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Abstract. Let v, k, and ) be positive integers. A (v, k, \) -Mendelsohn design (briefly
(v, k,)\)-MD) is a pair (X,B) where X is a v-set (of points) and B is a collection
of cyclically ordered k-subsets of X (called blocks) such that every ordered pair of
points of X are consecutive in exactly X blocks of B. A set of k distinct elements
{a1,62,... ,ax} is said to be cyclically ordered by a; < a2 < ... < ax < a; and
the pair a;, a4+¢ are said to be t-apart in a cyclic k-tuple (a1,a2,...,a;) wherei + ¢
is taken modulo k. If forallt = 1,2,... ,k — 1, every ordered pair of points of X
are {-apart in exactly A blocks of B, then the (v, k, \)-MD is called a perfect design
and is denoted briefly by (v, k, A)-PMD. A necessary condition for the existence of
a(v,k,))-PMDis A\v(v —1) = 0 (mod k). In this paper, we shall be concemed
mainly with the case where k = 4. It will be shown that the necessary condition for the
existence of a (v,4,))-PMD, namely, Av(v— 1) = 0 (mod 4), is also sufficient,
except for v = 4 and A odd, v = 8 and A = 1, and possibly excepting v = 12 and
A = 1. Apant from the existence of a (12,4, 1)-PMD, which remains very much in
doubt, the problem of existence of (v, 4, X)-PMDs is now completely settled.

1. Introduction

The notion of a perfect cyclic design was introduced by N.S. Mendelsohn [15].
This concept was further developed and studicd in subsequent papers by various
authors (see, for example, [1-4, 11, 12, 17]). In what follows, we shall adapt the
terminology and notation of Hsu and Keedwell [11], where the designs have been

called Mendelsohn designs.

A set of k distinct elements {a;,az, ..., ax} is said to be cyclically ordered by
a1 < a3 < ... < ag < ap and the pair a;, a;+; are said to be t-apart in a cyclic

k-tuple (ai1,a2,...,a;) where i + t is taken modulo k.
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Let v, k, and X be positive integers. A (v, k,\)-Mendelsohn design (briefly
(v, k,X)-MD) is a pair (X, B) where X is a v-set (of points) and B is a collection
of cyclically ordered k-subsets of X (called blocks) such that every ordered pair
of points of X are consecutive in exactly A blocks of B. The (v, k, \)-MD is
called r-fold perfect if each ordered pair of points X appears t-apart in exactly
X blocks forallt = 1,2,...,r. A (k— 1)-fold perfect (v, k, \)-MD is called
perfect and is denoted briefly by (v, k, A)-PMD. It is perhaps worth mentioning
that a (v, k, \)-MD is equivalent to the decomposition of the complete directed
multigraph A K} on v vertices into k-circuits.

It is easy to show that the number of blocks in a (v, k, \)-PMD is Av(v —1) /k,
and hence an obvious necessary condition for its existence is Av(v — 1) = 0
(mod k). It is known [1, 13] that the necessary condition for the existence of a
(v,3,X)-PMD is also sufficient, except for v = 6 and A = 1. In this paper, we
shall be concerned mainly with the case where k = 4. It will be shown that the
necessary condition for the existence of a (v,4, \)-PMD, namely, \v(v—1) =0
(mod 4), is also sufficient, except fort v = 4 and ) odd, v = 8 and )\ = 1, and
possibly excepting v = 12 and A = 1. For practical purposes, the necessary
condition for the existence of a (v, 4, X) -PMD can be reduced to the following:

Lemma 1.1. A necessary condition for the existence ofa(v,4,)\)-PMD is

(1) v=0o0r1 (mod 4) for ) odd,
(2) any integer v > 4 for ) even.

The problem of the existence of a (v, 4, 1)-PMD was initially studied by N.S.
Mendelsohn [14] and remained open for quite sometime after. However, the re-
sults contained in [2, 17] now present us with an almost complete solution in the
form of the following theorem.

Theorem 1.2. A (v,4,1)-PMD exists for every positive integer v = 0 or
1 (mod 4) with the exception of v = 4 and the possible exception of v =
8,12,33,

Remark 1.3: Katherine Heinrich [10] has informed the authors that the nonexis-
tence of a (8,4, 1)-PMD was established through an exhaustive computer search,
and our independent investigation has confirmed this result. In this paper we shall
constructa (33,4, 1)-PMD, and consequently, only the existence of a (12,4, 1) -
PMD remains to be determined in Theorem 1.2.

2. Preliminaries

In order to establish our main result, we shall employ both direct and recursive
constructions. Our recursive construction will involve the notion of pairwise bal-
anced designs (PBDs), which we briefly describe below. For more information on
PBD:s and related designs, the interested reader is referred to [7, 9, 16].



Let K be a set of positive integers. A pairwise balanced design (PBD) of in-
dex unity B(K, 1; v) is a pair (X, B) where X is a v-set (of points) and B is a
collection of subsets of X (called blocks) with sizes from K such that every pair
of distinct points of X is contained in exactly one block of B. We shall denote
by B(K) the set of all integers v for which there exists a PBD B( K, 1;v). A
PBD B({k}, 1; v) is essentially a balanced incomplete block design (BIBD) with
parameters v, kand A = 1.

The following result is fairly well-known (see, for example, [5, Theorem 4.5]
or [8]) and it will be quite useful.

Lemma 2.1. Let K4 = {4,5,...,12,14,15,18, 19,23}. For every integer
v >4,v € B(K4) holds.

We shall make use of this obvious result.

Lemma 2.2. Ifa (v, k,\\)-PMD and a (v, k, \y) -PMD exist, then there exists
a (v, k,mX\; + n\y)-PMD, where m and n are non-negative integers.

The following recursive construction is a consequence of [15, Theorem 2.9] and
Lemma 2.2.

Lemma 23. Let v, k, A1, and m be positive integers. Suppose there exists a
PBD B({ki,ka,... ,k.},1;v) and for each k; there exists a (k;, k, \1)-PMD.
Then there exists a (v, k, mA\;) -PMD.

For the most part, our direct method of construction will be a variation of the
method using difference sets in the construction of BIBDs (see, for example, [7]).
Instead of listing all the blocks of a design, it will be sufficient to give the group G
acting on a set of base blocks. In this paper, the group G will always be the cyclic
group Z,,. We shall adapt the following notation:

devB = {B+g:Be€Bandg € G},
where B is the collection of base blocks of the design.

3. The Construction of (v,4,\)-PMD, ) even

In this section we shall show that the necessary condition for the existence of a
(v,4,))-PMD for X even, namely, (2) of Lemma 1.1, is also sufficient. In view
of Lemma 2.2, we need only establish the result for the case A = 2. Moreover, by
Lemmas 2.1 and 2.3, it will be sufficient to establish the existence of a (v,4,2)-
PMD when v € K4 as defined in Lemma 2.1. For this purpose, we give some
direct constructions using the difference method. It will be important to observe
the obvious fact thata (v, 4, \)-MD is perfect if it is 2-fold perfect.
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Lemma 3.1. If v = 3 (mod 4) and gcd(v,3) = 1, then there exists a
(v,4,2)-PMD.

Proof: Letv=4t+ 3. LetX = Z, and G = Z,. Define the following collection
of base blocks:

B ={(0,2kk —k):k=1,2,...,2t+1}.

Now the 1-apart and 2-apart differences from these base blocks are the following
collections, respectively:

{2k, —k,~2kk:1 < k<2t+1}, and {£k,+3k: 1< k< 2t+1}.

Since gcd (v, 6) = 1, each of them contains twice the collection of elements on
G\{0}. Therefore, it is easy to see that (X ,devB) is a (v,4,2)-PMD.

Lemma 3.2. There exists a (v,4,2)-PMD forv=4,8,10,12,14.
Proof: In each of the following five cases forv, weletG = Z,_jand X = Z,_1 U

{o0}. We then present a collection of base blocks B, and it is readily checked that
(X, dev B) is the required (v, 4, 2)-PMD.
) v=4,G =2,
B = {(00,0,1,2),(00,0,2,1)}.
2)v=8,G= 2,
B = {(00,0,1,3),(00,0,-1,-3),(0,1,-2,2),(0,-1,2,-2) }.
?3)v=10,G = Zy,
B ={(m)0)3)1))(m)014)_1)!(0)1)214))(0’3)_4!l))

(0)_31311)}‘
@ v=12,G= 2y,
B = {(00)0)1)5))(0010)-1)—5),(0:11318))(01—1n_3;_8)1

(0,—4:_21_5):(()’3)1;5)}'
(5) v= 14,G= Z13,
B = {(00,0,—1,—2),(00,0,—4,2),(0,1,3,6),(0,4,1,—5),

(0,6,1,3),(0,1,6,—4),(0,—-2,-4,4)}.
Lemma 3.3. There exists a (6,4 ,2)-PMD.
Proof: LetX = {1,2,3,4,5,6} and let B be the following collection of blocks:
B =1{(1,2,3,4),(1,2,5,3),(1,6,3,2),(1,4,2,6),
(1,6,2,5),(1,4,5,2),(1,5,6,3),(1,3,6,4),
(1,3,4,5),(1,5,4,6),(2,3,5,4),(2,4,3,6),
(2,6,5,3),(2,4,6,5),(3,5,6,4)}.

Then it is readily verified that (X, B) isa (6,4,2)-PMD.
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Lemma 3.4. There exists a (v,4,2)-PMD for v = 15 and 18.

Proof: Forv = 15,letG = Z;; and X = Zy; U{001,002,003,004}. Let B, be
the following base blocks:

Bl = {(001,0,4,l),(002,0,5,2),(003,0,—4,3),(004,0,—5,4),
(001)014;5)y(°°2)0;2) 1))(°o3t0:_1)2)»(°°4)0v_2,4))
(0’113)—5)}

Let B, be the blocks of a (4,4, 2)-PMD based on the set {oo;, 002,003, 004 },
the existence of which is guaranteed by Lemma 3.2. Then it is readily checked
that (X,B; UdevB;) isa(15,4,2)-PMD.

Forv=18,take G= Zizand X = Z13 U {oo; : 1 < i < 5}. Let B; be the
following base blocks:

B, = {(001,0,2,1),(002,0,4,2),(003,0,6,3),(c0s,0,1,-4),
(wllo’_z’_6)y(°°2)0)4l1))((”3’0,61_2))(004)0’—4;4):
(msvo)3)_5))(00510)_116))(0)1’3y6)}'

Let B; be the blocks of a (5,4, 2)-PMD based on the set of {oo; : 1 < 1< 5},
the existence of which is guaranteed by Theorem 1.2 and Lemma 2.2. Then it is
easy to verify that (X, B, UdevB;) isa (18,4,2)-PMD.

Lemma 3.5. A (v,4,2)-PMD exists for any integer v > 4.

Proof: From Lemmas 3.1-3.4, we are guaranteed the existence of a (v,4,2)-
PMD for any v in K4 except whenv = 5 and 9. However, for these two values
of v, the existence of a (v,4,1)-PMD in Theorem 1.2 implies the existence of a
(v,4,2)-PMD by Lemma 2.2. Thus a (v, 4,2)-PMD exists for any integer v in
K4. From Lemmas 2.1 and 2.3, the conclusion follows.

By applying Lemma 2.2 to the result of Lemma 3.5, we have essentially proved
the following theorem,

Theorem 3.6. If ) is even, then a (v,4,\) -PMD exists for any integer v > 4.

4. The Construction of (v,4,))-PMD, ) odd

In this section, we shall prove the existence of a (33,4, 1)-PMD and thereby
remove v = 33 as a possible exception in Theorem 1.2. As already mentioned
in Remark 1.3, there does not exist a (8,4, 1)-PMD. We shall prove the nonex-
istence of a (4,4, )-MD for any odd X. Then we shall establish the following
theorem, which addresses the necessary condition (1) of Lemma 1.1.
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Theorem 4.1. Let )\ be an odd integer. The necessary condition for the existence
ofa(v,4,)\)-PMD, namely,v =0 or 1 (mod 4), is also sufficient, except for
v=4,v=_8 and A = 1, and possibly excepting v =12 and ) = 1.

Lemma 4.2, There exists a (33,4,1)-PMD.

Proof: Take G = Zy4. Let X = Zy4 U {00; : 1 < i < 9}. Let B; be the blocks
ofa(9,4,1)-PMD based on the set {oo; : 1 < 7 < 9}, the existence of which is
known from Theorem 1.2, Let B, be the following blocks:

B, = {(0+4,6+1,12+4,1844):0<i<5}.
Let B; be the following base blocks:

B3 = {(001,0,—l,—6),(002,0,—2,—8),(003,0,9,—1),(004,0,10,—2),
(005)0:8)5))(006)0)11)_9))(007)017v10))(°°8s0)_4)_11)1
(009)0y_9)4)1(0»1)3)8)}'

Then it is readily checked that (X, B; UB; UdevB;) isa(33,4,1)-PMD.
The result of the following lemma is essentially contained in [6].

Lemma 4.3. There does not exista (4,4, )\)-MD for any odd ).

Proof: Let X = {1,2,3,4} and X be an odd integer. Suppose that there exists
a(4,4,))-MD based on X. Without loss of generality, we can assume that the
ordered pair (1, 2) occurs in blocks of the type B; = (1,2, 3,4) of multiplicity
m, and type B, = (1,2,4,3) of multiplicity m,, sothat m; +m, = X. Similarly,
the ordered pair (2, 3) occurs in blocks of the type B; and type B3 = (1,4,2,3)
of multiplicity ms, so that m; + ms = A. Hence we have my = m3. But the
ordered pair (3, 1) occurs only in a block of type B, or B3. Consequently, \ =
my + m3 = 2m, is even, which is a contradiction. Thus a (4,4, X)-MD cannot
exist for any odd M.

We need some direct constructions for the proof of Theorem 4.1,
Lemma 4.4. There exists a (v,4,3)-PMD for v=8 and 12.

Proof: Forv = 8,let G = Z7 and X = Z7 U {oo}. Let B be the following base
blocks:

B = {(0,0,2,1),(00,0,4,3),(0,0,5,3),(0,2,5,1),
(0,3,5,6),(0,4,5,3)}.

Then it can be easily verified that (X, devB) isa (8,4, 3)-PMD.
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Forv = 12,let G = Zy; and X = Z1; U {oo}. Let B be the following base
blocks:

B = {(mlo) 1)9))(w’0’4)10))(m)0)6)3))(0)1)4)6)!
(0,3,2,4),(0,4,6,2),(0,4,7,1),(0,5,6,4),
(0,6,3,2)}.

Then it is readily checked that (X, dev B) is indeed a (12,4 ,3)-PMD.

Combining Lemma 4.4 with the results of Theorem 3.6 for v = 8 and 12 and
applying Lemma 2.2, we readily obtain the following result.

Lemma 4.5. There exists a (v,4,)\)-PMD forv= 8,12 andallodd ) > 1.

We are now in position to establish the main result.
Proof of Theorem 4.1: When A = 1 and v # 4,8,12, we know from Theo-
rem 1.2 and Lemma 4.2 that the conclusion is true. Then, by applying Lemma 2.2,
we have the conclusion for any odd A and v # 4,8,12. The case v = 4 is taken
care of in Lemma 4.3. The cases v = 8 and 12 are handled in Lemma 4.5 and
Remark 1.3. This completes the proof.

5. Conclusion

Combining Theorems 3.6 and 4.1, the main result of the paper can be summarized
in the following theorem.

Theorem 5.1. The necessary condition for the existence of a (v,4,)\)-PMD,
namely, \w(v—1) =0 (mod 4), is also sufficient, except for v = 4 and ) odd,
v =8 and X\ = 1, and possibly excepting v= 12 and X\ = 1.

In conclusion, we wish to remark that, from our investigations, the existence of
a (12,4 ,1)-PMD appears to be unlikely.
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