon_c(G_i) = \frac{v}{2} + 1$, Theorem 4 implies that $v_f = 0$, i = 2, 4. Hence, for i = 2, 4, Lemma 2 implies

$$\frac{v}{2} + 1 = \epsilon_{c}(G_{i}) \ge \frac{1}{2} [v_{t} + 2(v - v_{t})].$$
 (B)

Therefore, $2 \ge v - v_t$. Since $v_t(G_i) \equiv 0 \pmod{3}$, i = 2, 4, we have $v(G_2) - v_t(G_2) = 2$ and $v(G_4) - v_t(G_4) = 1$. Let $V(G_2) - V_t(G_2) = \{u_2, v_2\}$ and $V(G_4) - V_t(G_4) = \{u_4\}$.

We have equality in (B) for G_2 , and so u_2 and v_2 are both incident with exactly two contractible edges. Since a vertex in $V-V_t$ can only be joined to a vertex in V_t by a contractible edge, $u_2v_2\in E(G_2)$ and $u_2v_2\not\in E_c(G_2)$. By Lemma 1, G_2 is obtained from the cubic 3-connected graph $G_2'=(G_2-u_2v_2)$ by adding an edge across an independent 3-edge cut. Since $V(G_2')=V_t(G_2')$, $G_2'\in \Gamma_0$. Hence, $G_2\in \Gamma_2$.

Theorem 3 implies $G_4 \in \Gamma_4$.

Consider G_i , where $i \in \{1,3,5\}$. Since $v_f \ge 1$, $\frac{v+3v_f}{2} \ge \frac{v+3}{2} = \epsilon_c(G_i)$, and so we have equality in Equation (A) from Theorem 4. Hence, $v_f = 1$ and $d_{G_i}(x_i) = 4$, where $V_f(G_i) = \{x_i\}$. Let x_i be incident with r_i contractible edges and adjacent to t_i vertices in $V_t(G_i)$. By Lemma 2,

$$\frac{v+3}{2} = \epsilon_c(G_i) \ge \frac{1}{2} [v_t + 2(v_3 - v_t) + r_i] = \frac{1}{2} [(v-1) + (v_3 - v_t) + r_i],$$

and so $4 \ge (v_3 - v_t) + r_i$. Since $d_{G_i}(x_i) = 4$, $v_3 - v_t \ge 4 - t_i$. A vertex in V_t can only be joined to x_i with a contractible edge, and so $r_i \ge t_i$. Thus, $4 \ge (v_3 - v_t) + r_i \ge (4 - t_i) + r_i \ge 4$. Therefore, $r_i = t_i$ and $4 - t_i = v_3 - v_t$, and so x_i is incident with all vertices in $V_3 - V_t$ and none of the edges joining x_i and a vertex in $V_3 - V_t$ is contractible. Since $t_i + (v_3 - v_t) = 4$ and $v_3 - v_t \equiv i - 1$ (mod 3), $(i, t_i, v_3 - v_t) \in \{(1, 1, 3), (1, 4, 0), (3, 2, 2), (5, 0, 4), (5, 3, 1)\}$.

Consider G_1 . Suppose $t_1=1$ and $v_3-v_t=3$. Since x_1 is incident with only one contractible edge, there is a triangle $x_1v_1w_1$ by Lemma 3. No vertex in V_t can be on a triangle with a vertex of degree 4, and so $v_1, w_1 \in V_3 - V_t$. Let $V_3-V_t=\{u_1,v_1,w_1\}$. By Theorem 3, $G_1'=(G_1-x_1u_1)$ is 3-connected. If x_1u_1 is on a triangle, then we may assume that it is $x_1u_1v_1$. Let S be the set of edges in $E(G_1')$ which are incident with x_1,v_1 , or w_1 but not on the triangle $x_1v_1w_1$. Then G_1 is obtained from G_1' by adding an edge obliquely across the independent 3-edge cut S. If x_1u_1 is not on a triangle, then Lemma 1 implies that G_1 is obtained from G_1' by adding an edge obliquely across an independent 3-edge cut. Regardless of whether x_1u_1 is on a triangle, $V(G_1')=V_t(G_1')$, so $G_1'\in\Gamma_0$. Hence, $G_1\in\Gamma_1$.

Suppose $t_1=4$ and $v_3-v_t=0$ for G_1 . Then Theorem 3 implies $G_1\in\Gamma_1$. Consider G_3 . Then $t_3=2$ and $v_3-v_t=2$. Let $N_{G_3}(x_3)=\{u_3,v_3,w_3,z_3\}$, where $\{u_3,v_3\}=V_3-V_t$. Suppose x_3 is not on a triangle. Then $G_3'=(G_3-x_3u_3)^{-1}$ is 3-connected and cubic by Theorem 3 since $x_3u_3\notin E_c$. Since $x_3v_3\notin E_c$, there exists some vertex w such that $T=\{x_3,v_3,w\}$ is a 3-vertex cut. Since x_3 is not on a triangle, the components of G-T both have at least two vertices. Hence, if $w\neq u_3$ then T is a 3-vertex cut of G_3' , and so $x_3v_3\notin E_c(G_3')$. If $w=u_3$, then e_{u_3} is a cut edge of $G_3'-\{x_3,v_3\}$ and so $x_3v_3\notin E_c(G_3')$. Since $V_t(G_3')=V(G_3')-\{x_3,v_3\}$, and $x_3v_3\notin E_c(G_3')$, $\epsilon_c(G_3')=\frac{v}{2}+1$. Therefore, $G_3'\in \Gamma_2$. Since $x_3u_3\notin E_c(G)$, and x_3 is not on a triangle, Lemma 1 implies that G_3 is obtained from G_3' by adding an edge obliquely across an independent 3-edge cut. Thus, $G_3\in \Gamma_3$. Suppose x_3 is on a triangle. Then the triangle is $x_3u_3v_3$. Let

$$G_3'' = (G_3 - x_3) + \{x_3', x_3''\} + \{u_3 x_3', v_3 x_3', x_3' x_3'', w_3 x_3'', z_3 x_3''\}$$

be obtained from G_3 by splitting x_3 . By Theorem 2, G_3'' is 3-connected. Since $V_t(G_3'')=V(G_3'')-\{x_3''\},\ G_3''\in\Gamma_4$. Since $G_3=G_3''\cdot(x_3'x_3''),G_3\in\Gamma_3$.

Consider G_5 . Suppose $t_5 = 0$ and $v_3 - v_t = 4$. Since x_5 is not incident with a contractible edge, Lemma 3 implies x_5 is on two edge disjoint triangles $x_5 u_5 v_5$ and $x_5 w_5 z_5$. No vertex in V_t can be on a triangle with x_5 , and so $V_3 - V_t = \{u_5, v_5, w_5, z_5\}$. Let

$$G_5'' = (G_5 - x_5) + \{x_5', x_5''\} + \{x_5'u_5, x_5'v_5, x_5'x_5'', x_5''y_5, x_5''z_5\}$$

be obtained from G_5 by splitting x_5 . By Theorem 2, G_5'' is 3-connected. Since we also have $V(G_5'') = V_t(G_5'')$, $G_5'' \in \Gamma_0$. Since $G_5 = G_5'' \cdot (x_5' x_5'')$, $G_5 \in \Gamma_5$.

Suppose $t_5 = 3$ and $v_3 - v_t = 1$. Let $V_3 - V_t = \{u_5\}$. Since $x_5 u_5$ is not on a triangle and $x_5 u_5 \notin E_c$, Lemma 1 implies that G_5 is obtained from $G_5' = (G_5 - x_5 u_5)^{\sim}$ by adding an edge obliquely across an independent 3-edge cut. Since $V_t(G_5') = V(G_5') - \{x_5\}$, $G_5' \in \Gamma_4$, and so $G_5 \in \Gamma_5$.

Finally, suppose G is a 3-connected graph such that $v(G) \geq 5$, $\epsilon_c(G) = f(v(G))$, and G is not critical. Let G' be a critically 3-connected spanning subgraph of G. Then $\epsilon_c(G') = f(v(G'))$, and so $G' \in \Gamma$ and $\epsilon_c(G') = \epsilon_c(G)$.

Consider e in E(G)-E(G'). Suppose e is incident with a vertex v in $V_t(G')$. Let v be on the triangle vwx and let y be the other vertex adjacent to v in G'. It is easy to see that $\{w, x, y\}$ is the only 3-vertex cut in G' containing w and x. Since $e \in G$, $\{w, x, y\}$ is not a 3-vertex cut in G. Hence, $wx \in E_c(G)$. But then $E_c(G') \cup \{wx\} \subseteq E_c(G)$, and we have a contradiction with $\epsilon_c(G') = \epsilon_c(G)$. Therefore, e joins two nonadjacent vertices in $V(G') - V_t(G')$. This is only possible if $G' \in \Gamma_3$, $V(G') - V_t(G')$ is a 3-vertex cut, and e joins the two vertices of degree two in $V(G') - V_t(G')$. Hence, $\epsilon(G) - \epsilon(G') = 1$ and $G \in \Gamma_3$.

Acknowledgement.

Since the completion of this work it has come to the author's attention that Ando, Enomoto, and Saito [1] have independently obtained similar results. Using slightly different methods they have determined f and proven that $E_c(G) = \frac{v}{2}$ implies $G \in \Gamma_0$.

I thank the referee for carefully reading this paper.

References

- 1. K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Comb. Th. (B) 42 (1987), 87-93.
- 2. J.A. Bondy and U.S.R Murty, "Graph Theory with Applications", North Holland, New York, 1981.
- 3. W.T. Tutte, "Graph Theory", Addison-Wesley, Menlo Park, California, 1984.