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Abstract. We state here that, for modulus m odd and less than 22 4227 _1,no
(nontrivial) perfect binary arithmetic code, correcting two errors or more, exists (this is
to be taken with respect to the Garcia-Rao modular distance). In particular, in the case
m = 2" + 1, which is most frequently studied, no such code exists form < 28 .

I Introduction
A modified binary form of an integer z is

n
6 z=Y ;-2%, where|z| <2 foralli=0,1,...,n.
1=0

Form (1) is called minimal if the number of its nonzero coefficients z; is mini-
mal. A minimal form is not unique. If the coefficients z; in (1) satisfy z; - z;+1 = 0
foralli=0,1,...,n— 1, then form (1) is called a nonadjacent form (NAF). A
NAF has the following properties: it exists for all integer z, it is unique, mini-
mal, and easy to compute. The arithmetic weight, W (z), of z is the number of
nonzero coefficients in a minimal form of z.

Let m be a fixed integer (m > 0), and let Z,, be the ring of integers 0,1,...,
m — 1 (mod m). The modular weight, wy,(z), of an element z in Z,, is
min(W(z), W(m — z)), and the modular distance, d,, between elements in
Z.. is the modular weight of their difference (see for instance [9] or [8, pp. 449—
453] for all these introductory definitions and properties).

w,, does not always induce a metric. Recently, Ernvall [2] completely charac-
terized the moduli m for which d,, is a metric (i.e. it satisfies the triangle inequal-
ity); in the binary case, dy, is a metric if and only if the NAF of m has one of the
following forms:

) m=2"4+2"2 125, i<n—4;

D m=2"-274+2"n-5<;j<n-2,i<j-2;
) m=2"+2/,<n-2;

4) m=2"

Let C be asubset of Z,,.

If d,, is a metric and is such that d,,(z,y) > 2e+ 1 forallz and y in C
(z # y), then C is capable of correcting e arithmetic errors. C is a perfect e-error-
correcting code if moreover for each element z in Z,, there is a codeword within
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distance e from 2. In other words, the spheres of radius e, centered at the words
of a perfect code, both fill in Z,, and do not intersect (partition of Z,,).

Very little is known about perfect arithmetic codes; some classes of perfect
single-error-correcting binary codes are known (see [8, pp. 456—457] and [1]), but
so far nothing has been said about perfect two-or-more-error-correcting codes,
even in the binary case.

This situation strongly contrasts with algebraic block codes, for which itis well-
known that the only nontrivial perfect codes (with respect to the Hamming dis-
tance) are codes having the same parameters as the single-error-correcting Ham-
ming codes (length n = (¢™ — 1) /(g — 1), cardinality X = ¢™ ™, minimum
distance d = 3, where ¢ is any prime power), and codes equivalent either to the
3-error-correcting binary Golay code (n= 23, K = 2!2,d = 7), or to the 2-error-
correcting teary Golay code (n= 11, K = 3%, d = 5) (see [7, pp. 179-186]).

Notice that an e-error-correcting code, with length n and B words over an al-
phabet with g symbols, is perfect if and only if

2 B-<1+(q—-n<?>+.“+(q—1r(:>>=qa

which expresses that the number of codewords multiplied by the volume of a
sphere of radius e is equal to the volume of the whole space (see [7, p. 20]).

However, in the binary case, Emvall [3] got some knowledge about perfect
more-than-one-error-correcting arithmetic codes by deriving the volume of a sphere.
We shall use her results in Section II.

II Perfect Codes
An e-error-correcting arithmetic code with modulus m and B words is perfect if
and only if B = m/V(m, €), where V(m, e) is the volume of a sphere of radius e
(independent of its centre): V(m,e) = |{z € Zy/wm(z) < €}|. This is simply
the transposition of equality (2) in the arithmetic case. But here the volume of a
sphere is much more difficult to derive. However Ernvall [3] managed to compute
V(m,e) (e > 2).
Her results are as follows:
SIfm=2"+1V(m,e) = (2‘("—‘) +207)s
Sm=2"42"2 k1 %
V(m,e) =Y @qPQ+3zbw*tu+thwﬁ))
S Ifm=2" _2"-2 +1
V(m,e) = (2t(fv—t) 2t(n—¢—2) 2t- l(u—t—2 )
- Ifm=2n _2"-3 +1
V(m e) - (2t(n—t)+2t w—t—2)+2t(n—t 3) 2t= l(n—t 3)),
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-Ifm=2"-2/+1withn—5<;j<n—4

€ .
Vim,e) = 3 (2 + 200 + 21 (7157) - 2 (2 )+
241 ({4) )s with (3) = 0 form < j orj < 0).

The moduli m considered here are those for which d,, is a metric (see Introduc-
tion), restricted to odd cases, because these results were derived exclusively for
AN-codes (an AN-code C is a subset of Z,, which is generated by a divisor A of
m:C={0,4,24,...,(B - 1)A} with B - A = m), and an AN-code which
corrects at least two errors has necessarily odd modulus [3].

A necessary condition to have a perfect code correcting e errors is that m /V(m,e)
is an integer.

By computer we checked the above expressions up tom = 233 + 1,

We found 4 moduli m for which m/V (m, e) is an integer, all of them with e
equal to 2:

- form = 1791 V(m,2) = 199 and m/V(m,2) = 9;

- form = 4097 V(m,2) = 241 and m/V(m,2) = 17;

- form =2%+2%"_1 = 671,088,639 V(m,2) = 1671 andm/V(m,2) =
401,609,

- form = 2% — 1= 8,589,934,591 V(m,2) = 2047 (= 2!! — 1) and
m/V(m,2) =4,196,353.

If we are looking for perfect double-error-correcting AN-codes however, they
mustbe of the form {0, V(m, 2),2V(m,2),... ,((m/V(m,2))=1)V(m, 2)}.

But199 = 282642320 which proves that W(199) = 4, 50d(0, 199) <
4;241 =28 —2% 429 50 d,(10,241) < 3;19 - 1671 = 31,749 = 215 _
219422 42°,50d,,(0,19 - 1671) < 4;and d,,(0,2047) < 2.

This proves that such codes do not exist.

But perfect codes, other than AN-codes, could exist, for these moduli.

What we prove in [5] and [6] is that, for m = 1791 and m = 4097, there is no
perfect double-error-correcting code.

As a consequence, the first (odd) modulus m for which there could be a perfect
code correcting at least two errors is m = 2% + 227 _ 1 (and in the particular case
m = 2" % 1, which is of great theoretical and practical interest, such a code can
exist only for m > 233 — 1), whereas numerous perfect single-error-correcting
codes exist for small valuesof m (m =22, m=33,m=39, m=52, m= 65,
or m = 304 for instance, see [8],[1]).

IIT Conclusion
As a conclusion, three remarks which lead to open problems:

- this study, limited to rather small values of m, now requires other meth-
ods in order to prove either the existence or nonexistence of perfect binary
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codes correcting two errors or more. For example, in the algebraic case,
in order to determine all perfect codes (see Introduction), of great impor-
tance is Lloyd’s theorem (see [7, p. 179]), giving, for a perfect code, neces-
sary conditions on the zeros of the so-called Lloyd polynomial, constructed
with Krawtchouk polynomials. The same approach (which has been used
in [10], where there is an extension of Lloyd’s theorem to metrics other
than the Hamming distance, including the Lee metric and the Clark-Liang
modular metric) might be of interest in our case;

- In Section II is given the volume of a sphere when d, is a metric and m
is odd, because AN-codes necessarily lead to odd m. If we are interested
in perfect codes other than AN-codes however, we also have to consider
even m (for which d,, is a metric), and to compute the volume of a sphere
in this case, which could give perfect (non AN-) codes;

- Very recently Ernvall [4] derived the volume of the sphere in the nonbinary
case, settling, for AN-codes, almost all cases for which she had proved [2]
that d,, is a metric. Now, do perfect nonbinary codes exist?
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