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Abstract. Let S and T be subsets of a finite group G with identity e. We write G—e =
ST if every non-identity element g can be written uniquely as g = st with s € S
and t € T. These near-factorizations are motivated by the combinatorial problem of
finding (0, 1)-matrix factorizations of the matrix J —I. We derive some results on near-
factors § and T'. For example, S and T each generate G. Also, if G is abelian, then
the automorphism g — ¢~! is a multiplier of both § and T'. If the elementary abelian
group Cp (p an odd prime) is a homomorphic image of G, then |S|P~! = |T|P~! = 1
(mod p®). These structure theorems suggest that noncyclic abelian groups rarely have
near-factorizations. Constructions of near-factorizations are given for cyclic groups and
dihedral groups.

1. Introduction

This paper is motivated by the study of (0, 1) -factorizations of the matrix J — I.
Here J is the n x n all ones matrix and I is the n x = identity matrix. We first
recall a theorem concerning such factorizations.

Theorem 1. ([1; thm. 1.2], see also [2; thm. 3.4]) Let r, s be integers and sup-
pose that rI+ sJ = AB where A and B are nx n nonnegative integral matrices.
If r and s are relatively prime, then A and B have contant line sums; that is,
there are integers, a and b say, such that each row and column sum of A is a, and
each row and column sum of B is b. Furthermore, AB = BA.

LetJ — I = AB = XY be two (0, 1)-factorizations of J — I. We say that
these factorizations are equivalent if there exist n x n permutation matrices P
and Q such that either either X = PAQ andY = Q'BP!, orY! = PAQ and
Xt = Q!BPt. It is natural to seek a classification of the inequivalent (0, 1)-
factorizations of J — I. However, this is probably too difficult. For example, Lam
[4] and others have studied special cases where Y is a power of X ; that is, they
examine the equation X * = J — I. Some constructions are known, but a complete
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classification is nowhere in sight at present. Here we will examine another special
case, the factorizations into group matrices.

Definition: LetG be a finite group of order nwith identity e. A near-factorization
of G is a pair of subsets S and T of G such thateach g € G, g # e, can be written
uniquely as g = st for some s € S andt € T. We assume that e cannot be
written as a product st. Also, to exclude trivial factorizations, we assume that
1 < |S] < n—1 always.

We denote a near-factorization by G — e = ST'. The sets S an T" will be called
near-factors of G.

If the elements of G are taken in some order G;,1 = 1,2,...,n, then to each
subset R of G we can associate an n X n (0, 1) -matrix M (R) with i, j*# entry
equal to 1 if g;7'g; € R, and O otherwise. We call M(R) a group matrix. It is
easily seen that

ST=G-—e

is a near-factorization of G if and only if
M(S)M(T)=M(G\e)=J -1
Example 1: If C, is the cyclic group of order n and g is any generator, then
Co—e=1{9,9>,¢°,...,0°He. 0", 6*°,... , """} )

whenever n — 1 = st. If ¢ in turn has a factorization ¢t = uv and we let h = g%,
then the second near-factor in (1) can be factored further:

{e,h,h%,... K1} = {e,h, B2, .. k" }{e, h¥ K2, ... ,RV"DU}
Continuing in this manner, we see that if g is any generator of C,, and n— 1 =

mmy ...n is any factorization of n— 1, then

k
—1
Co—e=g][{e, 01,07, 0"}
=1

whereg; = gand gy = (gi)™ fori = 1,2,... ,k—1. Inparticular,ifn= mk+1,
then,

k-1
Cu—e=g[[{e.g™, a*™,....a" ™).
1=0

Also, if n= k! + 1, then

k-1
Cp,—e= gH{e,g‘!,gz’!,... ,g"’!}.
i=1
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These sets can be multiplied together in various ways to give near-factorizations
of C, that are not equivalent to (1).

Example 2: Let D, be the dihedral group of order 2n, with presentation D,, =
{z,y|z2 = y* = e,zy = y~'x}. If k is a divisor of 2n — 1, then we have the
near-factorization D, — e = ST, where

S={y'11<i<(k=1)/2}U{zy*: 0 < i< (k—1)/2}, and,
T={y*:0<jk<n}u{zy’™:0 < jk<n}

The verification that this gives a near-factorization of D, is straightforward.

The remainder of the paper is devoted to structural and non-existence theorems.
Throughout, G will be a multiplicative group of order n with identity element e.
If G — e = ST is a near-factorization of G, then clearly (n— 1) = |S||T| where
the vertical bars denote the cardinality of a set. Thus if (n— 1) is prime then G
has no near-factorizations. Let (S) denote the subgroup of G generated by S.

Proposition 1. If G — e = ST is a near-factorization of G, then
(8)=(T)=¢G

Proof: Let H = (S) # {e} andsupposethat H # G. LetG = HUHg,U.. .UHg;
be a right coset decomposition. As § C H, each translate St, t € T is contained
entirely in some right coset. Thus Hg; is partitioned into certain right translates
of S. Therefore | S| divides | H|, which in turn divides n by Lagrange’s theorem.
However, | S| also divides n— 1 and so |S| = 1, a contradiction. ]
Example 3: Suppose G has order 27. Since 27 —1 = 2 x 13, any near-factorization
of G would have say, |S| = 2 and |T'| = 13. Solet G — e = {z,y}T. Then
{e, yz~'}-zT is also a near-factorization and so, by proposition 1, G = (e,yz71).
Thus G = (yz~!) is necessarily cyclic.

2. Symmetry of near-factors in abelian groups

A generalized permutation matrix has all entries &1 or 0, and precisely one non-
zero entry in each row and column.

Theorem 2. Let k be an integer and let kJ — I = XY be a factorization into
nx n integral matrices X and 'Y having constant line sums r and s, respectively.
Suppose that X is normal; that is, XX' = X'X. Then there is a generalized
permutation matrix P such that X' = PX,

Proof: It is easy to see that kJ — I is invertible with inverse —I + “L_IJ . From
kJ — I = XY we have

sk

-1 _ _n-l=_
X =Y =D = -Y +

J
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and thus
rsk

nk —1

In particular, the matrix M = X*X~! has integer entries. Furthermore, as X is
normal,

XtXx'=-Xv + = XY + kJ.

MM = X' XXX = XY(X)' XX =1
It follows easily that M is a generalized permutation matrix. [}

Definition: Given a subset S of a group G, let S={h':h €S8} ThenSis
called shift-symmetric if S = ¢S for some g € G.

Corollary 1. Let G — e = ST be a near-factorization of the abelian group G.
Then S and T are shift-symmetric.

Proof: Note that M(S) = M(S)!. Since G is abelian, M (S) is normal and so
Theorem 2 applies to give M(S) = PM(S) for some generalized permutation
matrix P. Since M(S) and M(S) are (0, 1)-matrices, then P is in fact a per-
mutation matrix. Also P = M(g) for some g € G since these are the only group
matrices over G that are permutation matrices. Hence M(S) = M(gS) and so
S=g8. 1

The statement that S is shift-symmetric is equivalent (in design theoretic par-
lance [5]) to the statement that the automorphism g — g~ is a multiplier of the
near-factor S, provided that G is abelian. It would be interesting to find other such
multiplier theorems.

Corollary 1 is a useful tool in the study of near-factorizations of abelian groups.
We first show that the near-factors S and T' may be assumed to be symmetric.

Proposition 2. Ifan abelian group G has a near-factorization G — e = ST, then
it has a near-factorization G — e = UV with [U| = |S| and [V| = |T|,U = U
and V=1V.

Proof: We have S = ¢S for some g € G, by Corollary 1. We shall prove that
g = z2 for some z € G; we may then take U = 23, V = z~!T. To show that
g is a square, first note that if G is of odd order 2k + 1, then ¢g?¥*! = 1 and
s0g = (g~*%)2. If G is of even order, then S and T each have an odd number
of elements since |S||T| = |G| — 1. Consider the mapping F(h) = g~'h-1.
Ifh € S, then g7'h~! € ¢~!'S = ¢g~'g§ = S. Thus we may view F as a
permutation of the set S. Since F is an involution and |S] is odd, F has a fixed
pointy € S. Thus y = F(y) = g~'y~! and so g = y~2 is a square. 1

Proposition 3. Let G be an abelian group and G — e = ST a near-factorization
with |S| < 4. Then G must bé a cyclic group.

Proof: We have |S| = 2,3, or 4. If |S| = 2, then the argument of Example 3
given earlier applies (the assumption that G is abelian is not even needed in this
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case). If ]S| = 3, then by Proposition 2 we may assume that S = S 50 either
S={z,z7!,y} wherey = y~' or S = {z,y, 2} where z? = y> = 2> = 1. Inthe
latter case, we see by Proposition 1 that G is C3 or C;, both of which are easily
discounted. In the first case, G—e = {yz,y~" “ ,e}-yT and so by Proposition 1,
G = (zy).

If |S| = 4 and S = G, then necessarily S = {z,z~ Vy,y™!) for somczandy
(note that G has odd order and so has no elements of order 2). But{z,z~!,y,y~'} =
{e,zy} - {z~!,y~'}. Thus {e,zy} is a near-factor of G and so G = (zy) by
Proposition 1. 1
Example 4: By Proposition 3, the group C? has no near-factorization.

Let C, — e = ST be a near-factorization of the cyclic group Cy, p an odd prime.
If w is a complex p*t root of unity, then the near factorization yields the equation

-(54)(5¥)

Thus the complex number u = Y ;cgw* is a unit in Z[w], the ring of algebraic
integers in the cyclotomic field Q (w). A theorem of Kummer [6, p. 10] asserts
that if u is any unitin Z[w], then T = w*u for some k, where T is the complex
conjugate of u. It is this result that originally led us to conjecture Corollary 1.
Conversely, one can give a new proof of Kummer’s theorem using the method of
Theorem 2; we now outline such a proof:
Letu = Y72 o;w' beaunitin Z[w] andletv = E,,o b;w* be a unit with uv =

1. For z a generator of C,, define # by U = 2:=0 a;z* and v similarly; u and v are
members of the group ring ZC,. It is not difficult to show that 4v = IC, + e for
some integer [ (for this use the fact that 1+t +...+tP~! is the minimal polynomial
of w). Because of a natural correspondence between group matrices and members
of the group ring, it follows from Theorem 2 that € is a shift-symmetric element
of ZC,, that is,

p-1 p-1

E a.-:z:" = g# E a,-:c‘

i=0 i=0
for some k. Putting = = w gives the desired conclusion.

3. A congruential criterion

We refer to Sehgal [8] for the terminology and basic concepts of group rings.
Identifying S, T', G With 3,68, D terts D _geq 9, TeSPectively, we see that a
near factorization ST = G — e can be regarded as an equation in the group ring
Z@ of G over the integers Z.

If o : G — H is a homomorphism of G onto a group H, then we may extend
o to a group ring homomorphism o : ZG — Z H by taking g(A) = Eg a,0(g)
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for each A = }° agg in ZG. In particular, if + : G — {1} is the constant
homomorphism «(g) = 1 € Z forall g € G, then the extension of ¢ to Z@ is the
augmentation map: «( A) = Eg ay, foreach A € ZG. We write |A| for .( A). We
use  to denote the extension of the inversion automorphism: Z = Y, 0007t

Theorem 3. If the (not necessarily abelian) group G has the elementary abelian
group G as a quotient group, then for any near-factorization G — e = ST,

IS|P~ = |TPP~' =1 (mod p™) if p is an odd prime, while
[S|=—-|T|=41 (mod 2™) if p=2
Proof: Letg = p™andlet™ : G — H be a homomorphism of G onto H = Gy
Regarding S and T as members of the group ring ZG and extending ~ to a group
ring homomorphism = : ZG — ZH, we have AB = kH — e where 4 = S,
B=Tandk=|G|/q.

If o is an automorphism of H, extend ¢ to an automorphism of Z H to obtain
o(A)a(B) = kH —e. Let N(A) = []% 0*(A) where o is an automorphism of
H of order ¢ — 1. (Any generator of the multiplicative group of the field GF(9)
yields such a 0.) Defining N'( B) analogously, we obtain

N(AN(B)=(kH —e)* ! =rH +e [¥))

for some integer r. The members N(A), N(B) of ZH are invariant under o.
Since o is transitive on H — e, it follows that N(A) = ae + bH and N (B) =
ce + dH for some integers a, b, ¢, d. Substitution in (2) gives ac = =+1, so

a® = ¢ = 1. Applying the augmentation map to N( 4) gives

1S = |A]*! = IN(A)| = a+bg, s0|SX"D =1 (mod g).

The number of integers less than and relatively prime to g is p=p" Y p-1).
Since [S| and ¢ are relatively prime, we also have |S|? = 1 (mod g¢). As the
greatest common divisor of 2(¢ — 1) andp isp— 1 if pisoddand 2 if p = 2, we
finally obtain |S|P~! =1 (mod q) ifpisanoddprimeand|S|2 =1 (mod 2™)
if p = 2. Similar congruences hold for |T'|. Since |S||T| = |G| -1 = -1
(mod gq), the congruences stated in the theorem are true. [ ]
Example 5: Let p be an odd prime. Since p? — 1= (p— 1)(p+ 1), one may look
for a near-factorization C, x Cp — e = ST with |S| = p—1,and |T| = p + 1.
However, by the binomial theorem,

ISP= = (p- 1P =—p+1#£1 (mod p?).

Hence by Theorem 3 such a near-factorization does not exist.
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The congruence |S|P~' = 1 (mod p?) is of interest in its own right because
of its connection with Fermat’s Last Theorem [3]. A machine search reveals that
only 19 of the 1163 prime p less than 10,000 are such that p? — 1 = st, s,t > 4,
and s»! =1 (mod p?). In particular C2, p a prime less than 29, has no near-
factorization.

The non-cyclic elementary abelian group of smallest order that satisfies the con-
gruence in Theorem 3 for some |S|, |T'| > 4 is C3. Here 7° —1 = 18 x 19 where
186 =1 (mod 7%). We do not know if C3 has a near-factorization.

4. Further non-existence theorems, with emphasis on abelian groups of
small order

Proposition 4. Suppose that G — e = ST is a near-factorization of G and that
=~ : G — H is a homomorphism of G onto a group H. Foreach h € H let
s(hy={g€S:g=h}andt(h)={g€t:g=h} Then

@ S ls(h)| = ISL, Sl = |7

G Y Is(hitch=H = IGI/1H] -1

(i) Y |s(h)||[t(h=1k)| = |G|/|H| forall k € H,k # e
where each of the summation is taken over all h € H. Moreover, if S=2S,
T =T, then

(iv) s(h~') = 5(h) and t(h~') = t(h) forall h € H.

Proof: Equations (i), (ii), (iii) are restatements of the equalities 18] = |81, IT| =
|T|, and ST = rH — e, where r = |G|/|H]|. ]
Example 6: We will show that G = Cs x Cs x C, has no near-factorization.
Suppose then that G — e = ST where, necessarily, |S| = |T| = 7. By Proposi-
tion 2, we may assume that S and T are symmetric: S = S and T = T'. We regard
G as an additive group, taking its elements to be all triples (z,y, 2) of integers
0 <z,y<4,0 <2< 1. Since S and T have odd cardinality and are closed un-
der inversion, each must contain an odd number (and hence one) of the elements
of order 1 or 2: (0,0,0), (0,0, 1). Since S+ (0,0,0),T + (0,0,1) are also
symmetric near-factors, we may assume that (0,0,0) € S and so (0,0,)€eT.
If f is an invertible linear map on the vector space Cs x Cs then the map F' on
G defined by F(z,y,z) = (f(z,y),2) is an automorphism. Since (S) generates
G (Proposition 1), by using such a linear map if necessary, we may assume that
(1,0,a) and (0,1,b) are in S for some integers 0 < ¢,b < 1. Thus we may
take
§={(0,0,0),+(1,0,a),£(0,1,b),+(u,v,0)}

where 0 < a,b,c < 1. By using one of four linear maps f(z,y) = (£z,+y) if
necessary, we may also assume that0 < u,v < 2. Given this pattern for S, a little
checking shows that for each of the two homomorphisms ~ : G — Cs given by
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(a) = g or y, the only feasible distributions for the equations in Proposition 4
are:

(IsC0) ], Is(D) ], Is(2)], Is(3)], [s(H ] = (3,2,0,0,2),
(ICO, ECD [, (DI, )|, [ ) = (3,0,2,2,0).

Thus, 4 = v = 1. Note that the homomorphism (z,y,2) — z — y satisfies this
distribution for S and therefore must also do so for T'. A little thought now shows
that

T ={(0,0,1),£(2,0,2),%(0,2,y),£(2,2,2)}

for some integers 0 < z,y,z,< 1. Now (2,2,2) = (0,0,0) + (2,2,2) and
(2,2,24¢c) = —(1,1,¢)—(2,2, 2). Therefore, c = 1; otherwise (2,2, 2) could
be written two different ways using elements of S and T'. Likewise, (—2,0, ) =
(0,0,0) — (2,0,z),(—-2,0,a+ z) = (1,0,a) + (2,0, z) imply thata = 1;
and, (1,0,a+ 1) = (1,0,a) + (0,0,1),1,0,z+ a) = (2,0,7) —(1,0,0)
imply that z = 0. Similarly, b= 1 and y = 0. Butthen (1,0,a) + (0,2,y) =
—(1,0,a) + (2,2, 2), acontradiction.

The next theorem uses a property of characters of abelian groups of exponent
2, 3,4 or 6. (The exponent of an abelian group is the least common multiple of
the orders of the group elements.)

Theorem 4. If the (not neccssan'ly abelian) group G has a near-factorization
G—e= ST andif ~ : G — H is a homomorphism of G onto an abelian
group H of exponent 2 3 4 or 6, then there is an element h € H and posmvc
integers s,t such that S = sH + h and T = tH F h~'. In particular, |S| =

(mod |H]).

Proof: Regarding S, T' as members of ZG, we get AB = kH — e where A = §,
B =T,and k = |G|/|H|. Let x : H — C be an irreducible character of H.
Extending x to x : ZH — C, we have

x(A)x(B) = kx(H) —1=—1ifx #. ©))

where . is the trivial character, «(h) = 1 forall h € H.

By the assumption on H, x(A) is an integral linear combination of 2, 3, 4 or
6 roots of unity. If w is any such root, then w + @ is an integer. Thus |x(A4)|*> =
x(A)x(A) is apositive integer as is | x(B)|*. So by (3), x(A)x(A) = 1 forx #
t. Thus x(AA) = 1forx # . If g = (JA|*> —1)/|H|,then x(AA—gH —¢) = 0
for all x. (Here, we temporarily work in Q H.) Therefore A4 = gH + e. Letting
A =3, a,g, where the sum is taken over all g € H, this implies that

E(ag—akg)2 = Eaﬁ —Z(Eagakg)+za%g =(g+1)—2g+(g+1) =2
9 9 9
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for each e # k € H. Since the coefficients ag, g € H are integers, it follows that
all but one of them are equal and the remaining coefficient differs from the others
by +1. Thus S =AA = sH + h for some integer s and some elementh € H. In
particular, [S| = [S| = s|H|+ 1 =1 (mod |H]). It now follows directly that
T = B=tH F h~! where |T| = t|H| F 1. 1
Corollary 2. If G has a near-factorization G — e = ST and ™ : G — H is
a homomorphism of G onto an abelian group H of exponent 2, 3, 4 or 6, then
S| > |H]|-1.
Example 7: Taking G = H in Corollary 2, we see that none of the groups C7, C%,
C}, C} x CP*, C3 x CP has a near-factorization. (This can also be seen using
Theorem 3.)
Example 8: Taking H = C3 x Cs, we see from Corollary 2 that C; x Cy has
no near-factorization since 36 — 1= 5 x 7 and 5 < |H|. Similarly, none of the
following groups has a near-factorization:

Cy x C4 X C7,C2 x C16,Ca x C16,Cs X Cs,Ca x C3 X Ci6,C3 x Cq x Cs.

Example 9: For each of the three groups G below, let ™ be a homomorphism onto
the group H indicated. If any of the groups G had a near-factonzauon ST with
the specified value of |S|, then Theorem 4 would imply that S=H-hand
T=H+h! forsome h € H:
(i) G=Cy xCs,H=0C, xC4,|S|=7

(i) G=Cy xCy,H=C3 x C3,|S|=8

(ii) G=Cs xCn,H=C x Cs3,|8| =

The next proposition implies that none of the groups in Example 9 has a near-
factorization.

Proposition 5. Let G — e = ST be a near-factorization of an abelian group G.
Suppose that there is a homomorphism ~ from G onto a group H of order m
suchthatS = H — e andT = H + e. Then the powers g™, g € S are distinct. In
particular, {g™ : g € G} has at least |S| distinct elements.

Proof: Note that |H| = m, |S] = m — 1, |T| = m + 1 and |G| = m?. In the
notation of Proposition 4, the conditions imply that

S§=3s(h)andT=a+b+ S (k)
hife h#e

wheresfi?) = tfl?) = hforeache # h € H,and6=$= e. If N is the kernel of
the homomorphism, then |[N| = m and G = N + }°,_, s(h) N. Partitioning the
elements of S and T" according to their images in H we get

s(h)a+ s(h)b+ 3 s(k)t(k™'h) = s(h)N foreache # h € H.
k#e,h
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Since G is abelian, the mapping ) agg — [](g)% is a homomorphism from ZG
(as an additive group) onto G. Applying this homomorphism, we get

s(h)s(hyab [T sCk)t(k~'h) = s(hy™ (H k) foreach e # h € H

k#e,h kEN

and so

s(Mt(h~")ab [ s(k)e(k="h) = s(h)™ (H k) foreach e # h € H

k#e keN

Therefore the elements s(h=')t(h)s(h)™, e # h € H are all equal. Thus, the
powers s(h)™, e # h € H, must be distinct; otherwise, s( h)t(k) = s(k)t(h)
for some h # k and so ST could not be a near-factorization. 1

Our results imply that only three of the non-cyclic abelian groups of order at
most 100 could possibly have near-factorizations: C2 x Cig, C2 x Cp, and
C? x C»s. Using Theorem 4 and techniques like those employed in Example 6,
we have been able to show that C7 x Cyo has no near-factorization.

5. Comparision with the factorization problem

A factorization G = ST of the finite group G is a pair S, T of subsets of G
such that every g € G is uniquely representable as g = st withs € S,t € T.
The problem of finding all possible factorizations of a group has been studied by
several people; see Sands [7] for the most recent paper and references to earlier
work. These authors studied abelian groups exclusively; little is known about
factorizations of non-abelian groups. A subset S of G is called periodic if S = ¢S
for some e # g € G. A group G is called good if in every factorization G = ST,
either S or T must be periodic. It was conjectured for some time that every cyclic
group is good; the first counterexample was found by Hajés. The determination
of all good abelian groups was completed by Sands around 1960. We would like
to suggest that Corollary 1 (every near-factor of a finite abelian group is shift-
symmetric) is the appropriate analogue of the periodicity property.

In the case of good abelian groups, Sands gave an algorithm for constructing
all factorizations. We ask if something similar can be done for near-factorizations
of cyclic groups.
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