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Abstract. The point set “oval” has been considered in Steiner triple systems (STS)
and Steiner quadruple systems (SQS) [3], [2]. There are many papers about “subsys-
tems” in STS and SQS. Generalizing and modifying the terms “oval” and “subsystem”
we define the special point sets “near-oval” and “near-system™ in Steiner quadruple
systems. Considering some properties of these special point sets we specify how to
construct SQS with near-ovals (§™) and with near-systems (S™), respectively. For
the same order of the starting system we obtain non-isomorphic systems S™ and S™.

1. Introduction.

A Steiner system S(t, k,v) is a pair (P, B), where P is a v-set (called the set of
points) and B is a collection of k-subsets of P (called the set of blocks) such that
every t-subset of P is contained in exactly one member of B. A system S(2,3,v)
is called a Steiner triple system (briefly STS). A system S(3,4,v) is called a
Steiner quadruple system (briefly SQS). It is well-known that the necessary and
sufficient condition for the existence of an SQS of ordervisv=0,10rv =2
or4d (mod 6). Ifv €SQS:={v € N | v =2o0r4 (mod 6)} we call v
admissible. In the following we will denote an SQS of order v (point set P, block
set B) by SQS,( P, B).

We call a block b with respect to apointset M C P a

in-block 4
3-secant 3
2-secant (=) bNM|= 2
tangent 1
passant 0

An oval Q C P is a point set with the following properties:

(1) There exists no in-block with respect to Q (that is, Q is an arc).
(2) If p, ¢ € Q are two arbitrary points then there exists exactly one 2-secant
through p and gq.

Condition 2 in the definition of Q is equivalent to the property |Q| = 3. For
further information on ovals in SQS see [2].
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2. Near-ovals in SQS.

Let k € No and let S( P, B) be an SQS of order v.
A near-k-oval N C P is a point set with the following properties:

(1) There exist exactly & in-blocks with respect to N.
) |Ni| = 3.

Points of Ny, are called in-points if they are elements of an in-block with respect
to Ny.. We denote by I the set of all in-points.

2.1 Lemma. Two points p, q € Ni not both in-points are contained in exactly
one 2-secant and v — 2 3-secants.

Proof: Together with p and ¢ each point r € Ny is contained in exactly one 3-
secant. Hence there exist exactly %v — 2 different 3-secants through p and ¢ and
there remains only one block. This must be a 2-secant. [ ]

From the definition of a near-k-oval we see that near-0 -ovals are ovals in SQS.
In this paper we will only consider near-1-ovals and call them briefly near-ovals.
In the following let N C P be a near-oval in S and let I be the in-block of N

Now we tabulate some results concerning the number of blocks of different
classes through points of N. One can prove them by using counting arguments
similar to those of Lemma 2.1.

2.2 Lemma. Two points p, q € I are contained in exactly one in-block, ju—4
3-secants and two 2-secants.

Hence we can conclude: If we delete a point z € P in order to obtain a derived
triple system of the quadruple system S we get an STS with an oval,ifr € N\I,
and an STS with a near-oval, if z € I (a near-oval in an STS of order u is defined
as a point set with exactly one in-block and exactly %51 points).

2.3 Lemma. A point p € N\I and a point g € I, respectively, is contained in
the following blocks of different classes:

P q block with respect to N
0 1 in-block
§v-2(v-9 §v=2(w=4 -3 3-secant
zv -1 zv +2 2-secant

w(v—2)(v—4) w(v—2)(v—-4) -1 tangent.

Now we are able to classify the blocks of S with respect to the near-oval N:
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2.4 Theorem. With respect to the near-oval N there exist exactly the following
numbers of blocks in S:

1 in-block
1

zg(v’ —6v> +8v—192)  3-secants
1

§(”2 —2v+ 48) 2-secants

4—18-(.;3 —6v2+8v—192)  tangents

1 passant

Hence we can conclude that the point set N:= P\N is a near-oval, too.

We wish to prove the existence of SQS, with a near-oval for admissible v. We
first consider the 6 non-trivial quadruple systems of orders v < 14.

2.5 Proposition. There exist exactly 14 near-ovals in SQSg and exactly 180 near-
ovals in SQSy¢.

Proof: Each block j in SQSs is a (trivial) near-oval because there exists exactly
one “parallel” k with respect to j and there exist exactly bg = 14 blocks in SQSs.
Each block j and each point p ¢ j determine together exactly one near-oval N
in SQS;o because there cannot exist a further in-block with respect to N. There
are exactly 6 points in SQSyo different to the points of j and there are exactly
bio = 30 blocks in SQS;o and thus exactly 6 - 30 = 180 near-ovals in SQS10. R

A computer test of the 4 non-isomorphic SQS of order 14 indicates the follow-
ing:
2.6 Proposition. Two of the 4 non-isomorphic SQS4 do not contain any near-

oval. The remaining two systems (each of which has automorphism-group of order
6) each contain exactly 24 near-ovals.

For general v € SQS we need a construction method. We modify the oval
construction method O in [2] (see also [1]) in the following way: Let S(P, B) be
the starting system and let I € B be an arbitrary block of S. We double the points
of S by adding an isomorphic system S*( P*, B*). The belonging isomorphism
¢: S — S* may map the points of S to corresponding points with a “x” of S*.
With NO and S™ (P™, B™) we denote our construction method and the new
constructed system, respectively. Then P™ and B™ are defined in the following
way: P®.:= PUP* B™:= B; U...U Bs, where

Bj: = I'UI* (in-block and passant with respect to P). |B;| = 2.

By: = {{z,y,7*,¥*} | z,y € P,z$y} (2-secants of the first kind).

|B2| = tv(v—1).
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Biy: = {{z,y,2*,u*} | {z,y,2,u} = I} (2-secants of the second kind).
|B3|=6.

2-secants of the first
and second kind, resp.
(througha, b€ I)

Figure 1

Bs: = {{=z,y,2,u*} | {z,y,2,u} € B\I} (3-secants). |[B4|=4-|B| -4 .
Bs: = {{z,y*,2*,u*} | {z,y,2,u} € B\I} (tangents). |Bs| = 4-|B| - 4 .
By the construction NO we see that 3 points of P™ are contained in at least
one block of B™ and |[B™| = 2+ Ju(v— 1) + 6+ 2- (4-|B| — 4) = X
-2v(2v—1)(2v—2) = by,. Hence there is exactly one block through 3 arbitrary
points of P™, and S™ is a SQS of order 2v. P and P* are near-ovals in the new

system S™ and we can conclude:

2.7 Theorem. Letv > 8. There exist SQS, with near-ovals for ordersv = 4 or
8 (mod 12).

3. Near-systems in SQS.

Let S(P, B) be an SQS of order v and with respect to a point set M C P let us
denote the set of all in-blocks by J.
We call M a near-system of S if M has the following properties:

(1) There exists exactly one 4-element subset i C M such that (M, J U {i})
is an SQS.
@ IM]|=3v.

One can imagine M as an SQS from which one block has been taken away. M
is indeed a special partial SQS. Condition 2 in the definition of M implies that a
necessary condition for the existence of SQS with a near-system is v = 4 or 8
(mod 12).

Now we tabulate some properties concerning how many blocks of different
classes through one or two points of M exist. We use in these proofs similar
counting arguments as in the proof of 3.1. In the following let M C P be a
near-system and 1 be the “missing block” as in the definition of M.
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3.1 Lemma. Two points p, ¢ € M not both points of i are contained in exactly

1v — 1 in-blocks and v 2-secants.

Proof: p ¢ i implies: p and g are not contained in a 3-secant with respect to
M. Hence, p, g and each other point of M \{p, q} detcrmme exactly one in-block
with respect to M. Thus we have exactly 3 Ll E” 2) = —v -1 m-blocks The
remaining blocks through p and g are 2-secants: —v —-1-(3 sv—D= —v |

3.2Lemma. Two points p, q € i are contained in exactly two 3-secants, 1 Fv—2
in-blocks and }v — 1 2-secants.

3.3 Lemma. A point p € M\i and a point q € i, respectively, is contained in
the following blocks of different classes:

P q block with respect to M
0 3 3-secant
%4(1;—2)(1)—4) %4(1) 2)(v—4) -1 in-block
sv(v—2) v(v -2) - 2-secant
0 tangent.

Now we can classify the blocks of S with respect to M.

3.4 Proposition. With respect to M there exist exactly the following numbers of
blocks:

1 .
I,TU(U -2 (v—-4 -1 in-blocks
4 3-secants

v?
—2 2-
3 2 (v=-2) — secants
4 tangents
-1—9-2—v(v—2)(v—4) -1 passants

3.5 Corollary. If M is a near-system in S, then M:= P\M is a near-system in
S, too.

Proof: There are exactly b1 -1 passants with respect to M and therefore the
same number of m—blocks w1th respect to M (let us denote the set of all in-blocks
with respect to M by J ) There are exactly 4 pomts z,9,2,t € M such that no
triple of them lies on an 1n-block with respect to M because there are exactly 4
3-secants with respect to M. If we add {z,y, z,t} to the set of all in-blocks (and
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letH:= JU {z,y, 2,t}), then 3 points of M are contained in exactly one in-block
and (M, H) is an SQS. [ |
The term near-system is analogously defined in STS:

Let S*(P*, B*) be a STS of order u, M* C P* and J* C B* the set of all
in-blocks with respect to M*. Then M* is called a near-system of S* if

(1) There exists exactly one 3-element subset i* C M* such that (M*, J* U
{i*}) is an STS.
@ M = 5L
Now we can delete a point from a quadruple system with a near-system and
obtain the following:

3.6 Theorem. Let u = v — 1. The derived STS of an SQS, with a near-system
is either an STS, with subsystem of order +(u — 1) and hence an STS with a
hyperoval (see [4]) or an STS with a near-system.

Proof: Let S(P, B) be an SQS,, M C P anear-system of S and i the “miss-
ing block” of M. We delete a point p € M from S and get the derived STS
S*(P*, B%).

a) Letp ¢ i. There are no 3-secants with respect to M containing p. All
blocks containing p and two other points of M are therefore in-blocks.
Hence in S* there is exactly one in-block through 2 point of M* and that
means that M* is a subsystem of S*.

P) Letp € i. |[M] = 7(v—2) = £(u — 1). Two points of M not both
elements of 1 together with p are contained in exactly one in-block with
respectto M in S. Hence two points of M* not both elements of i*: = i\p
are contained in exactly one in-block with respect to M* in S*. If we add
+* to the set J* of all in-blocks of M* in S*, then (M*, J* U {i*}) is an
STS and thus M* is a near-system in S*.

Now we want to prove the existence of SQS, with a near-system for all v €
SQS fulfilling the necessary condition.

3.7 Proposition. In SQS; there exist exactly 56 near-systems.

Proof: Each 4-element subset of P which is nota block in SQSs is a (trivial) near-
system M (regard that (M, {M}) is a trivial SQS). There are exactly (}) = 70
4-clement subsets in SQSg thereof bg = 14 blocks. 1

We modify the subsystem construction method U from [2] (see also [1]). Let
S(P, B) be the starting system and i € B be an arbitrary block. We double the
points by adding an isomorphic system S*( P*, B*). The belonging isomorphism
p: S — S* may map the points of S to corresponding points with a “x” of S*.
With NS and S™ we denote our construction method and the new constructed
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system, respectively. P™ and B™ are defined in the following way: P™:= P U
P*. B®:= B;U...U By where

Br: = (B\i) U (B*\i*) (in-blocks and passants with respect to P).
|Bi|=2-|B| -2.
Bir: = {{z,y,2*,y*} | z,y € P,z+y} (2-secants of the first kind).
|Bri| = %v(v -1).
Bur: = {{=z,y,2%,t*}| {z,9,2,t} € B\i} (2-secants of the second kind).
|Biri| = 6- |B]—6.
Brv: = {{z,y,2,t*} | {z,y,2,t} = 1} (3-secants). |Biv|=4 .

By: = {{z*,v*, 2*,t} | {z,y, 2,1} = i} (tangents). |By|=4.

3 points of P™ are contained in at least one block of B™ and |B™| = 57-2v-
(2v —1)(2v — 2) = b,. Hence 3 points are contained in exactly one block and
S™ is an SQS,,- P and P*, respectively, are near-systems in S™.

a-secont

Figure 2

Starting with v € SQS we obtain an SQS;,. Thus we can conclude:

3.7 Theorem. There exist SQS, with near-systems iffv = 4 or8 (mod 12),
v>8.

4. Comparing the systems S™ and S™.
Let S(P, B) be an SQS of order v (later we will use S as a starting system).

4.1 Lemma. Letv > 10. There does not exist any quadruple system S contain-
ing a point set M, where |M| > %v, and having exactly one in-block with respect
to M (that is, a near-oval is a maximal point set with exactly one in-block).

Proof: Let M be a point set with exactly one in-block I, [M| = $v + 1, and let
r € I. Q:= M\r is an oval. This implies: There are exactly 5-(v — 2)(v —4)
3-secants through r (with respect to Q). v > 10 implies that there are at least
two 3-secants through r (with respect to Q) and thus at least one further in-block
which is a contradiction. We have a similar proof if |M| > v+ 1. ]
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4.2 Lemma. Letv > 14. There does not exist any point set R with more than
1v points containing exactly two in-blocks.

Proof: Let |R| = }v + 1 and p be a point of an in-block of R. Q: = R\pis an
oval or a near-oval in S. In both cases there are exactly %(v - 2)(v—4) 3-
secants through p with respect to Q (that is, tangents through p in 2.3). v > 14
implies that there are at least five 3-secants through p and thus further in-blocks
with respect to Q which is a contradiction. |

In the following let S™ be an SQS with a near-system constructed with the help
of N'S from a starting system S( P, B) of order v. Let J be the set of all in-blocks
of M and 1 be the “missing block”.

4.3 Lemma. Letv > 14. If there exists a near-oval Q in S™, then QN P| =
QN P¥| = }v.
Proof: Let |QN P| > Lv.
@) |iN P| < 4. After adding i to the near-system P, QN Pisanoval ora
near-oval in the system (P, J U {i}). Hence |Q N P| = Lv (4.1).
B) [inP| = 4. After adding i Q N P is a near-oval ora point set with exactly
two in-blocks. Hence |Q N P| = Lv (4.2). ]

44 Lemma. Letv > 14. IfQ is a near-oval in S™ then Q1 NQ2| < 1 where
Qi:=QNP,Q3:=QNP*andQ,:= 0 Q%) (fory see the definition of N S).

Proof: |Q1 N Q2] > 2 leads to a contradiction. Let Q1N Q2 =:{p,q}, thus
|Q1 N Q2| = 2. There are exactly two points z,y € Psuchthatz,y ¢ Q; UQ;.
I:= {p, q,p*, ¢*} is the in-block of Q (2-secant of the first kind with respectto P).
After adding i to the near-system P, Q, is an oval or a near-system in §( P Ju
{i}). Together with p and q each point r; € Qi1\{p, ¢} is contained in a 3-secant or
in an in-block with respect to Q; in §. v 2> 14 implies that there exists at least one
3-secant {p, g, r,z} with r € Q1\{p, ¢}, z € Q2\{p, ¢}. Because {p, ¢, 7,2} # i
there exists the 2-secant s = {p, r, ¢*, 2*} with respect to P in S™ (a 2-secant of
the second kind) which is a further in-block with respect to @) in S™ and this is a
contradiction. 1
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4.5 Proposition. Letv > 14. There does not exist any near-oval in S™ .

Proof: Let Q C P™ be a near-oval in S™ and Q, and Q3 are defined as in 4.4.
We assume Q; N Qz = p € P (the proof is similar if Q; N Q2 = { }). There
exists exactly one point ¢ € P\(Q; UQ2). v > 14 implies the existence of 4
further points r, s,t, u € Q2 \p. After adding i to the near-system P, Q; is either
an oval or a near-oval or a point set with exactly two in-blocks in S(P,JU{i}).

Case 1: Q; isanovalin S. There exists exactly one 2-secant through two points
of Q; and we have 6 pairs of points of {r,s,t,u}. Hence there exist at least
two 2-secants s; and s, with respect to Q; both different to 1. Looking at the
construction NS we have at least two in-blocks with respect to Q (2-secants of
the second kind) which is a contradiction.

Case 2: Q) is a near-oval in S. Hence P\Q; is a near-oval, too. The proof is

similar to Case 1 because two points of a near-oval are contained in at least one

2-secant (2.1/2.2).

Case 3: Q is a point set with exactly two in-blocks. After adding * to the near-

system P* the point set Q3 then must be an oval or anear-oval in S*(P*, J*U{#*})

and the proof is similar to Case 1 or Case 2. 1
Hence we can conclude:

201



4.6 Theorem. Letv > 14. Starting with quadruple systems Sy and S, of the
same order v we obtain the non-isomorphic systems S{° and S3° .

5. Concluding remarks.

Many problems and questions arise if we are concerned with these special point
sets. Here we list some of them:

- Are there SQS, with near-ovals for orders v =2 or 10 (mod 12), v >
16? Moreover the spectrum of SQS, with near-ovals should be completely
determined (the same problem is even unsolved for ovals in SQS).

- Near-k-ovals with k > 1 can be constructed in a similar way as in Chapter
2 for orders v = 4 or 8 (mod 12) (this will be the subject of a further
paper of the author). Are there construction methods for the remaining
admissible orders? There are many possible arrangements of the blocks
in a near-k-oval with fixed k and such near-k-ovals will have different
properties.

- How many near-ovals (near-k-ovals) exist in a given quadruple system. Is
there an upper bound on k for SQS,, of orders v = 2 or 10 (mod 12)?
Are there any constructions for these orders?

- Similar problems arise if we regard SQS with near-k-systems — a gener-
alization of near-systems (now with k “missing blocks™) and there are, too,
many possible arrangements of the “missing blocks” in such a near-k-oval.
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