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Abstract. For a graph G, define ¢(G) = min {max {d(u),d(v)} | d(u,v) = 2 }ifG

contains two vertices at distance 2, and $(G) = oo otherwise. Fan proved that every
2-connected graph on n vertices with ¢(G) > i-n is hamiltonian. Short proofs of this
result and a number of analogues, some known, some new, are presented. Also, it is
shown that if G is 2-connected, ¢(G) > i-(n— ) and G- {v € V(G) | d(v) >
21-(1»—1’)} has at least three components with more than § vertices, then G is hamiltonian
(i>1).

We consider only finite undirected graphs without loops or multiple edges. For
notation and terminology not defined here we refer to [4].

For a graph G, we define
() = { oo if every component of G is complete
~ | min{max{d(u), d(v)}|d(u,v) = 2} otherwise,

where d(z) denotes the degree of the vertex z in & and d(z,y) the distance of
the vertices z and y in G. Note that ¢(G) > 8(G) for any graph G, where
8(G) denotes the minimum degree of vertices in G. Geng-Hua Fan established
the following result.

Theorem 1 [5). IfG is a 2-connected graph on n vertices with d(G) > %n,
then G is hamiltonian.

Here we obtain Theorem 1 as a special case of a generic result, Theorem 2
below. Before stating Theorem 2 we give a number of preliminary definitions.

Bondy and Chvétal [3] defined a graph property P to be f(n) -stable if a graph
G on nvertices has property P whenever G+ uv has property P and d(u)+d(v) >
f(n). We call a collection G of graphs invariant if, whenever G € G, every
spanning supergraph of G is in G. For a graph G and a real number r, we define
Vi(G) = {v € V(G)| d(v) > r}. If S C V(G), then N(S) denotes the set
of all vertices of G — S adjacent to at least one vertex of S. If / is a subgraph
of G, then N(H) means N(V(H)). We now define a collection F of graphs as
follows: G € F if V(@) contains a subset U such that

(i) the induced subgraph G[U] is complete, and
(ii) every component of G — U is complete, and
(i) if G, and G, are distinct components of G—U, then N(G; INN(G,) =¢.
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Theorem 2. Assume G is an invariant collection of graphs and P an f(n) -stable
property shared by all graphs in F N G. IfG is a graph in G on n vertices with
¢(G) > % f(m), then G has property P.

Proof: Assuming the theorem is not true, let G be a maximal graph in G such
that G has n vertices, ¢(G) > % f(n) and G does not have property P. Set
U= Vi £ (@). Since ¢(G) > % f(m), no two vertices in G — U are at distance
2, implying that every component of G—U is complete and N(G1) NN (G2) = ¢
whenever G and G, are distinct components of G — U. Since all graphs in FNG
enjoy P, we have G ¢ F. It follows that U contains two nonadjacent vertices
v and v. We have ¢(G + uv) > % f(m) and, by the fact that G is invariant,
G + uv € G. Using the maximality of G we conclude that G + uv has property P.
Also, d(u) +d(v) > f(n),since u,v € U. However, P is f(n)-stable, implying
that G itself has property P, a contradiction. ]

Ore [6] was the first to observe that the property of being hamiltonian is n-
stable. Since the collection of all 2-connected graphs is invariant and every 2-
connected graph in F is clearly hamiltonian, we obtain Theorem 1 as a special
case of Theorem 2.

Theorem 2 can be used to generate several other specific Fan-type results. As
examples we present Theorems 6, 7 and 8 below. Before doing so we develop
some additional terminology and notations and make a few observations.

If G is a graph, then n(G) denotes the number of cut vertices of G and u(G)
the smallest number of pairwise disjoint paths covering all vertices of G. For a
nonnegative integer s, the graph G is s-hamiltonian if G — S is hamiltonian for
every subset S of V(@) with 0 < |S] < s. Clearly, G is s-hamiltonian only if G
is (s + 2)-connected. G is Hamilton-connected if every pair of distinct vertices
of G is connected by a Hamilton path. Clearly, G is Hamilton-connected only if
G is 3-connected or |[V(G)| < 3.

The following lemma is obvious.

Lemma 3. Let k be a nonnegative integer.

(a) The collection {G|G is k-connected} is invariant.
(b) The collection {G|G is connected and n(G) < k} is invariant.

The observations in Lemma 4 below are also easily checked. (For example,
note with respect to Lemma 4(a) that if G € F and S is any subset of V/(G), then
G—-SEF)

Lemma 4. Let G be a connected graph in F.
(@) G is s-hamiltonian if and only if G is ( s+ 2) -connected (0 < s < n—3).
) Ifn(G) < 2s, thenu(G) < s(1 <5< n).
(c) G is Hamilton-connected if and only if either G is 3-connected or G €
{K:1, K, K3}.
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(Short) proofs of the following assertions occur in [3].

Lemma 5 [3].
(a) The property of being s-hamiltonian is (n+ s)-stable (0 < s < n—3).
(b) The property ‘u(G) < s” is(n— s)-stable (1 < s < m).
(c) The property of being Hamilton-connected is (n+ 1) -stable.

We are now ready to state the announced results. Note that Theorem 6 gener-
alizes Theorem 1, Theorem 7 contains a sufficient condition for a graph to have
a Hamilton path as a special case (s = 1), and Theorem 8 was first proved by
Benhocine and Wojda [2].

Theorem 6. If G is an (s + 2)-connected graph on n vertices with $(G) >
-é-(n+ 38), then G is s-hamiltonian (0 < s < n—3).

Proof: Combine Theorem 2 with Lemmas 3(a), 4(a) and 5(a). ]

If n > s+ 5, then the graph G = Kit(ns)-11,[4(n-s)+1] V K5, where V
denotes join, is (s + 2)-connected and not s-hamiltonian while ¢(G) = §(G) =
[+(n+ s)] — 1. Hence Theorem 6 is best possible.

Theorem 7. If G is a connected graph on n vertices with n(G) 'g 2s and
$(G) > 3(n—s), thenu(G) < s (1 < s < m).

Proof: Combine Theorem 2 with Lemmas 3(b), 4(b) and 5(b). |

Theorem 7 is best possible, as shown by the graph K (L (n=s)=1], k (nts)+1] (n>
s+ 3).

Theorem 8 [2). IfG is a 3-connected graph onn vertices with¢(G) > %( n+1),
then G is Hamilton-connected.

Proof: Combine Theorem 2 with Lemmas 3(a), 4(c) and 5(c). 1

The graph K [H(a=D],Lh(n+ 1)) (n > 6) shows that Theorem 8 is best possible.

We turn to an improvement of Theorem 1 occurring in [2]. We define the col-
lection B of 2-connected non-hamiltonian graphs as { H} UUp>7 G, where H and
Gn are defined according to [2].

Theorem 9 [2]. LetG be a 2-connected graph onn vertices with independence
number o(G) < yn IF$(G) > L(n— 1), then either G is hamiltonian or
G eB.

For a graph G and a positive integer 1, definc w;(G) as the number of compo-
nents of G with at least 1 vertices. The feature of interest here of the graphs in B is
that w(G — V3(n-1) (@) < 2 whenever G € Band |V(G)| = n. We thus have
the following consequence of Theorem 9.
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Corollary 10. If G is a 2-connected graph on n vertices with a(G) < %n,
(G) > i— (n—1) andw2(G — Vi(a-1) (G)) >3, then G is hamiltonian.

We prove a generalization of Corollary 10, using a lemma recently established
in [1].

Lemma 11 [1). Let G be a graph on n vertices and S a vertex cut of G. Sup-
pose some component of G — S is complete and has vertex set A. If v and v are
nonadjacent vertices in V (G) — (S U A) such thatd(u) + d(v) > n—|A| + 1,
then G is hamiltonian if and only if G + uv is hamiltonian.

Theorem 12. Let G be a 2-connected graph and i a positive integer. If $(G) >
7(n—1) a1dwis1(G = Vi (,iy (G)) > 3, then G is hamiltonian.

Proof: Assuming the theorem is not true, let G be a maximal 2-connected graph
on n vertices such that $(G) > $(n—1), wi1(G — Viwn(G)) 23 and G
is non-hamiltonian. Set U = V%(n_,-) (G) and let Gy, G>, G5 be three distinct
components of G — U with at least 1 + 1 vertices. As in the proof of Theorem
2, every component of G — U is complete and N(H;) N N(H,) = ¢ whenever
H, and H, are distinct components of G — U. Furthermore, U contains two
nonadjacent vertices u and v, otherwise G € F and G would be hamiltonian by
Lemma 4(a) (for s = 0). The maximality of G implies that G + uv is hamiltonian.
Since N(G1), N(G:) and N(G3) are pairwise disjoint, there exists an integer
j € {1,2,3} such that u,v ¢ N(G;). Set S = N(G;) and A = V(G)).
Then G; is a complete component of G — S with vertex set A while u and v are
nonadjacent vertices in V(G) — (SUA) withd(u) +d(v) > n—1i > n—|A|+1.
From Lemma 11 it now follows that G is hamiltonian, a contradiction. 1
Note that by Theorem 12 the condition a(G) < %n in Corollary 10 can be
dropped. Also note that a graph G satisfies the hypothesis of Theorem 12 only if
n>31+9.
We now show that Theorem 12 is best possible in two senses. For ¢ > 1 and
n > 31+ 8 we define the graph G,,; on n vertices by the following requirements:
(1) V(Gni) = A1UA UBUBUDU{a,a2}.
(2) The vertex sets of the components of G,; —{a1, a2 } are A;UB;, A2UB;
and D; each of these components is complete.
(3) N(a1) = N(a2) = A1 UA UD.
@) |A1UBy| = [H(n—i—2)] and |4; UB,| = |+(n—i-2)], whence
|D| = 1.
(5) |[A1UAz| = |7(n—3i)] and 0 < |Ai| - 42| < 1.
In particular, Gy; is 2-connected and non-hamiltonian, while ¢(Gh;) = |+(n—
1) | and VH'("—")J (Gri) = A1 UA U {a1,a2}.
Fori > 1andn> 3i+ 11, the graph Grje1 has ¢(Grivr) = [F(n—14)] -1
and wis1(Gase1 — Vf'f(w—iﬂ—l (Ghri+1)) = 3, showing that the lower bound for
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#(G) in the hypothesis of Theorem 12 cannot be relaxed.

We finally show that the lower bound for w;, (G — V%(“_‘) (&)) in the hy-
pothesis of Theorem 12 cannot be relaxed either. Ifi > 1,n > 3i+ 8 and
n— 1 is even, then ¢(G,;) = %(n— 1) and w41 (G — V%(”_,.)(Gn,,-)) =2,
Ifi >2, n>3i+9 and n—iis odd, then ¢(Gni-1) = [+(n—14)] and
wis1(Gni1 -—Vnr(,,_,) (Ghi-1)) = 2. Note that for odd values of n—1 an example
of a 2-connected non-hamiltonian graph G with |V (G)| = n, ¢(G) = [+(n—1)]
and w41 (G — Vi_(,,_n (G)) = 2 exists only if ¢ > 2 in view of Theorem 1. We
also remark that, as it should be in view of Theorem 9, G,,;1 € B if n is odd.
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