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Abstract. Constructions of partially balanced incomplete block designs with three
and four associate classes are given. The constructions use ¢-designs fort = 6 and
t=8.

1. Introduction.

Various authors including Saha [1], Sarvate [2] and Sinha [3, 4] have con-
structed series of balanced incomplete block designs (BIBDs) and partially bal-
anced incomplete block designs (PBIBDs) using t-designs.

The present construction is a generalization of a construction by Sarvate [2].
It is of interest as it is based on occurrences of unordered s-triples (rather than
pairs) in the blocks of a ¢-design.

2. Constructions.

Theorem 2.1. Let X = BIBD (v,b,r, k, 2, 23,)4,)s,)¢) be a 6-design.
ThenY = PBIBD (V = (}), B=b,

R=b-37+3),

k v—k
w=(5)+(5)
AM=b—4r+6x —4X3+2),

A =b—57r+10)2 — 1073 + 5)4,
N3 =b—67+ 15X —18)3 + 9)4)

exists.

Proof: Let the points of the PBIBD Y be the 3-sets (triples) of the points of
X. Each block B of X gives a block B’ of Y', constructed as follows:

The points in B’ are the triples of the points in B and the triples of the points
in the complement of B. (Complement of B consists of all the points of X not
in B).
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Parameter checking:

R : Atriple (a, b, c) occurs A3 times in X, each of the three pairs of the triple,
but not the complete triple, occurs A, — A3 times in X. Each of the points a,
b, c, but not any other point of the triple, occurs

r—2(M2—X)—da=r—2X 2+ 3

times in X. Therefore, the number of times the triple (a, b, ¢) is in the com-
plement of a block of X is

b—A3 —3(02 —X3) =3(r—2X2+ M) =b—-37+3) — As.

Therefore, the triple (a,b,c) isin R=b— 3r + 3 ), blocks of Y.

A1 : The first associates are the triples having two points in common. Con-
sider a 4-set {a, b, ¢, d}, it occurs in A4 blocks of X and none of a, b, c and d
occurs in b — 47 + 62 —4 X3 + A4 blocks. Therefore, the pairs of the type
((a,b,0),(a,b,d)) occurb—4r+6X3 —4X3 + 2)4 timesinY.

A2 : The second associates are the triples having one point in common. We
can verify that A = b — S +10X2 —10X3 +5X4 by noting that such pairs of
triples arise from 5-sets, each of which occurs in As blocks of X .

As : The third associates are the triples with none of the points in common.
We can verify that A3 = b — 67+ 15X2 — 183 + 9 A4 by noting that such
pairs of triples arise from 6-sets, each of which occurs in Ag blocks of X. 1§

When Ay, Ay and A3 are equated it can be seen that v = k. Therefore, we
can not get a BIBD from the construction.

Theorem 2.2. Let X = BIBD (v,b,1,k, 2, X3, Ma, As, X6, A7, \g) be an
8-design. Then there existsY = PBIBD (V = (}), B=b,

R=b—4r+6X —4X3+2)4,
k v—k
x= () ()
Al=b—5r+10X; —10)3 + 5)4,
A2=b—67+ 15X —20X3 + 1504 —6Xs + 2 )¢,

A3 =b—Tr+ 2123 —35X3 +35X4 — 2105 + 7 )¢,
AN =b—8r+28 Xy —56Xh3+72X04 —64Xs +400¢ — 1607 +4)g) .

Proof: Let the points of the PBIBD Y be the 4-sets (quadruples) of the points
of X. Each block B of X gives a block B’ of Y, constructed as follows:
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The points in B are the quadruples of the points in B and the quadruples
of the points in the complement of B. The proof is based on a similar but
lengthier counting argument. The first associates are the quadruples (a, b,c,d)
and (a,b, ¢, €) that is, where only one element is different. The second, third
and fourth associates of a quadruple are, respectively, the quadruples with two,
three and all of the four elements different from the given quadruple. [ |
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