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Abstract
P. Paulraja recently showed that if every edge of a graph G lies in a
cycle of length at most 5 and if G has no induced K, a8 a subgraph,
then G has a spanning closed trail. We use a weaker hypothesis to obtain
a stronger conclusion. We also give a related sufficient condition for the

existence of a closed trail in G that coutains at least one end of each edge
of G.

We shall use the notation of Bondy and Murty [2], but we assume that
graphs have no loops. For k > 2, the 2-regular connected graph of order k is
called a k-cycle and is denoted Ck. We denote the symmetric difference of sets
X and Y by XAY. A graph is called eulerian if it is connected and its vertices
have even degree.

For any graph G and any edge e € E(G), we let G/e denote the graph ob-
tained from G by contracting ¢ and by deleting any resulting loops. IfHisa
connected subgraph of G, then G/H denotes the graph obtained by contracting
all edges of E(H) and by deleting any resulting loops.

A family of graphs will be called a family. A family C of graphs is said to
be closed under contraction if

Gel,e€E(G) = GJ/eeC.
We call a family C of connected graphs complete if it satisfies these three con-
ditions:
(Cl) K; €C;
(C2) C is closed under contraction;
(3 HC G, HeC,G/HeC = GEeC.

For any family § of graphs, define the kernel of § to be
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(1)  $9={H | For all supergraphs G of H,G € § > G/H € §}.

For example, if § is the family of graphs with exactly 3 cut edges, say, then its
kernel $© is the family of 2-edge-connected graphs. The kernel of the family of
k-edge-connected graphs equals itself, for any k € N. Any kernel always con-
tains K, and often contains no other graph. In [4], the first author proved that
if § is a family closed under contraction then its kernel is a complete family.
Also:

Theorem 1 [4] For a family C, closed under contraction, these are equivalent:
(a) C is a kernel of some family closed under contraction;

(b) C is a complete family;

(c) € = €2 (C is the kernel of itself), and C is closed under contraction.

Let k € N, and let § be a family. A graph G is said to be at most k
edges short of being in § if there is a graph G’ in § such that G' — Ey = G for
some set Ej, of at most k edges of G'. The second author [9] proved that every
complete family is the kernel of a family that is not itself:

Theorem 2 [9] Let C be a complete family and for any k > 0 let
Ck ={G | G is at most k edges short of being in C}.
Then the kernel of C; is C.
Let S£ denote the family of graphs with a spanning closed trail, where K is
regarded as being in L. We call a graph in S£ supereulerian. Say that a graph
G is collapsible if for every even subset § C V(G), G has a spanning connected

subgraph I'(S) such that S is the set of odd-degree vertices of I'(S). Let CL
denote the family of collapsible graphs. Clearly,

(2) cecse,

since we can let S be empty in the definition of CL. Also, K, € CL, and all
other collapsible graphs are 2-edge-connected.

The first author ([3] and [4]) proved that
(3) cL®=cecsee

and conjectured that C£ = S£°. By (1) and (3), for any graph G and subgraph
HCG,if HECLor if H € SL° then

(4) GeSL < G/He SL;
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and if H € CL then
(5) Ge(Cl <> G/HeC(CL.

By (3) and by (c) = (b) of Theorem 1, the family CL of collapsible graphs
is a complete family. The next result shows that it is substantial:

Theorem 3 [3] If the graph G is at most one edge short of having two edge-
disjoint spanning trees, then exactly one of these holds:
(2) G has a cut edge; or

(b) GeCL.
Corollary 3A The 2-cycle and 3-cycle are in CL.

Corollary 3B (Jaeger [7]) If a graph G has two edge-disjoint spanning trees,
then G € SL.

The smallest graph of girth 4 in CL is K3 s — ¢; the 4-cycle is not in CL.

P. Paulraja [12] obtained sufficient conditions (Corollary 8B) for a graph G,
whose edges each lie in cycles of length at most 5, to be supereulerian (i.e., for
G € $L). In this paper, we generalize his conclusion from S to any family S
whose kernel SO is closed under contraction and contains Ks but not K, (by
Corollary 3A and (3), Ks € SL£O; by inspection, K; ¢ $L£°). We also relax
Paulraja’s hypothesis considerably. Following our first generalization (Theorem
8), we give another relevant example of a family with a large kernel. A second
generalization (Theorem 9) involving eulerian subgraphs is also given.

Definition (1) is the basis for a reduction method to determine whether a
particular graph is in a given family. We need the following related results.

Theorem 4 [4] Let G be a graph, let C be a complete family, and let H; and
H; be subgraphs of G in C. If V(H,) NV (Hz) # 8, then H;UHz € C.

For a complete family C and a graph G, a subgraph H of G with H € Cis
called maximal if H is not a proper subgraph of another subgraph of G in C.

Theorem 5 [4] Let C be a complete family. For a graph G, define
(6) E' = E'(C) = {¢ € E(G) | ¢ is in no subgraph of G in C}.

Then each component of G — E is in C, and these components of G — E' are
the maximal subgraphs of G in C.
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Let G be a graph and let C be a complete family. The C-reduction of G is
the graph obtained from G by contracting the maximal subgraphs of G in C to
distinct vertices. A graph G is called C-reduced if every subgraph of Gin C is K.

Theorem 6 [4] For any complete family C, the C-reduction of a graph is C-
reduced.

Corollary 6A If C is a complete family with K3 € C, then the C-reduction of
any graph has girth at least 4.

Proof: By (C2), C; € C, since K3 € C, and so by Theorem 6, the C-reduction
of any graph has girth at least 4. O

By Corollaries 3A and 6A, and since CL is a complete family,
(7) The CL-reduction of a graph has girth at least 4.

Let G be a graph, let C be a complete family, and let G’ be the C-reduction
of G. By Theorem 5, G’ is well-defined. By (a) = (b) of Theorem 1, if § is a
family closed under contraction, then $© is complete, and hence §°-reductions
are defined. Hence, by repeated applications of (1), if G’ is the $°-reduction of
G, then
(8) Ges§ < G €.

By Theorem 5 and the definition of G’

(9) E(G)=E'.

Two conjectures due to Paulraja ([10], [11]; also [12]) have previously been
proved by the second author.

Theorem 7 (H.-J. Lai (8], [9]) Let G be a 2-connected graph in which every
edge is in a cycle of length at most 4. Then:
(a) G has an eulerian subgraph contzining at least

one vertex of every edge of G; and
(b) If §(G) > 3, then G € SL.

Furthermore, the second author ([8] and [9]) proved the stronger result that
in part (b) of Theorem 7, G is also in CL.

Definition of 7 Let C be a complete family that contains K3 but not K.
Let 7 = 7(C) be the family of connected graphs G such that every vertex of
degree at least 3 in G is incident with at most one edge ¢ € E'(C) (see (6)).
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For example, if G has no induced K s as a subgraph, then G € ¥ follows from
Ks € C. Our main results all concern graphs in ¥.

Let G be a graph, let H be a subgraph of G, and let G' be the C-reduction
- of G. By (6) and (9),
(10) E(G') € E(G).

We call G'[E(H) N E(G')] the subgraph of G’ induced by H. We also say that
H induces G'[E(H) N E(G')]. We denote by H' the subgraph of G' induced by
H, but such a subgraph H' is not in general the C-reduction of H.

Lemma 1 Let G’ be the C-reduction of G, where C is a complete family, and
let E' be defined by (1). Then

(i) Every cycle of G' is induced by a cycle of G; and

(ii) Every cycle C of G induces a connected eulerian subgraph in G,

and if K3 € C, then any cycle in G’ has length at least 4.

(iii) A cycle C C G induces a K; in G' if and only if E(C) N E' = 8.

(iv) If Ks € C then every cycle of length at most 7 in G induces either

a K; or a cycle in G’ of length at least 4.

Proof: By Theorem 5, G has a unique collection of maximal subgraphs,
say H, Hz,...,H., in C. Since K; € C, each vertex of G is in some V(H;)
(1 <1 < ¢). Recall that G’ is formed from G by contracting each H; (1 <1< ¢c)
to a distinct vertex of V(G,). The first three parts of the lemma are just
straightforward applications of this definition of G’. Each H; (1 < ¢ < ¢) is con-
nected, and o (i) holds. Note that a cycle C of G induces a K, in G' whenever
C is contained in some H; (1< ¢ < ¢). By K3 € C and Corollary 6A, any cycle
in G’ has length at least 4, and we use this next to prove (iv). By both parts
of (ii) and K5 € C, if |E(C)| < 7 then the eulerian subgraph of G’ induced by
C cannot contain a cycle of length 2 or 3, and hence must be K; or a cycle of
length at least 4. O

Lemma 2 Let C be a complete family not containing K3. Let G be a graph
in 7(C), let H be a maximal nontrivial subgraph of G in C, and let C be a cycle
in G. Then either V(H)NV(C) =0 or E(H) N E(C) # 8.

Proof: Suppose that , G, 7, H, and C satisfy the hypothesis, and suppose
that E' = E'(C) satisfies (6). By way of contradiction, suppose that Lemma
2 is false. Then there is a vertex v € V(C) NV (H) such that the two edges
of C incident with v (e; and eg, say) are not in H, and hence are in E‘. But
since H € C is nontrivial, v is incident with at least two edges of E(H) (because
a graph in C is 2-edge-connected, for otherwise K3 € C, by (C2)), and since
e1,e2 & E(H), d(v) > 4. But G € 7, and so there can be only one edge of G in
E' that is incident with v. This contradicts e;,e3 € E'. O
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For a graph G and a complete family C, let G' be the C-reduction of G. A
vertex v of G' is called a trivial vertex if its preimage under the C-reduction-
mapping G — G’ is K;. Otherwise, v is called nontrivial.

Lemma 3 Let C be a complete family and let G’ be the C-reduction of the
graph G. If G € 7(C), then any trivial vertex of G' has degree at most 2 in
both G and G'.

Proof: Let G’ denote the C-reduction of G € 7. By Theorem 5, there are
maximal subgraphs H,, Hj, ..., H, of G in C, and G’ is obtained from G by con-
tracting each H; (1 < ¢ < ¢) to a vertex v;. By way of contradiction, suppose v;
is a trivial vertex with degree at least 3. Since the degree is at least 3, G € 7
implies that the preimage of v; is a nontrivial subgraph H; € C, and hence v; is
not trivial, a contradiction. O

Lemma 4 Let C be a complete family not containing K;. Let G € 7 (€), let
G’ be the C-reduction of G, let C be a cycle in G that induces a cycle ¢’ (say)
in G', and define

X' ={z € V(C') | zis a nontrivial vertex of G'}.

Then
|E(C)| 2 |X'| + |E(C")).
Proof: Let C be a complete family, let G € 7, let G denote the reduction of
G, and let C, C', and X' satisfy the hypothesis of Lemma 4.

By Theorem 5, there is a unique collection of maximal subgraphs of G in
C, and since K; € C, every vertex of G is in some subgraph in this collection.
Let Hy, Hg,...,H, be the maximal subgraphs of G in C that each meet C in
at least one vertex. When G is contracted to form its C-reduction G', each H;
(1 <4 <t) is contracted to form a distinct vertex of C', the subgraph of G'
induced by C. (By Lemma 1, C’' may be a cycle, as assumed in the hypothesis
of Lemma 4.) Thus,

t=V(C")| = E(C))

since each vertex of C is in some H; (1 <i<t). Without loss of generality, let
Hy, H,,...., H, be the nontrivial members of {H,,H;, ..., H,}, where necessarily
8 < t. Then the set X’ of s distinct vertices of V(G') onto which Hy, H, ..., H,
are contracted are the nontrivial vertices of V' (C'). Thus,

(13) s=|X'|.

By Lemma 2, E(C) N E(H;) contains at least one edge (1 <+ <3s), and so by
(11),
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1E(c)n U E()| + |E(C)
i=1

s+ [E(C')| = |X'| +|E(C)],

|E(©)]

v

as claimed. O

Theorem 8 Let § be a family whose kernel $© is closed under contraction
and contains Ks but not K;. Let G € F(§©) and let E' = E'(S°) be the set
defined in (8). Suppose that each edge of E' is in a cycle of G of length at most
5. Then exactly one of the following holds.

(a) G € $9;

(b) G € {C4,Cs}\ $9;

(c) Both Cy4 ¢ SO and G has a nontrivial subgraph H € §© such that

G/H is the union at least two 4-cycles whose only coramon vertex is
vg, the vertex of G/H corresponding to H. (See Figure 1.)

G/H

Figure 1

Proof: Suppose §, ¥, G, and E' satisfy the hypothesis of Theorem 8.

We first note that the conclusions of Theorem 8 are mutually exclusive. If
(b) holds, then (a) fails, and since Kz ¢ § 0O, (1) implies that (c) fails. Suppose
that both (a) and (c) hold. By (a) = (b) of Theorem 1, §© is a complete family,
and so by (C2), every contraction of G is in $©. By (c) of Theorem 8, Cy is a
contraction of G. Hence, Cq € §°, contrary to (c).

Let G € 7(8°), and let G' be the §O-reduction of G. By the hypothesis of
Theorem 8, for each edge ¢ € E', we can find in G a cycle C, (say) of length at
most 5. If C, has length at most 3, then C. € §, and so ¢ & E', a contradiction.
Thus, for all e € E',

(12) 4 <|E(C.)| < 5.
If E' = @, then G € §9, and (a) holds. Otherwise, let ¢ € E’. Then the
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subgraph C; of G’ induced by C, contains e, and hence is a cycle of length at
least 4, by (iv) of Lemma 1. By Lemma 4,

(13) [E(C.)| 2 |X'| + |E(C2)|,
where C is the cycle in G’ induced by C, and where
(14) X' = {z €V(C!) | zis a nontrivial vertex of G'}.

(Since e € E(C.) N E', (ii) and (iii) of Lemma 1 imply that C! is a cycle in G’
of girth at least 4.) Therefore, by (12) and (13),

52 [B(C.)|2 |X'| +4,
and so |[X'| < 1.

If X' = @ for any ¢ € E', then all vertices of C} are trivial. Then by Lemma
3 and since G € 7, all vertices of C, have degree at most 2 in G. Hence, G = C,,
and so (12) implies (b) of Theorem 8.

Otherwise, |X'| := 1 for every e € E'. Therefore, each cycle C, (e € E)
meets a single nontrivial maximal subgraph H, € C. Since G is connected, H,
must be the same for all ¢ € E', and we denote this single nontrivial maximal
subgraph in C by H. By Lemma 2, |E(H) n E(C.)| > 1, and so C. induces
a cycle in G’ of length at most 4, since |E(C.)| < 5. By (ii) of Lemma 1, this
induced cycle has length at least 4. Therefore, each C, induces a 4-cycle of G' ,
all such 4-cycles of G’ meet only at the vertex vy of G' corresponding to H (see
Figure 1). O

Let
|E|

n(C) = o, e E) -1’
where the minimum is over all edge sets E C E(G) such that w(G — E), the
number of components of G — E, is at least 2. Cunningham [5] proved that for
any numbers s,t € N, n(G) > s/t if and only if G has a family T of s spanning
trees such that each edge of G is in at most ¢ trees in T.

The family § = {G | n(G) > r} U {K,} satisfies the hypothesis of Theorem
8, if r > 3/2. Since § = $© (see [4]) in this case, we have Cy(,Cs & SO in the
conclusion of the theorem, if r > 3/2.

In [4], the first author proved that

CLc {G|n(G) >3/2} U{K,},

and thus by (3) and the paragraph preceding (3), both SL£ and CL may be sub-
stituted for § in Theorem 8. In the conclusion of Theorem 8, neither C nor
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Cs is in SL£° nor in CL° = CL. Therefore, we bave:

Corollary 8A Let G € (CL) and let E'(CL) be the subset of E(G) defined
in (8). If each edge of E'(CL) is in a cycle of G of length at most 5, then exactly
one of the following holds:

(a) GeclL;

(b) Ge{C4Cs};

(c) G has a nontrivial subgraph H € CL such that G/H is a union of

at least two 4-cycles having only one common vertex vy (see Figure 1),

where vy is the vertex of G/H corresponding to H.

Corollary 8B (Paulraja [12]) Let G be a connected graph having no induced
K3 as a subgraph. If each edge of G is in a cycle of length at most 5, then
G e SL.

Proof: Since G has no induced K 3, each vertex v € V(G) of degree at
least 3 is incident with at most one edge not in a K3. But K3 € CL, and hence
G € F(CL), by definition. This and the hypothesis of Corollary 8B fulfill the
hypothesis of Corollary 8A, and so G satisfies a conclusion of Corollary 8A.
By (2), (a) of Corollary 8A implies G € SL, and by inspection, (b) and (c) of
Corollary 8A imply G € $£. O

Let $ = CL or § = SL in Theorem 8, and suppose that ¥ = F(CL) or
F = F(SL°), respectively. The graph G; of Figure 2 violates the hypothesis of
Theorem 8 only because v, a vertex of degree 3, is incident with more than one
edge lying in no collapsible subgraph. The graph G lies in ¥, and its shortest
cycles containing certain edges of E(G3) have length 6, contrary to the hypoth-
esis of Theorem 8. Both G; and Gz have the nonsupereulerian graph Ka 3 as
their reductions, and so the hypotheses of Theorem 8 and its corollaries are best-
possible. (The only nontrivial subgraphs of G or G3 in CL or $L° are 3-cycles.)

Gy Figure 2 G2
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The graphs G5 and G, (Figure 3) violate the hypotheses of Theorem 9 and
Corollary 9A in the manner that G; and G; (Figure 2) violate the hypothesis of
Theorem 8. Their only nontrivial subgraphs in S£© are Ks’s, and both graphs
violate the conclusions of Theorem 9 and Corollary 9A.

Gs Gy

Figure 3

Theorem 9 Let G € 7(S£°), define E' by (6), and suppose that every edge
of E' is in a cycle of G having length at most 7. Then G has a connected eulerian
subgraph I satisfying both of these properties:

(i) Each edge of G has at least one end in V(T); and

(ii) V(T) contains each vertex of G having degree at least 3.

Proof: Let G € 7(SL£°) and let G’ be the S£-reduction of G. The family
$L° contains K3 but not K3, and so the prior lemmas hold. Let I be a
connected eulerian subgraph of G’ such that
(15) [V(I')] is maximized
and, subject to (15),

(16) I has as many nontrivial vertices as possible.

First we show that I satisfies (26) and (27). Suppose, by way of contradic-
tion, that either I' does not contain every nontrivial vertex of G’ or that there
is an edge w'z’ € E(G') such that w',z’ & V(I'), i.e., suppose that either (26)
or (27) is false. Then there is an edge vw € E(G') with

(17) veV(l'), wegV(l),
and such that either
(18) w is a nontrivial vertex,

or w has exactly two neighbors in G, say v and z, where
(19) z g V(I').

Denote ¢ = vw. Since ¢ € E(G') = E', the hypothesis of Theorem 9 implies
that ¢ is in a cycle C. of G, with

(20) |E(Ce)| < 7.
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Let C. be the subgraph in G' induced by C.. By ¢ € E, we have ¢ € E(C).
Since K3 € SL£°, (iv) of Lemma 1 and (20) imply C; is a cycle in G’ with

|E(Ce)l 2 4.
This can be combined with (20) and Lemma 4 to give
(21) 72 |E(C.) 2 X' +|E(C)] 2 1X|+4,

where
X' = {z € V(C") | = is a nontrivial vertex of G'}.

Hence,

(22) |X'| < 3.
with equality only if |E(C?)| = 4.

If I' contains at most one edge of E(C!), then the subgraph
I = G'[E(I')AE(C)] is also an eulerian subgraph of G’, and since

V(') S V(') u {w} SV(T"),

I contradicts (15). Therefore,
(25) |E(r') 0 B(CY)] 2 2.

Lemma 5 Any vertex of degree 1 in G'[E(I') N E(C;)] is a member of X".

Proof: Suppose that u has degree 1 in G'[E(I") N E(C.)]. Hence, u is inci-
dent with an edge of E(C’) — E(I"). Since I is eulerian, u is also incident with
at least two edges of E(I"), and so u has degree at least 3 in G'. Since G € K
and by the definition of X', u€ X’. O

Proof of Theorem 9, continued: By (23) and (17), at least 2 vertices have
degree 1 in G'[E(I") N E(C!)]. By Lemma 5, they are in X', and so

(24) x| > 2
Case 1 Suppose that |X’| = 3. Since equality holds in (22),
|E(C) = 4,
and so we can denote the 4-cycle C! in G' by vwzyv. By (17) and (23),
(25) |E(T') n E(C;)| = {vy, 2y},

and so v and z must be in X', by Lemma 5. By (25), (19) is false, and so (18)
holds. Therefore, in Case 1,
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X' = {v,w,z}
and y is a trivial vertex, and so G'[E(I") AE(C!)] is an eulerian subgraph of G’
that satisfies (15) and violates (16). This contradiction precludes Case 1.
Case 2 Suppose |X'| = 2. By (21),
4<|E(C!)|<5.

Subcase 2A Suppose |E(C!)| = 4. Denote the 4-cycle C! by vwzyv. Then
(17) and (23) imply E(I')nE(C!) = {vy, yz} and hence X' = {v,z}, by Lemma
5. But then both (18) and (19) are false, an impossibility.

Subcase 2B Suppose |E(C!)| = 5. We denote the 5-cycle C! by vwzyzv. By
the hypothesis of Subcase 2B, by (21) and by (24), |X’| = 2. This, Lemma 5,
(17), and (23) imply that I’ N C! is a path in C! — w of length at least 2 in
G', where X' denotes the set of ends of this path. Therefore by Lemma 5 and
|X’| =2, w & X', whence (18) fails, and so (19) holds and we thus have z Zx
also. Hence, by (23) we must have

{vz, 2y} = E(I') n E(CY),
and X' = {v,y}, and hence w, z, and z are trivial vertices. Define
I'" = G'[E(I")AE(C!)].

Then I is an eulerian subgraph of G’ that violates the maximality of I in
(15). Therefore, Subcase 2B is impossible, too, and Case 2 is complete.

By (22) and (24), Cases 1 and 2 cover all possibilities.

Hence, by contradiction, we have shown that

(26) V(I') contains all nontrivial vertices of G',
and
(27) G' — V(I') is edgeless.

We finish the proof of Theorem 9 by lifting the eulerian subgraph IV c G' to
an eulerian gubgraph I' C G that satisfies the conclusions of Theorem 9.

Since I' is eulerian,
(28) G'lv(I)] € SL.
Define E' = E'(S£°) E(G) by (6). By Theorem 5, the components H;, Ha,
«y He (say) of G — E' are the maximal subgraphs of G in S£°. The graph G’
is obtained from G by contracting each Hj to a distinct vertex z; € V(@) (1<
1 < ¢). Without loss of generality, suppose
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V(I") = {zl, T2, ...,z.},
where t < ¢. Define
t
v=vm).
=1

Thus, G'[V ()] is the SLO-reduction of G[V]. By (8) with § = SL and with
G[V] in place of G, we have

(29) GV] € SL <> G'V(I')| € SL.

By (28) and (29), G[V] has a spanning eulerian subgraph, say I'. By (26) and
the definition of trivial vertices,

(30) V(G") -V (') =V(G) -V (D),

and so by Lemma 3, all vertices of V(G) — V(T') have degree at most 2 in G.
Hence, (ii) of Theorem 9 holds. If G — V(') has an edge, then by (30) and the
definition of G', so does G' — V(I'). But this contradicts (27), and so (i) of
Theorem 9 holds. O

Theorem 9 holds (and is weaker) if the hypothesis G € 7(SL£©) is replaced
either by G € 7(CL) or by the assumption that G contains no induced K3 as
a subgraph. A similar remark applies to the corollaries below.

Let G be a graph. The line graph of G is the graph with vertex set E(G),
such that two vertices of the line graph are adjacent whenever the corresponding
edges in E(G) are adjacent in G.

Corollary 9A Let G € F(SL£°), define E' by (8), and suppose that every
edge of E' is in a cycle of G having length at most 7. Then the line graph of G
is hamiltonian, unless |B(G)| < 3.

Proof: Harary and Nash-Williams [6] proved that a graph G with at least
three edges has a hamiltonian line graph if and only if G has an eulerian sub-
graph T such that each edge of G has at least one end in V(T'). Any graph G

satisfying the conclusion of Theorem 9 has such an eulerian subgraph I'. O

Corollary 9B Let G be a graph satisfying the hypothesis of Theorem 9. If
6(G) > 3, then G € SL.

Proof: This follows immediately from Theorem 9. O
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There are some examples to show that the conditions of the hypothesis of
Corollary 9B cannot be omitted. Let G be the graph obtained from G5 of
Figure 2 by joining to each 3-cycle C of G2 an extra vertex and three new
edges, to form a K, containing C. Then Gs has two K,’s that are joined by
three disjoint length 2 paths. Since & (Gs) = 2, G5 violates the hypothesis of
Corollary 9B. Let Gg be the graph obtained from K35 by adding three copies
of K4 and attaching each to a distinct divalent vertex of the K3 3. Note that
Ge & F(SL°), contrary to the hypothesis of Corollary 9B. Since G5, Gs & SL,
neither G5 nor Gg satisfies the conclusion of Corollary 9B.

Let Dy1(G) be the set of vertices having degree 1 in G. The second author
[9] proved:

Theorem 10 Let G be a simple graph of order n > 46. If
() ©(G-Dy(G)) 22
(i) Ge 7(5£°); and
(iii) for any edge zy € E(G),
d(e) +d(y) > 2,

then the line graph of G is hamiltonian. O

Benhocine, Clark, KGhler, and Veldman [1] conjectured that Theorem 10
holds even if the hypothesis (ii) is omitted.
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