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Abstract

We prove that the intersection of longest paths in a connected
graph G is nonempty if and only if for every block B of G the longest
paths in G which use at least one edge of B have nonempty inter-
section. This result is used to show that if every block of a graph G
is Hamilton-connected, almost—-Hamilton—-connected, or a cycle then
all longest paths in G intersect. (We call a bipartite graph almost—
Hamilton-connected if every pair of vertices is connected by a path
containing an entire bipartition set.) We also show that in a split
graph all longest paths intersect. (A graph is split if there exists a
partition of its vertex set into a stable set and a complete set).

1 Introduction

Throughout the paper, all graphs considered will be finite and connected.

In [3] T. Gallai asked if it is true that in every graph G there exists
a vertex which is contained in each longest path of G. H. Walther [10]
answered this question negatively by exhibiting an example of a planar
bipartite graph on 25 vertices, in which every vertex is missed by some
longest path. The smallest known graph with empty intersection of longest
paths which has 12 vertices is due to T. Zamfirescu [12] (see Fig. 1). Many
further examples of such graphs can be found in [12], and also [5].
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Figure 1: Zamfirescu’s graph and a longest path.

In this paper we investigate some sufficient conditions for a graph to
have nonempty intersection of longest paths. In Section 2 we present some
simple examples of such graphs, including the class of split graphs. Moti-
vated by Zamfirescu’s graph which is not 2-connected, we examine in the
main part of the paper under what additional conditions on the blocks does
the graph itself have nonempty intersection of longest paths. In Section 3,
we derive a necessary and sufficient condition which is satisfied, for exam-
rle, by graphs whose blocks are cycles, cubes, complete bipartite graphs,
or Hamilton-connected graphs.

2 Terminology and examples

For a graph G, let P(G) denote the set of all longest paths in G. If B is a
block of G, let P(G) denote the set of all longest paths in G which have
at least one edge in B. We shall denote the length of a path P by |P|.
If P is a path in G and z,y two vertices of P, let P,, denote the section
of P between z and y. By intersection of two or more paths we mean the
intersection of their vertex sets. Using this convention, we are interested
in conditions on G which imply that NP(G) # 0. We shall often use the

following well-known result. For a proof, see Ore [7, p. 31].
Lemma 2.1. If P,Q € P(G) then PN Q # 0.
A graph G is traceable if it possesses a Hamilton path, and hypotraceable

if it is not traceable but G\v is traceable for every v € V(G). A graph is
Hamilton-connected if every pair of its vertices is connected by a Hamilton

44



path. A bipartite graph is almost-Hamilton-connected if every pair of its
vertices is connected by a path which contains all vertices of one of the
bipartition sets; we shall call such a path an almost-Hamilton path. A
related concept is that of Hamilton-laceable graphs defined by G. Simmons
for the case when the cardinalities of the two bipartition sets differ by at
most one (cf. [8]).

A graph is splitif there exists a partition of its vertex set into a stable set
and a complete set. A block graph is a graph which arises as the intersection
graph of the blocks of some graph. A cactus is a graph in which no two
circuits share an edge.

Example 2.2. If G is traceable then every longest path in G is a Hamilton
path and hence NP(G) = V(G). Thus every sufficient condition for trace-
ability is also sufficient for nonemptiness of N"P(G). If G is vertex-transitive
then the converse holds as well: if NP(G) # @ then NP{G) = V(G)
and hence G is traceable. Therefore the famous question of L. Lovdsz
(6] whether every vertex-transitive graph is traceable can be rephrased in
the following way: Is it true that NP(G) # 0 for every vertex-transitive
graph G?

Example 2.3. If G is hypotraceable then obviously NP(G) = 0. An
infinite family of hypotraceable graphs was constructed by C. Thomassen
in [9].

Example 2.4. A geodesic is a path which is shortest between its endpoints.
In a tree, longest paths are the same as longest geodesics, which all contain
the center of the tree (see, for example, Ore (7, p. 64]). Hence NP(T') # @,
for every tree T. For an alternative proof of this fact, recall that a family
of subtrees of a tree satisfies the Helly property: if any two subtrees in the
family intersect, then all subtrees in the family intersect (see, for example,
Golumbic [4, p. 92]. As P(T) is a family of subtrees of T' any two of which
intersect, by Lemma 2.1, the Helly property implies that NP(T) # 0. We
shall use this technique in the proof of our main result, Theorem 3.3.

Proposition 2.5. If G is a split graph, then NP(G) # 0.

Proof. Let V(G) = K U S be a partition of the vertices of G into a clique
K and a stable set S. Let §' be a maximal stable set containing S, and
K'=K - 5" V(G)= K'US'is again a partition of the vertices of G into
a clique K’ and a stable set S’. Note that |S'\ S| =|K\ K'| <1.
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If K' =0 then V(G) = §'. Since G is connected it follows that G = K,
for which the assertion is obvious. Otherwise let P be a longest path in G.
Suppose that for some z € K', ¢ ¢ V(P). Both endpoints of P belong to
S', for otherwise Pz or zP would be a longer path. Therefore P = P'uw,
where u € K' and v € S’ (see Fig. 2.a).

P <\

u * zT—"‘—">’y

L

a. b.

Figure 2: Longest paths in split graphs.
As S’ is a maximal stable set, there exists a vertex y € S’ such that
zy € E(G).
If y ¢ V(P) then Q := P'uzy is a longer path. If y € V(P) then
let w € K' be a neighbor of y on P. In this case it is possible to insert
z between w and y on P and thus to prolong P (see Fig. 2.b). In both

cases, the assumption z ¢ V(P) leads to contradiction. It follows that
K' C NP(G) which is therefore not empty. O

That K C NP(G) need not hold is demonstrated by the graph in Fig. 3.
Figure 3: A split graph and a longest path.
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3 Longest Paths in Graphs with Connectiv-
ity 1

It may happen that NP(G) = @ although NP(B) # 0, for every block B
of G. An example is furnished by Zamfirescu’s graph (see Fig. 1). The
purpose of this section is to show that the condition NP 8(G) # 0, for every
block B of G, suffices for NP(G) # 0.

If e is an edge of G, let B(e) denote the unique block of G containing e.

Lemma 3.1. Let ee;... e, be the sequence of edges of a path P in G. If
B(ei) = B(e;) and i < j then B(e;) = B(eiy1) = ... = B(e;).

Proof. Otherwise there exists a path in G which connects two vertices of
B(e;) without using any edge of B(e;). Since any two vertices of B(e;) are
also connected by a path in B(e;) one gets a circuit which passes through
more than one block of G, a contradiction. O

Let P be a path in G, B a block of G, and ¢ a cutpoint of G. We shall
call B an essential block for P if P uses at least one edge of B, and ¢ an
essential cutpoint for P if ¢ is a common cutpoint of two essential blocks
for P.

Let T(G) denote the block-cutpoint tree of G. If P is a path in G, and
eiez ... e the sequence of edges of P, then let f(P) denote the unique path
connecting the vertices corresponding to B(e,) and B(e;) in T(G).

Lemma 3.2. Let P be a path in G. Then a vertez of T(G) lies on f(P) if
and only if it corresponds to an essential block or to an essential cutpoint

for P.

Proof. Let eje;...e; be the sequence of edges of P. The sequence
B(e1)B(e;)...B(es) (1)
contains all the blocks which are essential for P. Let
B\B,...B, (2)

be a maximal subsequence of (1) with the property that B; # B;,,, for
t = 1,2,...,m — 1. (To obtain (2), replace each group of consecutive
identical blocks in (1) with a single block from the group.) By Lemma
3.1, all blocks appearing in (2) are distinct. Let ¢; denote the commeon
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cutpoint of B; and By, in (2), for i =1,2,... ,m — 1. Then the cutpoints
€1,C2,... ,Cm—1 are essential for P, and there are no others, or else there
would exist a circuit not contained in any single block. The sequence of
vertices of T(G) corresponding to the sequence

Bye1Byey ... Bp_1€m-1Bm

is a path connecting the vertices corresponding to B(e;) and B(e:) in T(G).
As this path is unique, it coincides with f(P), and the lemma is proved. O

Theorem 3.3. NP(G) # 0, if and only if NPg(G) # 0, for every block B
of G.

Proof. That this condition is necessary follows from the fact that Pg(G) C
P(G). To prove sufficiency, we distinguish two cases.

Case 1. For every pair of paths P,Q € P(G), there exists a block B
which is essential for both P and Q.

Let T(G) be the block-cutpoint tree of G, and f(P) the path corre-
sponding to P in T(G). We claim that in this case all pairs of paths in the
family {f(P) | P € P(G)} intersect. By Lemma 2.1, PN Q # 0. Let B be
an essential block for both P and Q. Then by Lemma 3.2, both f(P) and
f(Q) contain the vertex corresponding to B in T(G), proving the claim.

By Helly property, there exists a vertex v € V(T'(G)) which is contained
in f(P), for every P € P(G). If v corresponds to a block B of G then by
Lemma 3.2, P(G) = Pg(G), and therefore NP(G) # 0. If v corresponds
to a cutpoint ¢ of G then by Lemma 3.2, c lies on every P € P(G) which
again implies that NP(G) # 0.

Case 2. There exists a pair of paths P,@Q € P(G) such that no block of
G is essential for both P and Q.

By Lemma 2.1, PNQ # 0. If PN Q contains more than one vertex
then either P and @ share an edge or there exists a circuit in G formed by
edges of P and Q. In both cases, P and @ have a common essential block,
contrary to our assumption. Thus, let z be the unique vertex in PN Q.

We claim that z € NP(G). Assume that R € P(G) does not contain z.
By Lemma 2.1, PN R # 0 and QN R # 0. Let y € PN R be such that P,,
contains no other vertex of R, and let z € @ N R be such that @,. contains
no other vertex of R. The assumption that R does not contain z implies
that z # y, z # z and y # 2z (see Fig. 4).

48



Figure 4: P, @Q and R form a circuit.

Let W be the closed walk obtained by concatenating P,,, R,., and Q,.,
in this order. We are going to show that W is a circuit. Let u be a vertex of
P,y. lfu € Q.. thenu € PNQ and henceu = z. If u € R, thenu € PNR.
By our choice of y, no inner vertex of P,, belongs to R. Therefore u = y.
This proves that P,; N Q,. = {z} and P,, N R,, = {y}. Interchanging the
roles of P, and Q,., one sees likewise that Q,.NR,, = {z}. It follows that
W is a circuit.

Let B be the block of G containing W. As z # y and z # z, the lengths
of P,, and Q. are positive. This implies that B is essential for both P and
Q, contrary to our assumption. Therefore R must contain z. Since R was
arbitrary, it follows that z € NP(G), and the proof is complete. O

In the rest of the section we present several types of blocks which satisfy
the condition of Theorem 3.3.

Lemma 3.4. If a path P is longest between its endpoints then it is longest
between any two of its essential cutpoints.

Proof. Let P be a longest path connecting z and y, and let u and v be two
essential cutpoints for P. Suppose that there exists a path Q connecting
u and v such that |Q| > |P,,|. We claim that @ contains no vertex of P,,,
or P,, other than u, v. If not, consider the case when Q and P,, have an
inner vertex in common. Let w be the first such vertex on Q. Observe
that f(Pu) = f(Q) in T(G). Therefore by Lemma 3.2, the sequences of
essential blocks for P,, and for @ coincide. Together with the fact that u
is an essential cutpoint for P, this implies that P,,Q.. is a circuit which
contains edges from at least two different blocks, which is not possible.
Similarly, one can show that no inner vertex of Q lies on P,,, thus proving
the claim. Hence P,,QP,, is a path longer than P, a contradiction. O
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Proposition 3.5. Let B be a biock of a graph G. If B is Hamilton-
connected, then NPg(G) # 0.

Proof. If P € Pg(G), then P enters B at two distinct vertices. As B
contains a Hamilton path between these two vertices and P is a longest
path, P passes through every vertex of B, by Lemma 3.4. O

Example 3.8. Wheels, complete graphs on n > 4 vertices with at most
n — 4 edges removed, and graphs on n vertices with minimal degree § >

(n 4+ 1)/2 are all Hamilton—connected (see, for example, Capobianco and
Molluzzo (2, p. 182].

It is easy to see that a Hamilton—connected block is either hamiltonian
or K,. That the condition "Hamilton-connected” in Proposition 3.5 cannot
be weakened to "hamiltonian or K,” is again demonstrated by Zamfirescu’s
graph in Fig. 1, which consists of one hamiltonian block and three K;’s.

Proposition 3.7. Let B be a bipartite block of a graph G. If B is almost-
Hamilton-connected, then NPg(G) # 0.

Proof. Let V(B) = V1 U V; be a bipartition of B, and P € Pp(G). First
we prove that

Vi CV(P) or V,CV(P). 3)
If not, let u and v be the vertices in which P enters B, and R an almost-
Hamilton path between u and v. By definition, R contains all vertices of
Vi or V,, and hence |R| > |P,,|. But this is in contradiction with Lemma
3.4.

WLOG assume that |V;| < |V,|. First we consider the case |V;| < |V4].
As the cardinalities of V(P)NV; and V(P)NV; may differ by at most one,
it follows from (3) that every P € Pp(G) contains all vertices of V;.

In the case |Vy| = |V, there are two subcases. If every P € Pp(G) enters
B in different bipartition sets then by (3), V(B) C NPg(G). In the opposite
case, let P € Pp(G) be a path which enters B in the same bipartition
set, say V;. We claim that then V; C NPp(G). If not, there exists a path
Q € Pp(G) which enters Bat z,y € V;. Let P = P,P,P; and Q = Q,Q,Q5,
where P, and Q, are the sections of P and @ within B. WLOG assume
that |Py| > |Ps| and |Q:] > |Qs|]. Let R be an almost-Hamilton path in
B connecting the common vertex of P; and P, with the common vertex of
@1 and Q,. It follows from (3) that |R| = |P;| + 1 = |Q,| + 1. Therefore
|@1] > |Ps]. Now the concatenation of P, R and Q, is longer than P. O
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Example 3.8. Complete bipartite graphs K,,, are almost~Hamilton-
connected. If m # n then any longest path between two vertices contains
the smaller set, and if m = n then a longest path between two vertices
avoids at most one vertex.

Example 8.9. In the n-cube Q,, two vertices are connected by a Hamilton
path if they are at odd distance, and by a path which contains all but one
vertex if they are at positive even distance. This can be easily proved by
induction on n. Hence n-cubes are almost-Hamilton—connected.

Proposition 3.10. Let B be a block of G with the following property: If
P is a path in B and u a vertez of B not on P then there ezists a path
Q in B connecting one endpoint of P with u, such that |Q| > |P|. Then
NPg(G) # 0.

Proof. For every vertex v € V(B), let P, be a longest path starting at v
and avoiding all other vertices of B, and let I(v) := |P,|. Let u be a vertex
of B such that I(u) = max{l(v) | v € V(B)}. We claim that u € NPp(G).

To see this, suppose that P € Pp(G) and u ¢ V(P). Let z,y be the
vertices in which P enters B. By hypothesis of the proposition there exists
a path Q in B connecting u with one endpoint - say z - of P,,, and longer
than P,, (see Fig. 5). Then the path P.QP, is longer than P, proving the
claim. O

Figure 5: Longest paths passing through a block.

Example 3.11. Cycles and Hamilton—connected graphs satisfy the condi-
tion of Proposition 3.10. In a cycle, any path P not containing u can be
extended on either side to u. In a Hamilton—-connected graph, any Hamilton
path between an endpoint of P and u can play the role of Q.

Corollary 3.12. If every block of G is Hamilton-connected, almosi-Hamilton-
connected or a cycle then NP(G) # 0.
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Proof. This follows from Theorem 3.3, using Propositions 3.5, 3.7 and
3.10. O

Corollary 3.13. If G is a block graph or a cactus, then NP(G) # 0.

Proof. It is well known that a graph is a block graph if and only if its
blocks are complete, and that it is a cactus if and only if its blocks are
cycles or K,’s. Thus the assertion follows from Corollary 3.12. O
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