Short Proofs of Some Fan-Type Results

H.J. Veldman

Faculty of Applied Mathematics University of Twente 7500 AE Enschede THE NETHERLANDS

Abstract. For a graph G, define $\phi(G)=\min\{\max\{d(u),d(v)\}\mid d(u,v)=2\}$ if G contains two vertices at distance 2, and $\phi(G)=\infty$ otherwise. Fan proved that every 2-connected graph on n vertices with $\phi(G)\geq \frac{1}{2}n$ is hamiltonian. Short proofs of this result and a number of analogues, some known, some new, are presented. Also, it is shown that if G is 2-connected, $\phi(G)\geq \frac{1}{2}(n-i)$ and $G-\{v\in V(G)\mid d(v)\geq \frac{1}{2}(n-i)\}$ has at least three components with more than i vertices, then G is hamiltonian $(i\geq 1)$.

We consider only finite undirected graphs without loops or multiple edges. For notation and terminology not defined here we refer to [4].

For a graph G, we define

$$\phi(G) = \begin{cases} \infty \text{ if every component of } G \text{ is complete} \\ \min\{\max\{d(u), d(v)\} | d(u, v) = 2\} \text{ otherwise,} \end{cases}$$

where d(x) denotes the degree of the vertex x in G and d(x,y) the distance of the vertices x and y in G. Note that $\phi(G) \geq \delta(G)$ for any graph G, where $\delta(G)$ denotes the minimum degree of vertices in G. Geng-Hua Fan established the following result.

Theorem 1 [5]. If G is a 2-connected graph on n vertices with $\phi(G) \geq \frac{1}{2}n$, then G is hamiltonian.

Here we obtain Theorem 1 as a special case of a generic result, Theorem 2 below. Before stating Theorem 2 we give a number of preliminary definitions.

Bondy and Chvátal [3] defined a graph property P to be f(n)-stable if a graph G on n vertices has property P whenever G+uv has property P and $d(u)+d(v) \geq f(n)$. We call a collection G of graphs invariant if, whenever $G \in G$, every spanning supergraph of G is in G. For a graph G and a real number G, we define G is in G. If $G \subseteq G$ denotes the set of all vertices of G is a diagraph of G, then G is a subgraph of G, then G if G if G if G is a subgraph of G, then G if G if G is a subgraph of G, then G if G is a subgraph of G, then G if G if G if G if G if G if G is a subgraph of G, then G if G if G is a subgraph of G, then G if G if G if G is a subgraph of G, then G if G is a subgraph of G, then G if G is a subgraph of G if G if G is a subgraph of G if G is a subgraph of G if G if G is a subgraph of G if G is a subgraph of G if G if G is a subgraph of G if G if G is a subgraph of G if G if G if G is a subgraph of G if G if G if G if G is a subgraph of G if G

- (i) the induced subgraph G[U] is complete, and
- (ii) every component of G U is complete, and
- (iii) if G_1 and G_2 are distinct components of G-U, then $N(G_1) \cap N(G_2) = \phi$.

Theorem 2. Assume G is an invariant collection of graphs and P and f(n)-stable property shared by all graphs in $F \cap G$. If G is a graph in G on n vertices with $\phi(G) \geq \frac{1}{2}f(n)$, then G has property P.

Proof: Assuming the theorem is not true, let G be a maximal graph in G such that G has n vertices, $\phi(G) \geq \frac{1}{2}f(n)$ and G does not have property P. Set $U = V_{\frac{1}{2}f(n)}(G)$. Since $\phi(G) \geq \frac{1}{2}f(n)$, no two vertices in G - U are at distance 2, implying that every component of G - U is complete and $N(G_1) \cap N(G_2) = \phi$ whenever G_1 and G_2 are distinct components of G - U. Since all graphs in $F \cap G$ enjoy P, we have $G \notin F$. It follows that U contains two nonadjacent vertices u and v. We have $\phi(G + uv) \geq \frac{1}{2}f(n)$ and, by the fact that G is invariant, $G + uv \in G$. Using the maximality of G we conclude that G + uv has property G. Also, $G(u) + G(v) \geq f(n)$, since $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ and the first final $G(u) + G(v) \geq f(n)$ are at distance G(u) + G(u) = f(u).

Ore [6] was the first to observe that the property of being hamiltonian is n-stable. Since the collection of all 2-connected graphs is invariant and every 2-connected graph in \mathcal{F} is clearly hamiltonian, we obtain Theorem 1 as a special case of Theorem 2.

Theorem 2 can be used to generate several other specific Fan-type results. As examples we present Theorems 6, 7 and 8 below. Before doing so we develop some additional terminology and notations and make a few observations.

If G is a graph, then $\eta(G)$ denotes the number of cut vertices of G and $\mu(G)$ the smallest number of pairwise disjoint paths covering all vertices of G. For a nonnegative integer s, the graph G is **s-hamiltonian** if G-S is hamiltonian for every subset S of V(G) with $0 \le |S| \le s$. Clearly, G is s-hamiltonian only if G is (s+2)-connected. G is Hamilton-connected if every pair of distinct vertices of G is connected by a Hamilton path. Clearly, G is Hamilton-connected only if G is 3-connected or $|V(G)| \le 3$.

The following lemma is obvious.

Lemma 3. Let k be a nonnegative integer.

- (a) The collection {G|G is k-connected} is invariant.
- (b) The collection $\{G|G \text{ is connected and } \eta(G) \leq k\}$ is invariant.

The observations in Lemma 4 below are also easily checked. (For example, note with respect to Lemma 4(a) that if $G \in \mathcal{F}$ and S is any subset of V(G), then $G - S \in \mathcal{F}$).

Lemma 4. Let G be a connected graph in \mathcal{F} .

- (a) G is s-hamiltonian if and only if G is (s+2)-connected $(0 \le s \le n-3)$.
- (b) If $\eta(G) \leq 2s$, then $\mu(G) \leq s (1 \leq s \leq n)$.
- (c) G is Hamilton-connected if and only if either G is 3-connected or $G \in \{K_1, K_2, K_3\}$.

(Short) proofs of the following assertions occur in [3].

Lemma 5 [3].

- (a) The property of being s-hamiltonian is (n + s)-stable $(0 \le s \le n 3)$.
- (b) The property " $\mu(G) \le s$ " is (n-s)-stable $(1 \le s \le n)$.
- (c) The property of being Hamilton-connected is (n+1)-stable.

We are now ready to state the announced results. Note that Theorem 6 generalizes Theorem 1, Theorem 7 contains a sufficient condition for a graph to have a Hamilton path as a special case (s = 1), and Theorem 8 was first proved by Benhocine and Wojda [2].

Theorem 6. If G is an (s + 2)-connected graph on n vertices with $\phi(G) \ge \frac{1}{2}(n+s)$, then G is s-hamiltonian (0 < s < n-3).

Proof: Combine Theorem 2 with Lemmas 3(a), 4(a) and 5(a).

If $n \ge s+5$, then the graph $G = K_{\lceil \frac{1}{2}(n-s)-1 \rceil, \lfloor \frac{1}{2}(n-s)+1 \rfloor} \vee K_s$, where \vee denotes join, is (s+2)-connected and not s-hamiltonian while $\phi(G) = \delta(G) = \lceil \frac{1}{2}(n+s) \rceil - 1$. Hence Theorem 6 is best possible.

Theorem 7. If G is a connected graph on n vertices with $\eta(G) \leq 2s$ and $\phi(G) \geq \frac{1}{2}(n-s)$, then $\mu(G) \leq s (1 \leq s \leq n)$.

Proof: Combine Theorem 2 with Lemmas 3(b), 4(b) and 5(b).

Theorem 7 is best possible, as shown by the graph $K_{\lceil \frac{1}{2}(n-s)-1\rceil,\lfloor \frac{1}{2}(n+s)+1\rfloor}$ $(n \ge s+3)$.

Theorem 8 [2]. If G is a 3-connected graph on n vertices with $\phi(G) \ge \frac{1}{2}(n+1)$, then G is Hamilton-connected.

Proof: Combine Theorem 2 with Lemmas 3(a), 4(c) and 5(c).

The graph $K_{\lceil \frac{1}{2}(n-1)\rceil, \lfloor \frac{1}{2}(n+1)\rfloor}$ $(n \ge 6)$ shows that Theorem 8 is best possible. We turn to an improvement of Theorem 1 occurring in [2]. We define the collection \mathcal{B} of 2-connected non-hamiltonian graphs as $\{H\} \cup \bigcup_{n \ge 7} \mathcal{G}_n$, where H and \mathcal{G}_n are defined according to [2].

Theorem 9 [2]. Let G be a 2-connected graph on n vertices with independence number $\alpha(G) \leq \frac{1}{2}n$. If $\phi(G) \geq \frac{1}{2}(n-1)$, then either G is hamiltonian or $G \in \mathcal{B}$.

For a graph G and a positive integer i, define $\omega_i(G)$ as the number of components of G with at least i vertices. The feature of interest here of the graphs in \mathcal{B} is that $\omega(G - V_{\frac{1}{2}(n-1)}(G)) \leq 2$ whenever $G \in \mathcal{B}$ and |V(G)| = n. We thus have the following consequence of Theorem 9.

Corollary 10. If G is a 2-connected graph on n vertices with $\alpha(G) \leq \frac{1}{2}n$, $\phi(G) \geq \frac{1}{2}(n-1)$ and $\omega_2(G-V_{\frac{1}{2}(n-1)}(G)) \geq 3$, then G is hamiltonian.

We prove a generalization of Corollary 10, using a lemma recently established in [1].

Lemma 11 [1]. Let G be a graph on n vertices and S a vertex cut of G. Suppose some component of G - S is complete and has vertex set A. If u and v are nonadjacent vertices in $V(G) - (S \cup A)$ such that $d(u) + d(v) \ge n - |A| + 1$, then G is hamiltonian if and only if G + uv is hamiltonian.

Theorem 12. Let G be a 2-connected graph and i a positive integer. If $\phi(G) \ge \frac{1}{2}(n-i)$ and $\omega_{i+1}(G-V_{\frac{1}{2}(n-i)}(G)) \ge 3$, then G is hamiltonian.

Proof: Assuming the theorem is not true, let G be a maximal 2-connected graph on n vertices such that $\phi(G) \geq \frac{1}{2}(n-i)$, $\omega_{i+1}(G-V_{\frac{1}{2}(n-i)}(G)) \geq 3$ and G is non-hamiltonian. Set $U=V_{\frac{1}{2}(n-i)}(G)$ and let G_1 , G_2 , G_3 be three distinct components of G-U with at least i+1 vertices. As in the proof of Theorem 2, every component of G-U is complete and $N(H_1) \cap N(H_2) = \phi$ whenever H_1 and H_2 are distinct components of G-U. Furthermore, U contains two nonadjacent vertices u and v, otherwise $G \in \mathcal{F}$ and G would be hamiltonian by Lemma 4(a) (for s=0). The maximality of G implies that G+uv is hamiltonian. Since $N(G_1)$, $N(G_2)$ and $N(G_3)$ are pairwise disjoint, there exists an integer $j \in \{1,2,3\}$ such that $u,v \notin N(G_j)$. Set $S=N(G_j)$ and $A=V(G_j)$. Then G_j is a complete component of G-S with vertex set A while u and v are nonadjacent vertices in $V(G)-(S\cup A)$ with $d(u)+d(v)\geq n-i\geq n-|A|+1$. From Lemma 11 it now follows that G is hamiltonian, a contradiction.

Note that by Theorem 12 the condition $\alpha(G) \leq \frac{1}{2}n$ in Corollary 10 can be dropped. Also note that a graph G satisfies the hypothesis of Theorem 12 only if $n \geq 3i + 9$.

We now show that Theorem 12 is best possible in two senses. For $i \ge 1$ and n > 3i + 8 we define the graph $G_{n,i}$ on n vertices by the following requirements:

- $(1) \ V(G_{n,i}) = A_1 \cup A_2 \cup B_1 \cup B_2 \cup D \cup \{a_1, a_2\}.$
- (2) The vertex sets of the components of $G_{n,i} \{a_1, a_2\}$ are $A_1 \cup B_1, A_2 \cup B_2$ and D; each of these components is complete.
- (3) $N(a_1) = N(a_2) = A_1 \cup A_2 \cup D$.
- (4) $|A_1 \cup B_1| = \lceil \frac{1}{2}(n-i-2) \rceil$ and $|A_2 \cup B_2| = \lfloor \frac{1}{2}(n-i-2) \rfloor$, whence |D| = i.
- (5) $|A_1 \cup A_2| = \lfloor \frac{1}{2}(n-3i) \rfloor$ and $0 \le |A_1| |A_2| \le 1$.

In particular, $G_{n,i}$ is 2-connected and non-hamiltonian, while $\phi(G_{n,i}) = \lfloor \frac{1}{2}(n-i) \rfloor$ and $V_{\lfloor \frac{1}{2}(n-i) \rfloor}(G_{n,i}) = A_1 \cup A_2 \cup \{a_1, a_2\}.$

For $i \ge 1$ and $n \ge 3i + 11$, the graph $G_{n,i+1}$ has $\phi(G_{n,i+1}) = \lceil \frac{1}{2}(n-i) \rceil - 1$ and $\omega_{i+1}(G_{n,i+1} - V_{\lceil \frac{1}{2}(n-i) \rceil - 1}(G_{n,i+1})) = 3$, showing that the lower bound for

 $\phi(G)$ in the hypothesis of Theorem 12 cannot be relaxed.

We finally show that the lower bound for $\omega_{i+1}(G-V_{\frac{1}{2}(n-i)}(G))$ in the hypothesis of Theorem 12 cannot be relaxed either. If $i \geq 1$, $n \geq 3i + 8$ and n-i is even, then $\phi(G_{n,i}) = \frac{1}{2}(n-i)$ and $\omega_{i+1}(G_{n,i}-V_{\frac{1}{2}(n-i)}(G_{n,i})) = 2$. If $i \geq 2$, $n \geq 3i + 9$ and n-i is odd, then $\phi(G_{n,i-1}) = \lceil \frac{1}{2}(n-i) \rceil$ and $\omega_{i+1}(G_{n,i-1}-V_{\frac{1}{2}(n-i)}(G_{n,i-1})) = 2$. Note that for odd values of n-i an example of a 2-connected non-hamiltonian graph G with |V(G)| = n, $\phi(G) = \lceil \frac{1}{2}(n-i) \rceil$ and $\omega_{i+1}(G-V_{\frac{1}{2}(n-i)}(G)) = 2$ exists only if $i \geq 2$ in view of Theorem 1. We also remark that, as it should be in view of Theorem 9, $G_{n,1} \in \mathcal{B}$ if n is odd.

Acknowledgement.

Thanks are due to R. Kalinowski, J. Malik, Z. Skupień and A.P. Wojda for pointing out some errors in the original version of this paper.

References

- 1. D. Bauer, H.J. Broersma, H.J. Veldman, and Li Rao, A generalization of a result of Häggkvist and Nicoghossian, J. Combin. Theory (B) (to appear).
- 2. A. Benhocine and A.P.Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory (B) 42 (1987), 167-180.
- 3. J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111-135.
- 4. J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", Macmillan, London and Elsevier, New York, 1976.
- 5. Geng-Hua Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory (B) 37 (1984), 221-227.
- 6. O. Ore, Note on Hamilton circuits, Am. Math. Monthly 67 (1960), p. 55.