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Abstract. A hypergraph has property B (or chromatic number two) if there is a set
which intersects each of its edges, but contains none of its edges. The number of edges
in a smallest n-graph which does not have property B is denoted m(=). This function
has proved difficult to evaluate for n > 3. As a consequence, several refinements and
variations of the function m have been studied. In this paper we describe an effort to
construct, via computer, hypergraphs that improve current estimates of such functions.

Introduction
An n-graph (or n-uniform hypergraph) H is a pair (V, E), where V = V(H)
is a finite set (the vertices) and E = E( H) is a collection of n element subsets of
V (the edges). The chromatic number of an n-graph H is the minimum number
of colors which can be assigned to V( H) so that no edge is monochromatic. An
n-graph whose chromatic number is two is said to have property B. Erdés and
Hajnal [11] defined m(n) as the number of edges in a smallest n-graph which
does not have property B (i.e., has chromatic number three or more), and m(n)
as the same minumum, restricted to hypergraphs on k& vertices. He also refined the
definition of Property B to that of property B(s) so that for a hypergraph H to
have property B( s) there must be a set S € V' ( H) which contains at least one but
fewer that s vertices from each edge. Then m(n,s) is the minimum number of
edges in an n-graph which does not have property B(s), and m(n,n) = m(n).
The study of the behavior of these functions was initiated by Erdés in a series
of three papers [8],[9],[10]. In [8], he noted that m(2) = 3 and m(3) = 7.
The current lower bound for m(4) seems to be 19, though a proof has not been
published. The upper bound is 23 [12], [14]. The current upper bound for m(5)
is 51 [1]. For m(n) in general we know

273+ < m(m) < (1+ €)e log(2)n?2™2

with the lower bound due to Beck [6] and the upper bound to Erdés [9]. Spencer
[13] gives a short proof of Beck’s result. In [10] Erdés found that

mZn—l(n) = m2q(n) = <2n— 1)

n
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and posed the problem of computing m3 41 (n), and in particular mg(4). Abbott
and Liu [3] showed that 24 < mg(4) < 26. Then De Vries [7] proved that

1/12n+1
M2a+1(N) = Mame2 (1) = ;(n_ 1 >

if and only if there is a Steiner system S(n—1,n,2n+ 1). Since an $(4, 5, 11)
is known to exist, this gives m11(5) = m12(5) = 66.

Regarding the functions m(n, s), Abbott [9] determined that m(n, 2) is 3 if
n is even, and 4 if n is odd. Abbott and Liu [2] showed that m(n,3) = 7 if n
is a multiple of 3 or 4 and that 7 < m(n, 3) < 10 for all n. They also showed that
m(n, 4) < 29 except for (perhaps)n = 5,6,7,10,19,21,23,29, 31,37, 38, 46,
or 47 [4],[5].

In this paper we shall describe two algorithms for constructing 3-chromatic
hypergraphs and show some of the constructions they have produced.

Algorithms

The first algorithm can be viewed as an extension of the greedy algorithm as used
by Erdés in [9] to prove the upper bound for m(n) cited above. Suppose we wish
to construct an n-graph, H, on k vertices that does not have property B. Let C
be a list of all possible 2-colorings of the vertex set V. For each coloring in C we
will keep a count of the number of times it is marked . This value is initially set to
zero for each coloring. We wish to construct a set E of edges for our hypergraph.
Candidate edges for F will be selected from a set F'.

When the algorithm begins, E is the empty set, while F contains all n-subsets
of V. Edges for E are selected, one at a time, from F. The selection method
is greedy, in the sense that we always select an edge which is monochromatic
under the largest number of colorings in F which have zero marks. In effect the
selected edge eliminates the largest number of colorings as good colorings of the
hypergraph. In case of ties, the decision is made randomly, or by a criterion based
on intersection cardinalities. (One apparently effective method is to choose the
edge which has an intersection of cardinality one with the largest number of edges
in E.) When there are no longer any unmarked colorings in C, this phase of the
algorithm terminates. Note termination is guaranteed when k > 2n + 1.

At this point it may be possible to eliminate some edges from E. Some edges
may be redundant in that they eliminate colorings which are also eliminated by
other edges. Such edges can be identified as those that are monochromatic only
under colorings that have at least two marks. This elimination is phase two of our
algorithm.

The third and final phase involves exchanging edges between F and F'. We
look for pairs of edges, e € E and f € F, such that the hypergraph with edge set
E U{f} — {e} does not have property B. After exchanging such pairs of edges,



we check to see if any new redundant edges have been created. In practice it turns
out to be more effective to perform a (small) random number of exchanges be-
fore looking for redundant edges. The algorithm terminates when such exchanges
fail to produce an improvement after a specified number of iterations. We use an
integer variable, ¢, which counts the number of iterations since the last improve-
ment, and an integer constant, maz, which is used to decide when to terminate
the procedure.
The algorithm can be outlined as follows:

0. Letall members of C be unmarked, let E = @, let F' = (V), and let
t=0.
1. While there are unmarked elements in C:

a. among all z € F choose one, g, that is monochromatic
under the largest number of unmarked colorings in C; in
case of ties choose g sothat |[{y € E : |[zNy| = 1}]isas
large as possible; if this is not decisive, choose randomly;

b. move zg from F to E;

¢. mark all colorings in C that make o monochromatic.

2. Ifthere are any redundant edges, move them from E back to F), set
t = 0; else increment ¢ and if t = max terminate.

3. Exchange edges between E and F without introducing property B,
then go to step 2; if no such exchanges can be made, then terminate.

Experience has shown that if the tie breaking criterion in step 1a is eliminated,
performance suffers. The analysis of this phenomenon seems difficult in general,
but we offer some data for the case of m13(6). If we eliminate steps 2, 3, and
the edge intersection criterion (call this the simple algorithm), the hypergraphs
produced will have an average of 325 edges. If step 2 is done exactly once, the
average falls to 323. If we include steps 2 and 3, the average is approximately
320 edges. If we run the algorithm as given above, using the edge intersection
criterion, the average falls to 316. These averages were computed after running
10000 trials for each version. When running the simple algorithm, we correlated
the number of edges with the fraction of edge pairs that intersected with cardinality
one. The sample correlation coefficient was approximately —0.57.

The motivation for investigating the edge intersection criterion is the preva-
lence of edge pairs that satisfy the condition in known good constructions (e.g.,
the Fano configuration) and on the following simple computation. In an n-graph
on k vertices, an edge eliminates 251 colorings as good vertex 2-colorings.
Two edges that intersect with cardinality s > O eliminate

Qk—mt2 _ pk—2nti+l

colorings. The figure for two disjoint edges is the same as for the case i = 1. So
these two cases give the largest possible values. Looking at triples of edges, we see



that the maximum is achieved by three edges that pairwise intersect at one vertex
and for which the intersection of all three is empty. The analysis becomes messy
for four edges, but the pattern holds. The statistical evidence cited above (con-
cerning the correlation coefficent) provided further motivation for investigating a
tie breaking criterion based on edge intersection cardinalities.

In our second algorithm we take a somewhat different approach. Again we
wish to construct an n-graph on k vertices that does not have property B. Let
r = (¥), and e1,e3,--- , e, be a list of the n-subsets of a k-set V. Let o be a
permutation of {1, --- ,r}. Define f(o) to be the minimum i such the n-graph
with edge set {es(1), - - - ,€q(s)} does not have property B. If & > 2n + 1 then
i exists. This observation can be made into an algorithm by considering another
permutation, ¢’, which is by some measure close to . Our method is to use
permutations o' that differ from o by a transposition (i) where o(i) < f (o) and
o(j) > f(o). The values of f(o) and f(o') are compared, and the permutation
which gives the smaller value is retained (ties are decided randomly). This process
is repeated indefinitely.

In terms of computer time, the computation of f(o) is very expensive. So
we considered ways to identify good candidates for o’ without actually doing the
full computation. Based on our experience with algorithm 1, it seemed natural to
look at the intersections among edges. At any stage in the algorithm the edges
e; for which (i) < f(o) constitute the edge set of a 3-chromatic hypergraph,
H = H(o). Define, for any z € E(H), g(z) = (v0,--- ,Ta1), Where 7, is the
number of y € E(H), y # x such that |z N y| = t. We shall loosely speak of
g(z) as z’s intersection vector. One can also define the distance between such
vectors in a variety of ways. We use the metric of the taxicab geometry and the
notation ||g(e) ~ g(f)||. These ideas suggest the procedure given below (which
uses ¢ and maz to make termination decisions as in algorithm 1). The procedure
uses an ideal intersection vector , 7, which should be viewed as a parameter. The
outline of the procedure is:

0. Generate a random permutation o of (:) ,andsett = 0.

1. Choose(randomly)isuchthato(i) < f(o) andj suchthato(j) >
f(0),and then let o’ be the product of o and the transposition (i5).
Increment ¢.

2. Computed = |7 — g(eq(s)) || and d' = ||F — g(ew(iy)|]- Ifd <
go back to step 1.

3. I f(o') < f(o) then replace o by o', sett = 0, and go to step 1.

4. 1ff(o') = f(o) then replace o by o’ with probability 2.

5. Ift < maz, then go to step 1, else terminate.

This procedure is used inside algorithm 2, which attempts to optimize with

respect to the ideal intersection vector. The idea here is begin with a small number
of candidates for the ideal intersection vector, run the procedure outlined above



with each of them, and compare results. The best few are kept, the worst ones
are replaced by random perturbations of the best ones, and the process is repeated.
Choices for the initial set of ideal intersection vectors can be made randomly or by
examining known good constructions, or by idle speculation. Such an algorithm
can make effective use of a parallel machine.

Constructions

Our initial objective was to improve the upper bound for m(4). While this
has not been done, the behavior of algorithm 2 on that problem may be of interest.
When the algorithm is applied to the m(4) problem with k = 11, the Seymour-
Toft construction is duplicated on roughly 40% of the runs. On the other 60% of
the runs the algorithm gets “stuck” at 25. When we try k > 11, the Seymour-Toft
construction is still obtained (though less often). In these cases, the extra vertices
are not used. This is true even when we do not include step 2 in the algorithm.
Since such a simple algorithm does not seem to introduce any biases that might
favor one particular construction, it is tempting to see this as evidence that 23 is
the correct value.

As noted above, the value of m;;(5) was determined by De Vries [7] to be 66.
The extremal hypergraph is the unique Steiner system S(4,5,11). Surprisingly,
algorithm 1 will reproduce that Steiner system on approximately 25% of the runs.
For the next three instances of may41 (1) problem, there is no Steiner system [7].
Theorem 1 gives the best upper bounds produced by algorithm 1. It is worth noting
that, according to [7], the first case where the existence question for the relevant
Steiner system has not been settled is ma3(11).

Theorem 1.
a) my3(6) <302
b) m15(7) < 1041
c) m17(9) <3799

Proof: The construction shown in Figure 1 proves (a). The constructions for (b)
and (c) would require many pages to present, and so are omitted.

The next theorem deals with m19(4). Recall that upper bounds for mg(4)
and my;(4) are 26 and 23 repsectively. Both of our algorithms have produced
constructions for all three of these upper bounds.

Theorem 2. m19(4) < 25.

Proof: The theorem is proved by the construction in Figure 2.

The last theorem details some improvement in a theorem of Abbott and Liu.
Further improvement may be possible, but, using our methods, would require an
enormous amount of computer time. All three of the hypergraphs used in theorem
3 were produced by algorithm 2.



Theorem 3. m(n,4) < 29, except possibly forn = 19, 23,29,31,37,28,46,
and 47.

Proof: The statement of the theorem is just that of Theorem 2 in [5], except
that the cases » = 5, 6,7, 10, and 21 have been settled. Using the inequality
m(rn,s) < m(n,s) from [2], it will suffice to settle the casesn = 5, 6, and 7.
The hypergraphs for these cases are shown in Figures 3, 4, and 5. Note that we
actually show m(5,4) < 27.

123450 12346c 12347b 123489 1234bd 123567 12358¢ 12359b
123680 12369a 12378a¢ 12378d 12379c¢ 1237ad 1239¢cd  123abe
124569 12457c 12458b 1245cd 124678 1246ab 1246¢cd 124794
12479d 1247ad 1248ac 1249bc 124abd 12567d 125684 12568d
1256bc 125789 1257ab 1257bd 1259ac 1259ad 12679b 1267ac
1267cd  12689c¢ 12689d 126abd 1278bc 1289ab 1289bd 128acd
134569 13456d 13457c 13458d 13459¢ 13467b 13467d 134684
1346ad 1346cd 134789 13479a 1347ad 1347cd 13489¢ 134894
1348bc 1349ad 134abc 135689 1356ac 1356bd 135789 1357ab
13589¢ 1358ad 1358cd 1359ab 135acd 13678b 13678¢ 1368ad
1369ac  1369bc 136acd 1379bd 1379cd 1389ab 138abc 138bcd
14567a 14569c 145784 14579b 1457ac 1458ab 1458ad 1459bd
14679b 1467bc 14689b 1468ac 1469bd 146abd 14789c 1478bd
1479ad 1489cd 148acd 149abc 14abed 15678b 15679¢ 156794
1567ad 1567cd 1568bc 1568cd 1569ad 156abc 15789¢ 1578ac
1579cd 1589ad 1589bc 158bcd 159bcd 16789a 1678bd 1678cd
1679ad 1689ab 1689bd 178abd 179abc 17abed 234567 234564
23456b 234578 23457b 234580 23459d 2345ad 234679 23468c
23468d 2346ac 2346cd 23479c 2347bd  23489b 2348cd 2349ab
23567c 23568a 23569d 2356cd 23579a 2357bc  23589b 2358ab
2358bd  2359bc 2359cd 235abc 235abd 23678b 2367ab 2367bd
23689a 23689c 2369ad 236bcd 23789a 23789b 2378ad 2378cd
2379ac  237abc  237bcd 2389ac 2389ad 23abcd 245678 245695
2456ac  256bc 2456bd 24578c 2457ab 245894 24589¢ 245894
2458cd 246784 2467ac 2468ad 2468bc 2469ac 2469ad 2478ab
2479cd 247bcd 2489ad 218acd 249abc  249bcd 25678a 25679
2568ad 2569ab 2569cd 2578cd 2579ac 2579ad 257acd 2589 bd
258abd 26789a 26789c 2679bd 267acd 267bcd 2689ac 268abc
269bcd 2789cd 279abd 29abcd 34568a 34568b 3456bc 3456 bd
34578b 34578d 34579a 3459bc 3459cd 346789 34679d 3467ab
3468ad 3469ac 3469bc 34789b 3478ac 347acd 348bcd 349abd
35678b 35679a 3567ad 35689d 3569ab 356acd 35789d 3579ac
357bcd  3589ac 358abd 36789d 3678ac 3678cd 367abc  368abd



369 bed
4568 cd
467 abc
478 abd
578acd

3789 bc
4578ac
467 bed
56789b
589 bed

379 abd
4579ab
4689ab
5678 bd
6789 ad

389 acd
4579 bd
4689 bd
5679 be
689 abc

45678c¢
4589 ad
468 abc
5679 cd
68abcd

45679 ¢
458 abc
469 acd
5689 bd
19 abed

4567 ad
45abcd
4789 be
569 abd

45689 c
46789 a
4789cd
578 abc

Figure 1. The edge list of a hypergraph that shows m;3(6) < 302. The vertices
are represented by hexadecimal digits.
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Figure 2. The edge list of a hypergraph that shows m;o(4) < 25.
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Figure 3. The edge list of a hypergraph showing m(5, 4) < 27.
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Figure 4. The edge list of a hypergraph showing m(6,4) <?29.
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7 8 9 11
8 9 10 12
9 10 12 13
4 7 8 11 12 13

Figure 5. The edge list of a hypergraph showing m(74) < 19.

5
6
8

w ww
A NNn s

References

1. H. L. Abbott and D. Hanson, On a Combinatorial Problem of Erdos, Canad.
" Math. Bull. 12 (1969), 823-829.
2. H. L. Abbott and A. C. Liu, On Property B(s), Ars Combinatoria 7 (1979),
255-260.
3. H. L. Abbott and A. C. Liu, On Property B of Families of Sets, Canad. Math.
Bull. 23 (1980), 429-435.
4. H. L. Abbott and A. C. Liu, On Property B( s), II, Discrete Math. 37 (1981),
135-141.
5. H.L. Abbott and A. C. Liu, On Property B(4) of Families of Sets, Ars Com-
binatoria 26 (1988), 59-68.
6. J. Beck, On 3-chromatic hypergraphs, Discrete Math. 24 (1978), 127-137.
7. H. L. De Vries, On Property B and on Steiner Systems, Mathematische Zeit-
schrift 153 (1977), 155-159.
8. P. Erdos, On a combinatorial problem, Nordisk Mat. Tidskr. 11 (1963), 5-10.
9. P. Erdds, On a combinatorial problem II, Acta Math. Acad. Sci. Hungar. 15
(1964), 445-447.
10. P. Erdds, On a combinatorial problem III, Canad. Math. Bull. 12 (1969),
413-416.
11. P. Erd6s and A. Hajnal, On a Property of Families of Sets, Acta Math. Acad.
Hung. Sci. 12 (1981), 87-123.
12. P. D. Seymour, A Note on a Combinatorial Problem of Erdés and Hajnal,
Bull. London Math. Soc. 2:8 (1974), 681-682.
13.J. Spencer, Coloring n-sets Red and Blue, J. Combin. Theory, Series A 30
(1981), 112-113.
14. B. Toft, On Colour-Critical Hypergraphs, in “Infinite and Finite Sets”, Ed.
A. Hajnal et al, North Holland Publishing Co., 1975, pp. 1445-1457.

12



