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Abstract. This paper concems the existence of graphs and digraphs with prescribed
mean distance and the existence of graphs with prescribed mean local connectivity.

Section 1 Mean Distance

1.1 Introduction

Suppose G is a graph on v vertices and S(G) is the sum of the distances d( z, y)
for all unordered pairs {z, y} of distinct vertices of G. The mean distance of G is
defined by u(G) = S(&)/(3)-

In a digraph G on v vertices let §( @) be the sum of the distances d(z,y) for
all ordered pgirs (z,y) of distinct vertices of G. Define the mean distance of G
by 3(G) = S(®)/(v(v - D).

Because in a disconnected graph (or non-diconnected graph), the mean distance
is infinite, we will only deal with connected graphs (or diconnected graphs) in this
section. In order to facilitate our counting of mean distance we first present two
lemmas.

Lemma 1.1. ([5], Corollary 1.3) If G is a connected graph with n vertices then
1 < u(G) < (n+ 1)/3 with equality holding on the left iff G is complete and
on the right iff G is a path.

Lemma 1.2. A complete graph on n vertices has the sum of distances of (;‘)
while a path has (™3'). (The easy proof is omitted.)

From the above lemmas, we know that among graphs with a certain number
of vertices, a path has the largest mean distance while a complete graph has the
smallest.

In a graph G, the radius rad(G) of G is defined to be min (D( v)) for all
v € V(G) where D(v) is the maximal distance from vertex v to other vertices in
graph G. And in a digraph, the radius rad (G) is defined to be min(max(D*(v),
D~(v))) forallv € V(G) where D*(v), D~(v) are the maximal distances from
vertex v to other vertices and from other vertices to vertex v, respectively.

In a graph (or digraph) G, the diameter diam (G) of G is defined to be the
maximal distance in G. The following theorem was by Plesnik.
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Theorem 1.1. ([9], Theorem 9.(1)) Let r and d be integers with d/2 < r < d,
and t be a real number with 1 < t < d. Given a real number o > 0, there exists
a graph (or digraph) G with radius(G) = r and diameter(G) = d, and such that
|u(G) —t| <o

Omitting the restraints on the diameter and radius of the graphs, we have the
following nice theorem of Hendry and Truszczyriski.

Theorem 1.2. ([7],[10]) For each rational number t > 1 there exist infinitely
many graphs G with u(G) =t.

Readers are advised to sce proofs by Hendry [7] and Truszczyfiski [10]. It is
natural to wonder whether we can put restrictions on the graphs for which the
theorem still holds. In the following theorem, we restrict the graphs to be of pre-
scribed connectivity as it might seem to many people that connectivity could affect
the mean distance by holding the graph closer. Throughout this paper, we adhere
to the notation found in [2].

The following are the major results I have obtained

(1) Given a rational number ¢t > 1 and positive integer k, there are infinitely
many graphs with mean distance ¢ and connectivity k.

(2) Givenarational numbert > 3 /2, there are infinitely many directed graphs
without digons whose mean distance is t.

(3) Given a rational number ¢t > 0, there are infinitcly many disconnected
graphs with mean local connectivity t.

(4) Given arational number ¢ > 1, there are infinitely many connected graphs
with mean local connectivity t.

with two further problems in the last section.

1.2 Graphs

Theorem 1.3. For each rational number t > 1 and positive integer k there exist
infinitely many graphs with connectivity k and mean distance t. Fort = 1 there
is only one such graph with connectivity k.

Proof: Fort = 1, K+1, the complete graph on (k + 1) vertices, is obviously
a graph with mean distance 1 and connectivity k. Since in a graph with mean
distance 1, any two vertices are adjacent, K, is the only graph with connectivity
k and mean distance 1.

Fort > 1, we construct a graph H in the following way. Let G, be a path
on p vertices, K be the complete graph on k vertices and let G’ be the graph on
g isolated vertices. We denote the vertices of G, x K, the product of the two
graphs, by V(4,7) where 1 <1< pand1 < j < k and the vertices of G' by Wi
where 1 <1< gq.
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Let V(H) = V(Gp x Ki) + V(G') and E(H) = E(G, x Ki) + {Va Wil
1< i<gq,1 < j <k} asshowninFigure 1.1. There the edges in the replicas of
K have been suppressed for clarity and the double line means W; is adjacent to
each vertex V{1 ;). This graph H is obviously of connectivity k.
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Figure 1.1

Now we show that S(H) = 2 (§) + gp(p+ 1)k/2+ p(§) + k*(p— Dp(2p —
1)/12+k(3k/2-1) (B). LetV; = {V(;n0, Vi, -+ Vg 1,V = (W1, Ve, .. Vo b,
W = {W),W,,...,W,}. If X and Y are subsets of the vertices of H, let
d(X,Y) denote Y {d(z,y) : € X,y € Y}, taking d(z, 2) = 0. Then

(1) dW, W) =2(3).
(2) d(W,V) = gk)_F_, j because d(W, V;) = gjk and
@) d(V,V) = p(§)+ T2 L0 k(G +(+ 1)(k=1)) because d(V;, Vi) =
(%) and d(V;, Viej) = k(G + (G + D(k— D) for1 <j < p—i.
Therefore S(H) = 2(3)+qk > 5. J+p(3)+ 0 YR k(G+(G+ D (k-1)),
and the equations follows directly.

Now we add edges, one by one, to any two distinct vertices in G'. For any
two distinct vertices W;, W;, d(W;, W;) = 2 before edge W;W; is added and
d(W;,W;) = 1 after the edge is added. Furthermore, adding edge W;W; does
not affect the distance of any other two distinct vertices since any vertex adjacent
to Wi(W;) has a distance of 1 or 2 to W;(Wj). So the total sum of distances of
the graph decreases exactly by one. Let L,, = S(H). We can add (§) edges
altogether to G in such a way, so there is a graph #' D H withv(H') = kp+ ¢
and S( H') can be any number between Ly g and Ly ,— (§), inclusively. We denote
Lpg — (3) by Sy, H' is obviously of connectivity k of p > 2.

For positive integer z and arbitrary ¢ with0 < ¢ < p, let g = zp + c. Then we
have

Ip+cC . T
Lp1g+k = Spg = < p2 > + O(z), hence ll‘ngo (Lp-1q+k — Sp,q)/<2p> =1,

so there is an X such that for all d > Xo,if ¢ > dp then Loy gox > Spg-
Supposet = m/n > 1. Let p = nr and ¢ = dnr, where r is any positive integer,
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thenv = kp+ ¢ = (k + d)nr. We have

[S20-2k, L2u—2k] U [Ss w=3ksL3,4-3k] U U [Surdnr , Lurgor |
2 [SZ,V—ZI:; Lnr,dnr] .

So there is a graph A" D H with v(H') = (k + d)nr and S( H') can be any
integer in [S2 ,_2, Lurdnr | . There is an integer Ro such that (S; ,_2%) /() <
m/n < (Lunran )/ (3) forall r > Ry, because

2
lim S2w=2k _ (v*/2) + O(v) -1
roo (5) o ()
Lusdnr _ .. O(1*)

lim =
r—o0 (;) r—oo O(r2)

andm/n> 1. Taker = 2Ro then Sy , 54 < m/1(}) < Lurdnr and (m/m) ¢ =
(v =1 Ro(k+ d)nis an integer and p > 2, therefore there is a graph H' of con-
nectivity k and v(H') = (k+ d)nr and S(H') = (¥)m/n,ie., u(H') = 1.

If we take different multiples of 2 Ry for r, then we get different graphs with
mean distance ¢. So for¢ > 1 there are infinitely many graphs with mean distance
t and connectivity k. |§

1.3 Digraphs

We know that for any rational number t > 1 there are not only infinitely many
graphs that have the prescribed mean distance but also infinitely many with a pre-
scribed connectivity that have the prescribed mean distance. As to digraphs with
digons, the corresponding problem is trivial if we change each edge of the graph

in Theorem 1.1 into a digon thus changing the graph into a digraph. So in the
following we only discuss digraphs without digons.

Lemma 1.3. For any non-trivial digraph G without digons, the mean distance
w(aG) >3/2.

Proof: Forany twodistinct vertices z, y € V(G), we have d( z,y) > 1, cf(y, ) >
1 and they can not hold at the same time (otherwise G has a digon). Sod(z,y) +
d(y,z) > 3. Consequently

- d(z,y) + d{y,
S(G) z.yezv:(c)( (z.4) + d(y, ) 3v(v—1) _

v(v—1) 2v(v—-1) =2u(v-1)

_, _ 3
B(G) = 5

76



Lemma 1.4. Any complete graph K, (n¥ 1,2,4) can be assigned an orienta-
tion to form a tournament in which the distance from any vertex to another vertex
is no more than 2. Thus the mean distance of this tournament is 3 /2.

Proof: By induction on the number of vertices of the graph. Let G be such a
graph.

When v(G) = 3, we have a directed triangle. It can easily be seen that the
distance from any vertex to another is no more than 2.

When v(G) = 6, there is a tournament whose adjacency matrix is

01 00 1 1- 001 2 3 1 1
000 10 1 102110
110000 2 (00101 1 2
A=11 01 00 oA =11 5 00 1 1
011100 21110 1
00 11 1 0. 22210 0

002 2 3 2 2

1 0 2 2 1 1

2. |1 201 1 2

adA"+A=1, 5 1 o 1 1

22 2 2 0 1

2 2 3210

Thus in this digraph the distance from any vertex to another is no more than 2.

Suppose then when v(G) = k, the lemma is true. When v(G) = k+ 2, we
can assign the first k vertices such an orientation, then give the edges connecting
Vi+1 and the first k vertices the direction from Vi, to each of them and give the
edges connecting Vi, and the first k vertices the direction from them to Vi.,.
Finally give the edge Vi+2 Vi+1 the direction from Vi,s to Vie1. Of the first &
vertices, the distances from any vertex to another is no more than 2 and any of the
first k vertices, Vi+1 and Vi+2 form a directed triangle. So the distance from any
vertex to another is no more than 2. Therefore the mean distance of this digraph
is3/2.1

The induction argument above was introduced to me by D.A. Gregory and the
same approach can be found in [9] (Corollary 3.).

Theorem 1.4. Forany rational t > 3 /2 there are infinitely many digraphs with
mean distance t.

Proof: Fort = 3/2,by Lemma 1.4, we have infinitely many digraphs with mean
distance 3 /2.

Fort > 3/2,letG, and G, be two digraphs on g vertices (g is a positive integer
> 6) whose mean distances are 3 /2 as described in Lemma 1.4.
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Let V(Gy) = {W],‘ll <1 < q}, V(Gy) = {Wz,‘ll <1< q}, and let
p be an integer> 4. We construct a graph H in the following way, the vertex-
setof H, V(H) = V(G1) UV(G2) U {V|1 < i < p} U {U}; its edge-
set B(H) = E(G1) U E(G2) U {ViVin|1 <i<p-1} U {V,W,BU} U
{UWii|1 <i<q} U {Vii|l <i<q} U {(Wilz]1 <i< g} U {(VaWhy
1 <1< q}U{WaVi|l <1< g}, as shown in Figure 1.2. There P = G rep-
resents the fact that every vertex in G is reachable from every vertex in P. Then
v(H)=2q+p+ 1.

V)
\
Vp Vp-1 Vp-2 Ve Va '///'L
K v o <8 I Y < \\\VZ\ ."1////
\ J ’
~_ 4\ .
\ ,/1
=
P
=
Vi
Figure 1.2

Now we show that S(H) = p?(p+ 1)/2+ 2qp® + 6 + 11q + T¢*. First
we denote this sum by L,, for later use. Let W) = V(Gi), Wa = V(G2)
and V = {V},V4,...,V,}. The equation above can be easily inferred from the
following table that gives af( X,Y) for sets of pairs of vertices in H.

d(X,Y) 7% Wa U v
Wi 3g(g—1)/2 24* 2g q(3+3(p—1)/2)
Wa 24" 3q(g—1)/2 3q gp(p+1)/2
U q 3q 0 3+ p(p+1)/2
v 92+ p(p—1)/2) | ep(p+ /2 | p(p+1)/2 | 3—p+p*(p—-1)/2

Now we add arcs W»; W j, one by one, to H. Every time an arc is added cf( Wai, Whj)
changes from 2 to 1, decreasing by one. Any other distance will change if and only

if any Of(Z(WQ_,',X) where W1; X is anarc or any ochZX, W1;) where X Wh; is an
arc is affected if and only if any ofcf(Wz,-, X) where X € S = {V2}U{Wi,|1 <
a< ganda# j}oranyof d(X, W) ;) where X € T = {Va }U{Waa|l <a< g
and a # 1} is affected. Thus none of them will change if W,; W, ; is added, since
d(Whi, X) = 1 or2 when z € S and d( X, W),) = 1 or2 when X € T. So the
total sum of distances of the graph decreases exactly by one.
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We can add ¢? arcs together in this way. So there is a digraph H' on
v = 2¢+p+ 1 vertices and S(H’) can be any integer between Ly, and L, ; —g?.
We denote the latter by Sy, ;.

For positive integer z and arbitrary ¢ with0 < ¢ < p,letq = zp + c. Then we
have

5 (Lp-a g = Sp)/(xp)? = lim (¢ + O(2)) /(zp)? = 1

So there exists an integer k such that for all z > k,if ¢ > zpthen Lp_3 g+1 >
Spq- Suppose thatt = m/n > 3/2. Now let ¢ = knr, p = nr, where r is any
even positive integer> 6,s0v = (2k+ I)nr+ 1. Lete = (v — 5) /2, then

[St.0:Laa] U [Ssazt,L6a1]U.-.U [Snr—2 ket Lnr—2 krws1 |
U [S'm,k,w , L,.,,k,,] 2 [S4 @ L,,'k,,] ............ (%).

We have

ie———lim w_i

li = =

rl‘rgo u(u — l) r—00 U(U — 1) 2
3

lim Lk iy O0)

r—oo v( nu — 1) et Oo(v?) B
Since m/n > 3 /2, there is an integer Ro such that for all » > Ry

Lnf,krw

_Saa Lk
viv-1)

viv—1) <

Z<
n

Because v(v — 1)m/n= v(2k + 1)rm is an integer, (*) implies that there is a
digraph H' D H withu(H') = vand S(H') = v(v—1)m/n,ie. uy(H') = m/n.

We get different graphs by letting r be different multiples of 6 Ry, so there are
infinitely many graphs with mean distance t. |

In the above proofs, we employed the method of adding edges one by one to
the graphs to get a sequence of graphs with consecutive sum of distances. This
method was first used by G.R.T. Hendry [7] in his proof of Plesnik’s problem.
Both of us only gave an existence proof. M. Truszczyriski proved it by a different
approach and he actually constructed a specific graph with the prescribed mean
distance. That, at the same time, also leaves us further problems (see Section 3).
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Section 2 Mean Local Connectivity

2.1 Concepts

In the previous section, we discussed the mean distance. We now look at another
property of graphs, local connectivity.

In the graph G, the local connectivity Cg(z,y) of two non-adjacent vertices
is the minimum number of vertices separating z from y. If z and y are adjacent,
their local connectivity Co(z,y) is defined as Cy(z,y) + 1 where H = G —
zy (1. We call C(G) = Z{M}QV(G) Ce(z,y) the coherence of G. Define
u(@) = C(@)/(3) to be the mean local connectivity of G where v is the number
of vertices of the graph G.

Like the mean distance being a natural measure of “compactness” of the graph,
the mean local connectivity can be looked on as a natural measure of invulnerabil-
ity to disconnection of a corresponding network. The analogous problem for local
connectivity is the existence of graph with prescribed mean local connectivity.
Here I present the proofs for disconnected and connected graphs individually.

2.2 Disconnected Graphs

To highlight the main part of the thcorem and make it more easily understood, we
introduce a lemma.

Lemma 2.1. Let Go be the edge-free graph with vertex set {V1,Va,... ,V,}.
We add edges, onc by one, to form a complete graph at the end in such way that
we make the first 1 vertices a complete graph before connecting Vi, (k > 1) to
any of these first i vertices. Let G, be the graph obtained from G by adding p
edges that way, then we have

C(Gpe1) < C(Gp) +2n forall 0 < p< (;‘)

Proof: Forany 0 < p < (’2‘), let the next edge to be added be e = V;V; (i > j),
let P, = {z € V(Gp)|zV; € E(Gp)}, and P, = {V,V3,...,V;_1}\P;. Then
the induced subgraph G( P, U P,) is complete and Gp.q = Gp + e, as shown in
Figure 2.1.

When adding the edge e = V;V}, C(z,y) changes only if z = V;and y €
PyUP, orz = V;and y € P,. Therefore

C(Gpr1) —C(Gp) = |P2| +2|P| < 2(i-1) <27
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P

oVn

Figure 2.1

Theorem 2.1. For any rational number t = k/m > 0, there are infinitely many
disconnected graphs with mean local connectivity t.

Proof: For each integer r, let n=2rm.
Let Gp, where 0 < p < (3), be the graphs described in Lemma 2.1. Let My
be the edge-free graph with vertex-set

V(Mo) ={a;]1 i< 2n}U{h]1 <i<2n}, and

M, be the graph obtained from My by adding ¢ edges a;b; (1 <1< g).
Let Hp = Gp+ Mg, then Hy, 4 is a graph on 5 n vertices as shown in Figure 2.2.

IJPA

a1 o—e b1

az o——o b2

aq e——e@ bg

aq+1 @ ® bqg+1
azn @ ® ban
Figure 2.2

Because H,, , consists of components Gp and g replicas of K, we have C(Hpg) =
C(Gp) + g foreach0 < g < 2n. It follows from the Lemma 2.1 that C( Hpg) =
C(Gp) + g foreach 0 < g < C(Gp+1) — C(Gp) = C(Hpr10) — C(Hpp).
So we have a graph on 5= vertices whose coherence can be any integer between
C(Hp+1,0) and C(Hpp).
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For any integer 0 < N < (;)(n — 1) there is a disconnected graph H, , on
5n vertices for some p and ¢ with C(Hp,) = N, because C(H,,) = 0 and
C(Hmp) = (3)(n—1) wherem = (3).

Sincelim,_,o (3)(n—1)/(3") = oo, there s aninteger Ro suchthat (") k/m <
(3)(n—1) forall r > Ro. But (") k/m = 5kr(5n— 1) is integral, so there is a
graph H, ., for some p and g, on Sn vertices such that C(H,,) = (52") k/m, that
is, u( Hpq) = C(Hpg) [ (3) = k/m = 1.

For different r > Ry we have different graphs with mean local connectivity ¢,
so there are infinitely many graphs with mean local connectivity t. i

2.3 Connected Graphs
For the same purpose as in 1.2, we now introduce some other lemmas.

Lemma 2.2. The coherence of the n-cycle Cy, is 2 (3). The coherence of Cp+e,
the graph obtained by adding an edge e to two non-adjacent vertices in C,, is
2(7) +1.

Proof: Any pair of vertices in C,, has a local connectivity 2 and any pair of vertices
in C, + e has a local connectivity 2 except that the pair of the two ends of e has a
local connectivity 3. 1

By Lemma 2.2, C(Cy) = 2(;) and C(Cy + €) = 2(3) + 1.

Lemma 2.3. For a graph Go with vertex-set V(G) = {V1,Va,...,V,} and
edge-set E(G){ViV»]1 < i < n— 1}, we add edges, one by one, to form a
complete graph in such a way that we make the first 1 vertices a complete graph
before adding an edge to connect V; (j > i) to one of the first i vertices. Let G,
be the graph after adding p edges to Gy, then C(Gp+1) — C(Gp) < 2n for all
0<p< (7))

(The proof is similar to that of Lemma 2.1 and is omited.)

Theorem 2.2, For any rational number t = k/m > 1, there are infinitely many
connected graphs with mean local connectivity t. Furthermore t = 1 is best
possible for non-trivial graphs.

Proof: In the non-trivial connected graph G, Cg( z,y) > 1 forany distinctz, y €
V(G). Therefore the mean local connectivity of G is at least 1.

Fort = 1, P,, the path of length r, is obviously a connected graph with mean
local connectivity u(P,) = 1 foreachr > 1.

Fort > 1, we construct a graph H,, on (9n+ 1) vertices (n = 2rm, r is an
integer) in the following way.

Let My be a graph consisting of 27 mutually disjoint 4-cycles and another
vertex U which is connected to a vertex of each of the 4-cycles. Let M, be the

82



Figure 2.3

graph obtained from My by adding one edge to each of the first g 4-cycles so that
the maximum degree of each vertex in M, (except U) is 3.

Let Hpq = Gp+ Mg+ V,U (Gpis the graph mentioned in Lemma 2.3) as shown
in Figure 2.3. Because any pair of vertices in Hy o have local connectivity 1, ex-
cept that the pairs of vertices that are in one of the 4-cycles have local connectivity
2,C(Hoo) = {(%") + (3)2n}. It follows from Lemma 2.2 that C( Hy) =
C(Hpp) + g foreach0 < ¢ < C(Gp+1) — C(Gp) = C(Hpi10) — C(Hpp).
To be exact, if we add an edge ep.1 t0 Gy to form Gy (p < (') we geta
gap= C(Hp+10) —C(Hpo) < 2nwhileif weadd anedge to My (Q < 2n—1)
we get an increase of exactly one. So if we add edges, one by one, to Mo until the
total increase is one less than the gap, then delete all the edges added to Mo and
add the edge ep+1 to G, we get graphs with consecutive coherences.

So we have a graph H,, ; on (9 n+ 1) vertices for some p and g such that C( H,,4)
can be any integer between C( Ho o) and

C(Hpp) = (9”2‘“ 1) + <;>2n+ (’2‘>(n—2) where p = ("; l).

Now {(9"2”) + (g)2n+ (n- 2)}/(9';'1) — oo as r — oo, and
(O + (3)2n}/C%') — 1asT — oo, therefore {(CB) + (3)2n+
@) (n=2} > C=Yk/m > {(°%") + (3)2n} for r large enough. Because
(%1 k/m = 9(9n+ 1)k is an integer, there is a graph Hy,, for some p and g
such that C(Hp) = (°%')k/m. Hence u(Hpg) = t.

Therefore there are infinitely many such graphs because there are different graphs
with p(Hpg) = t for different r. i

Remarks

Another concept analogous to local connectivity is local edge-connectivity. The
local edge-connectivity between two vertices is the minimum number of edges
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separating the two vertices. Interestingly enough, the construction above is valid
for local edge-connectivity. We can get the same results for local edge-connectivity
and the proofs are similar.

Section 3 Further Problems

We say that a rational number t is realizable by a graph if there is a graph with
mean distance t. The graph is called a realization of t, and a best realization if the
graph has the minimum number of vertices.

We know that any rational number¢ > 1 is realizable by infinitely many graphs.
Furthermore by Truszczyriski’s proof, we know that the rational number ¢ = a/b
(a, b are relatively prime positive integers) is realizable by a graph with 2¢(c +
1)b + 1 vertices, where c is an integer such that 2 /(c + 2) < b/a < 2/(c+ 1).
This suggests the following problem, which is mostly due to Dr. Pullman.

Problem 3.1. How fo minimize the number of vertices of a graph that has a
prescribed mean distance, or furthermore what is the minimum number of vertices
and best realization?

Here I only present a solution to the problem for special kinds of ¢’s. By
Lemma 1.1, the following proposition is obvious.

Proposition 3.1. For t = d/3 when d is a positive integer> 3, then there is a
best realization with (d — 1) vertices; the realization must be a path.

We may find the minimum number of vertices for other special kinds of t’s, but
it does not solve the problem as a whole, hence we won’t go any further.

We now know thatt > 1 is not only realizable by infinitely many graphs but
also by infinitely many k-connected graphs for any positive k. Is ¢ > to for some
to realizable by any other special kind of graphs, most temptingly trees?

Problem 3.2. Ist > 2 realizable by trees?

To facilitate the counting of mean distance of a tree, we present a neat way by
J.K. Doyle and J.E. Graver [5], which is very effective for certain types of trees.

Theorem 3.1. ([5], Theorem 1.2) Let T be a tree with n vertices. For any
v € V(T), let my,my, m3,...,m, be the numbers of vertices in the connected
components of the graph obtained by deleting v and let h(v) be 3" m;m jmy for
all1 <i<j<k<q,then

1 h(v)
(=22
D=L

So far we have been trying to lower the number of vertices needed for a real-
ization. We can also approach the problem by ruling out some numbers.
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Proposition 3.2. Ifgraph G with n vertices is a realization of t = a/b (a, b are
positive and relatively prime) then n > 3a/b— 1 and furthermore \/bk + 1/4 +
1/2 is an integer for some k.
Proof: By Lemma 1.1, we have a/b < (n+ 1)/3,s0n> a/b— 1.

Because a/b = 25(G)/(n{n— 1)), s0 n(n— 1) = bk for some k and n =

Vbk + 1/4 +1/2. Therefore \/bk + 1/4 + 1/2 is an integer. 1
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