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Abstract. Blocking sets in little and large Mathieu designs, have all been characterized
except the case S(5, 8, 24). The aim of this paper is to give the complete classification
of blocking sets in this remaining case.

1. Introduction

As it is well known, E. Mathieu (1835-1890) discovered five special simple
groups, which do not appear as members of an infinity family. They are denoted
by M1, M2, M2, M3, Mas. Nowadays, such simple groups are referred to
as sporadic simple groups. Recently, all sporadic groups have been classified.
Moreover, My4 and M, are quintuply transitive groups, while My and M;; are
4-transitive groups. Other examples of t-transitive groups with ¢ > 4 are not
known. In 1938 E. Witt gave the so-called Witt’s construction of the Mathieu
groups using the existence and uniqueness of certain Steiner systems. Such sys-
tems are called respectively the little Mathieu designs S(5,6,12), S(4,5, 11)
and the large Mathieu designs S(5,8,24), S(4,7,23) and S(3,6,22). The
Mathieu groups are precisely the automorphism group of such systems. One pat-
tern of S(5,8,24) is given by Todd and this can be found in the appendix of
[10].

Little and large Mathieu designs have been investigated from many points of
view. One open geometric problem is the study of their blocking sets.

A set of points of a Steiner system is called a blocking set if it contains no
block, but intersects every block. Clearly, if C is a blocking set, its complement is
a blocking set too. Moreover, a blocking set C is said to be irreducible ifVz € C,
the set C — {z} is not a blocking set. In a Steiner system there is no blocking
set contained in one block (cf. [1]). A blocking set is called of index two if it is
contained in the union of two blocks. The study of the blocking sets in the little
Mathieu designs is very simple and it appears in [1], [5]. On the other hand, the
study of the blocking sets in the large designs is more complicated. Three papers
— [21, [3], [4] — have been done on them.

Now we deal with the case S(5,8,24). Denote by B, B’ two blocks in §(5, 8,
24) with BN B'| = 2. Fixu € B\B',v € B'\B,a € BAB',z € BNB'.
Define the following sets:

(1.1) M := BAB'; My := BAB' — {a},

(12) I:'=BUB' - {y,v}; R:= BUB' - {z,a}.

In Section 3 of this paper we shall prove the following:
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1.1 Theorem. Let C be a blocking set in §(5,8,24). Then 11 < |C| < 13.
Moreover,
(@) |C| = 11 implies that C = Mo, Mo being contained in the union of two
blocks, i.e. Mo has index two.
(b) |C| = 12 and C irreducible imply that C = I, being I of index two.
() |C| = 12 and C reducible imply that C = MoU{z},z ¢ Mo. Moreover,
if C has index two, then either C = M or C = R.
(d) |C| = 13 implies that C is reducible and C is the complement of Mo .
Moreover, if C is of index two, then C = BU B' — {a}, where B, B' are
two blocks with |[BNB'|=2 and a € BN B'.

We recall that the general blocking set problem is the following. Can an n-
colouring exist in a block design such that any block contains at least one point of
each colour?

In Section 4 we deal with this problem, in view of papers [1] to [5]. So, in
the case of Mathieu designs we have the following answer. In S(2,5,21) ~
PG(2,4) there is an n-colouring with n = 2,3. In §(4,5,11) and S(2,4,9)
there are some monochromatic blocks in any 2-colouring. In the other cases there
is only a 2-colouring.

2. Preliminaries and results

We recall that a Steiner system S(t, k, v) is a pair (S, B), where S is a v-set of
elements called points, B is a family of k-sets called blocks, such that any fixed
t-set is contained in exactly one element of B. Denote by r; (s = 0,1,... ,t) the
number of blocks containing a fixed s-set, then:

n= (222

B,={B-{z}:z€B,Be€B}

Fix apointz € S, set:

The pair (S — {z}, B;) is a Steiner system S(t — 1,k — 1,v — 1), which is said
to be the contraction of S(¢, k, v) at the point z.

Let C be a c-set in a Steiner system S(t,k,v). Denote by z; the number of
blocks having exactly i points in common with C. Let M = {m, m2,... ,ms}
be a set of integers with0 < m1 < my < ... < my. A set C is said to be of
type (m1,ma,...,my) if z; # 0, if and only if 1 € M. We have the following
identities (cf. [1], [9]):

k .
@.1) E(;>z;=r,(:),s=0,l,...,t.
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In the case of S(5,8,24), if C is a blocking set, then (2.1) implies:

T1+ Ty + T3+ T4+ T5 + T6 + T7= 759
T3+ 213+ 324 +435+ 516+ 617= g
23+ 374 + 635 + 1026 + 1527= gy

@2 z4+ 435+ 1026 + 2037= g3
s + 5z6 + 1517= g4
6 + 6 7= gs
where
g1 =253¢-1759,
292 =77c(c—1) —2g,
(2.3) 693 =2lc(c—1)(c—2) — 69,

2494 =5c(c—1)(c—2)(c—3) — 24¢3,
12095 = c(c — 1)(c — 2)(c — 3)(c — 4) — 120¢,.

By W. J6nsson [7] and some simple counting argument, we have

2.1Lemma. Let B, B' be two blocks in S(5,8,24). Then
(@) The characters of one block are

(24) x3=1,14=280,22 =444 ,20 =30 andz; =0 if i = 1,3,5,6,7.

(b) If |BNB'| =4, then BAB' is a block,
(¢} If |IBNB'| =2, then M := BAB' isaset of type (2,4 ,6) with

@2.5) T6 = T3 = 132,74 =495,2,=0 (i = 0,1,3,5,7,8).
@ If|IBNB'|=0, then BAB' = BUB' isasetof type (0,4 ,6,8) with
0 = 1,74 = 280,26 = 448,75 = 30,2, = 0 (i = 1,2,3,5,7)

(e) The complement of a set is a block iff the set is the union of two disjoint
blocks.

(f) Denote by F a 4-set with F N B = §. There is at least one block B'
containing F' and having no point in common with B.

3. Proof of the theorem
In this Section we prove Theorem 1.1. First of all, we prove
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3.1Lemma. Let C be a blocking set in S(5,8,24). Then11 < |C| < 13.

Proof: We proved (cf. [1]) that the cardinality of a blocking set C of a Steiner
system is such that |C| > r—1, so in S(5,8,24) |C| > 6. It is simple to verify
thatif 6 < |C| < 8,1n (2.2) we have gs < 0, a contradiction.

Now suppose |C| = 9 or 10. By (2.2) z¢ + 6 z7 = 6 or 28 respectively. Then
(z6,27) # (0,0). Denote by B a block that is at least 6-secant to C. The points
of C\B are contained in a 4-set F. By 2.1 there is a block B’ such that F C B’
and B N B’ = §. Then C is contained in B U B’ and by (2.6) C has an external
block, a contradiction. I

3.2 Remark: Consider the sets M and M defined in (1.1). By 2.1(c) the set M
is a 12-set of type (2,4,6), i.e. areducible blocking set in z, Vz € M. Conse-
quently, Mo = M — {z} is a blocking 11-set of index two, which is irreducible,
since 11 is the smallest cardinality.

Now we prove a little more than 1.1(a).

3.3 Proposition. Denote by C a blocking 11-set in S(5,8,24). Then C = My
has no 7-secant block.

Proof: Let C be ablocking 11-set. Suppose that B is a block 7-secant to C. Put
F = C\B. The same argument of the last point of 3.1 proves a contradiction.
Then z7 = 0 and by 2.1 we have z¢ # 0.

Let B be one block 6-secant to C. Denote by B’ the block containing the 5-set
C\B. It holds that |[B N B'| = 2. In fact, if |B N B'| = 0, then the block-
complement of B U B’ would be external to C. Moreover, |BN B'| # 4, since B’
has 5 points outside B. Now we prove that the two points of B N B’ lie outside
C; this means C = M. Suppose BN B’ C C. Then B’ is 7-secant to C. This
is a contradiction, since zo = 0. Suppose BN B’ = {z,y} withz € C,y ¢ C.
Then B and B’ are 6-secant to C. Denote by u, v two points with v € B\B’,
v € B'\B and u,v ¢ C. We consider the contraction S(4,7,23) of §(5,8,24)
in y. In this contraction the sets L; = B — {y} and Ly = B' — {y} are two blocks
of S(4,7,23) with one common point z. In view of Lemma 2.11 in [4] there is a
block L3 in S(4,7,23) intersecting L1 N Ly only at {u,v}. So B" = L3 U {y}
is a block of S(5, 8,24) having no point in common with C, a contradiction. i

About Theorem 1.1.(b) we prove that
3.4 Proposition. The 12-set I, defined by (1.2), is an irreducible blocking set.

Proof: PutI := BUB' —{u,v}, whereu € B\B',v € B'\B,BNB' = {z,y}.
Every block B” (# B, B') intersects BAB’ in at least two points by 2.1(c). Two
such points cannot be v and v by 2.1. Then every block intersects 1.

Set I contains no block. Assume the contrary, suppose that By is a block con-
tained in 1. Then By cannot contain either point z or y, otherwise it would be at
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most 7-secant to I. So By is contained in I — {z, y}, which is contained in BAB'
of type (2,4, 6), a contradiction.

Finally, we prove that I is irreducible. Assume the contrary, suppose that there
is a point w € I such that I — {w} is a blocking set. Set I — {w} necessarily
coincides with Mg. Since M has no 7-secant block, then w € B N B’, neces-
sarily. But if we consider the contraction in w, by Lemma 2.11 of [4] we have a
contradiction. (cf. the last point of 3.3 Proof). I

3.5 Remark: The 12-set R defined in (1.2) is a reducible blocking set. Note that
R = Mo U {2}, where = € BN B'. Since My has no 7-secant block, set R is
clearly a reducible blocking set.

By (2.2), if |C| = 12, we have:

Bl =z =z7,20=36=132 — 637,73 = 35 = 1517, 24 = 495 — 2027

Now we prove 1.1(b).
3.6 Proposition. If C is an irreducible blocking 12-set, then C = I.

Proof: Since C is irreducible, we have z; = z7 > 12. Denote by B and B’ two
blocks 7-secantto C.

If BN B' = § then |C| > 14, a contradiction.

Suppose BN B' = {z,y}. If z € C,y ¢ C, then |C| > 13, a contradiction. If
z,y € C,thenC = I. Now suppose |[BNB'| = 4. If one point of BN B' is outside
C,then BAB' is ablock contained in C, a contradiction. The last remaining case
is|BNB'| = 4 with BN B' contained in C. Consider the 3 points of B'\C and the
two points of C\(B U B'). The block B” containing these 5 points is necessarily
2-secant to B. In fact |B N B"| # 4, since B" has 5 points outside B; moreover,
BN B'#@by2.1. Hence BNB" := {a,b}. Ifa € Candb ¢ C,thenC = R, a
contradiction, since R is reducible. Consequently a,b € C. Thismeans C = I. |

Now we deal with case 1.1.(c). By 3.3 we have

3.7 Corollary. If a blocking 12-set C of S(5,8,24) is reducible, then C =
Mo U{w},Yw ¢ M,.

3.8 Proposition. Let C be a reducible blocking 12-set of S(5,8,24). If C has
index two, then either C= M or C = R.

Proof: Wehave C = MoU{w}by3.7, where Mo = BUB'~{z, y,a} according
to (1.1). If C is contained in B U B’, then either w = a or w € {z,y} and the
assertion is proved.

Finally, we prove 1.1.(d).
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3.9 Proposition. If C is a blocking 13-set in S(5,8,24), then C is reducible.
Moreover, if C has index two, then C = BU B' — {a}, where B, B' are blocks
with| BN B'| =2 anda € BN B'.

Proof: The complement C of C is Mo, necessarily. Since Mo has no 7-secant
block, it follows that C has no 1-secant block, this means that C is a reducible
blocking set.

Suppose C of index two. Clearly, C cannot contain clocking 12-set I, so C
contains M. Consequently, C = Mo U {z, y}, being {z,y} # BN B’ and B,
B’ as defined in (1.1). This proves the assertion. I

We conclude this Section with the following

3.10 Proposition. Let A be one of the 12-sets I, M, R of S(5,8,24). Then
the complement A of A is isomorphic to A.

Proof: We divide the proof in the following steps.

Step 1. Suppose that C is a blocking set with |C| = 12 and z7 = 0,then C = M.
By (3.1) and z7 = O it follows that C is of type (2,4,6). Then C # I, since
it is reducible, being z; = 0. S0 C = Mo U {2}, 2 ¢ Mo. We note that, if
Mo = BUB' — {z,y,a} is defined as in (1.1), then it cannot be 2 ¢ B U B’,
otherwise B (or B') would be 5-secant C, while C is of type (2,4, 6). Moreover,
z € BN B' is impossible too, otherwise B (or B') would be 7-secant C. Soz = a
and C = BAB'.
Step 2. The complement of M is a 12-set with no 7-secant block by (3.1). So by
Step 1 the assertion of Prop. follows.
Step 3. Suppose that C is a blocking set with |C| = 12 and z7 = 1,then C = R.
Denote by B the block 7-secant C, and denote by B’ the block containing the 5
points of C\B.
a) BN B' = § is impossible, otherwise C would be contained in B U B’
having an external block by 2.1.
b) |BNB'| = 4 isimpossible, since B’ has 5 points outside B. Consequently,
|[BNB'|=2.
¢) If [ BNB'| = 2,set BN B’ cannot be contained in C, otherwise B and B’
are 7-secant to C, while 7 = 1.
Consequently, B’ intersects B only at one point of C. This means C = R.

Step 4. By (3.1) the complement of R has only one 7-secant block. So, the asser-
tion of Prop. follows by step 3.

Step 5. Suppose that C is a blocking 12-set in S(5,8,24) with z7 > 2, then
C = I. This is a consequence of the proof of 3.6.

Step 6. The complement of I is a 12-set having at least two 7-secant blocks by
(3.1). So the assertion follows. i
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4. The n-fold blocking sets of the Mathieu designs

In a block design D every family B of » disjoint blocking sets is said to be an
n-fold blocking set. An n-fold blocking set B is said to be maximal if the set E
of points outside the blocking sets of B contains no blocking set. The points of E
can be adjoined to the components of B in an arbitrary way. So we can obtain a
new n-fold blocking set B’, which is a partition of D. Such a partition is clearly
an n-colouring of D with the property that every block of D intersects each set of
B' in at least one point. In other words, each block contains at least one point of
each colour.

In the sequel it is very useful to recall some consequences of the Liineburg-
construction of S = S(3,6,22), cf. [3]. Let us consider the point-set of P =
PG(2,4) and a new point co. In S = P U {oo} we construct the structure of
S(3,6,22) with the following families of 77 blocks:

a) The 21 sets {L U {oo}}, where L is a line of PG(2,4).

b) A class of 56 hyperoval of PG(2,4) (i.e. 6-arcs) constructed in the fol-
lowing way. Let H be the set of 168 hyperovals of PG(2,4). If Hy,H, €
H, we say that

Hi~H, < |HiNH|=0,2,0r6.

The relation ~ is an equivalence relation. We have exactly 3 equivalence classes
each of which contains 56 hyperovals.We can assume each of these 3 classes as
the class of 56 blocks in S(3,6,22).

In [3] we proves thatin S(3,6,22) the blocking sets with minimal cardinality
are the so-called Fano sets. They are the 7-sets of S(3,6,22) intersected by
each block at 1 or 3 points (we call them of type (1,3)). Every Fano set F of
S = 8(3,6,22) is a Fano subplane in the contraction of S at a point z ¢ F.
The converse of this is more complicated. In the projective plane P fix a Fano
subplane F'(2) and one Liineburg class consisting of a family of 56 hyperovals.
The family { F(2) AT}, where T describes the family of 3-secant lines of F((2),
is clearly a family of equivalent 6-arcs (in the sense used above). These 6-arcs are
called 6-arcs associated with F/(2). In [3] it is proved that F(2) is a Fano set in
the extension S of P if and only if one (and then all) of the 6-arcs associated with
F(2) isnotablock of S.

Finally, we recall that PG(2,4) contains a 3-fold blocking set, which consists
of a partition of P in 3 disjoint Baer subplanes that in this case are Fano subplanes.
We recall that PG(2,4) contains 360 Baer subplanes and 120 distinct partition
into Baer subplanes (Baer-partitions).

Now we are ready to prove the following

4.1 Theorem. Denote by D a Mathieu system with an n-fold blocking set B with
n > 3. ThenD is the projective plane of order four and B is a partition into Baer
subplanes.
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Proof: If D = §(2,3,9) or S(4,5,11), then in D there is no blocking set, as
provedin [1]. If D = S(3,4,10), S(5,6,12), S(4,7,23) or S(5,8,24), then
in D there is not 3-fold blocking set, since the minimal cardinality of a blocking
setis 5, 6, 11, 11, respectively, as proved in [5], [1], [4] and in Section 3 of this
paper. So in D we do not have enough points to construct a 3-fold blocking set.
A similar counting argument proves that an n-fold blocking set with n > 4 exists
neither in PG(2,4) norin S(3,6,22).

Now we prove that S = S(3,6,22) contains no 3-fold blocking set. Suppose
that B is a 3-fold blocking set of S. Since the blocking 8-sets of S are all reducible
(cf. [2]), we can suppose that B is the union of 3 disjoint Fano sets Fy, F3, F3
and one point z outside them. Let us consider the contraction of S at the point
z, then Fy, F, F is a Baer partition of the projective plane S — {z}. Fix a line
in S — {z} (i.e. a block of S though z) which is 3-secant to F} at u, v, w and
1-secant to F, and F; at y and z respectively. There is a line through w which is
3-secant to F at 3 points a, b, c. This line intersects F3 at a point d. Consider the
two sets C; and C, defined by

Ci = F = {u,v,w}U{y,2}, C; := F5, — {a,b,c} U {w,d}.

The sets C, and C, are 6-arcs associated with Fy and F» respectively, with the
property |C1 NCz2| = |[{w}| = 1. So, they are in two different Liineberg classes. In
other words, the families associated with Fy, F and F3 are in 3 different Liineberg
classes. Consequently, one of these F; is not a Fano set, a contradiction.

Then only the projective plane of order four contains a 3-fold blocking set
which, as proved in [2], is a partition into Baer subplanes. I
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