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Introduction

Let n points with straight line segments connecting every pair of points repre-
sent a drawing of the complete graph on = vertices, K,,. A crossing free Hamil-
tonian cycle (CFHC), in a drawing of K,, is a tour of the n points beginning
and ending at the same point, such that each point is visited exactly once, and
no two non-adjacent edges intersect. Let F(n) denote the maximum number of
CFHCs obtainable from any drawing of K,,. Newborn and Moser [NM] showed
that (3/20) - 10"3 < F(n) < 2 -6™2 . [n/2]!, where 10'/? ~ 2.15443.
A major improvement to the upper bound, namely F(n) < 10!3%, was later es-
tablished by Ajtai, Chvétal, Newborn and Szemeredi [ACNS]. More recently the
lower bound has been improved, first by Akl [A] to F(n) > k-2.270719168*,
for some constant k and later by Hayward [H] to F\(n) > c-3.268461786™ for
some constant c.

In this note we examine a constrained version of the maximum CFHC problem
and obtain upper and lower bounds to two versions of this constrained problem.
A simple polygon P is said to be monotone with respect to a direction L, if every
line normal to L intersects the boundary of P at most twice. When we use the
term monotone polygon we will always assume that the polygon is monotone with
respect to a horizontal line. We define a monotone crossing free Hamiltonian
circuit (MCFHC) as a CFHC that is a monotone polygon.

Given a set of points P = (p1,p2,- - ,Pn), let z; be the x-coordinate of point
p;. We will give the upper and lower bounds under two different assumptions.
Let ¥, (n) denote the maximum number of MCFHC'’s under the assumption that
71 < 13 < -+ < Ty, that is, no two points have the same x-coordinate. We let
¥, (n) denote the maximum number of MCFHC’s with z; < 23 < -+ < .
The difference between these two assumptions is significant since we show the
upper bound we obtain for ¥, (n) is less than the lower bound for W2 (7).

Upper bounds

A monotone polygon can be partitioned into two polygonal chains beginning and
ending at the same point such that a vertical line intersects non-vertical edges of
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each chain at most once. We will distinguish these two chains as the upper and
lower chains for obvious reasons.

The upper bound for ¥y (n) < 2™2 is straightforward, since each pointp, , p3,
-+ ,Pa-1 can either appear on the upper or lower chain of an MCFHC, and the
extremal points p; and p, have their positions fixed in every MCFHC.

The upper bound for ¥, () requires slightly more development. Our analysis
will examine the choice of placement of a point in an MCFHC with respect to the
number of other points sharing the same x-coordinate.

Case 0: If a point has a unique x-coordinate then there are at most two choices
for it. It may appear on the upper or on the lower chain of the MCFHC.

Case 1: If a point shares its x-coordinate with exactly one other point then there
are the following possibilities:

(1) The top point precedes the bottom point on the lower chain.
(2) The top point succeeds the bottom point on the lower chain.
(3) The top point precedes the bottom point on the upper chain.
(4) The top point succeeds the bottom point on the upper chain.
(5) The top point is on the upper and the bottom point is on the lower chain.

This results in at most v/5 choices per point.

Case 2: If there are three points with the same x-coordinate then the following
possibilities exist. (Label the points ¢y, g2, g3, with g; above g2 above g3.)

(1) All three points on the upper chain in the order d1,92,q3.

(2) All three points on the upper chain in the order g3, g2, g;. (Note the point
g2 can never appear first or last in the ordering. This would result in two
edges being coincident, thus violating a property of MCFHC’s.)

(3)&(4) Replace the word “upper” with the word “lower” in cases (1)&(2).

(5) Point g; is on the upper chain and g, precedes g3 on the lower chain.

(6) Point g, precedes g, on the upper chain and point g3 is on the lower chain.
(7)&(8) Replace the word “precedes” with “succeeds” in cases (5)&(6).

This results in at most 81/ = 2 choices per point.

Case 3: If there are k > 3 points with the same x-coordinate then there are at
most (4(k — 1)) /¥ choices per point. We arrive at this figure by generalizing
the argument given in case 2 above. Label the k points q1,92,- - ,q¢. The valid
choices include the points ¢; to ¢; fori = 1,---, k on the upper chain and the
complementary subset of the k points on the lower chain with each set of points
in either increasing or decreasing sequences.

It should be noted, that for k > 3 the quantity (4(k — 1))!/* is less than 2.
Therefore ¥, () is maximized with | (n— 2) /2 | pairs of points on [(n—2)/2]
vertical lines. Since we have choices for at most n — 2 of the n points we derive
that ¥z (n) < (V5)™2.
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Lower Bounds

We provide constructions of drawings of K, giving lower bounds for ¥; (n)
and ¥,(n). Let n = 2m + 3 and consider the n points, P, placed as shown in
figure 1. The polygonal chains (v,ao,-- ,am) and (v, bo,--- , by,) are convex
and concave respectively. We assume the lines through the points a;, b; have very
large slopes.

am-1e0
Ve %4
bo *
bm-1e
b
Figure 1

Let us examine a pair of points a;, b;. There are three ways in which a;, b; can
appear in an MCFHC:
(0) a; is on the upper chain, and b; is on the lower chain,
(1) a;, b; are both on the lower chain,
(2) a;, b; are both on the upper chain.
In order to count the total number of MCFHC'’s using P we use the following rules
for constructing a valid MCFHC. a;, b; can satisfy:
case (0) if a;_1,b;—; satisfy the cases (0), (1) or (2);
case (1) if a;_1,b;_1 satisfy the cases (0), (1) or (2);
case (2) if a;_1, b;_; satisfy the cases (0) or (2);
We can now uniquely specify every MCFHC using the points P by giving a se-
quence of m 0’s, 1’s, and 2’s obeying the above rules.
Let T'(j, t) be the number of choices for connecting the vertex v and the pairs
(a0, b0),(a1,b1), - ,(as, bs), assuming that (a:, b;) has been picked according
to case j. We conclude that:

T(0,t)=T(0,t - 1)+T(1,t — 1)+T(2,t-1)
T(1,t)=T(0,t— )+T(1,t— 1)+T(2,t—1)
T(2,t)=T(0,t—1) +T(2,t-1).

Since T'(0,t) = T'(1,t) we can express the recurrence equations above as:

T(0,t) =2T(0,t—1)+T(2,t-1)
T(2,t)=T(0,t-1)+T(2,t-1).
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Thus,
[T(O,t)] _ [2 1]‘[1‘(0,0)] _ [2 1”1]
T, 7|1 1] |re,0|T|1 1|1
2 1] 1 _(3+V5 ‘ 1
11 1 [2/(1+\/5')]‘ 2 [2/(1+\/§)]

c o 34y . 2 1 1 . .
since == is an eigenvalue of [1 1 and 2/(1+V5) is a corresponding

eigenvector. The total number of MCFHC’s that can be constructed using the
points P is:

T(0,m—1)+T(1,m—1)+T(2,m~1) = T(0,m).

Therefore,

m -3
Yi(n) >T(0,m) > <3+‘/5—> = (“‘/5_) > 1.618(*3

2 2

We now give a construction to provide a lower bound for ¥, (m). Let P rep-
resent n = 2m + 3 points labelled as in figure 2. Place point v at the origin of
the coordinate system and points a;, b; at coordinates (4, 22) and (i, —22%) re-
spectively. It can be shown that the line segments (a;, bi+2) and (b;, a;42) do not
intersect the line segment (a 41, b;41), forall i = 0,---,m-2.

ae

boe
Figure 2

Let us establish the ways in which the pairs of points a;, b; can appear in an
MCFHC. Adopting an anti-clockwise direction we have the following cases:
(0) a; is on the upper chain and ; is on the lower chain,
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(1) a; precedes b; on the upper chain,
(2) a; succeeds b; on the upper chain,
(3) a; precedes b; on the lower chain,
(4) a; succeeds b; on the lower chain.
We can specify valid choices for a;, b; given the case for a;_1, bi_1. a; and b; may
appear in the MCFHC according to:
case (0) if a;_1,b;_; satisfy the cases (0),(1),(2),(3),(4);
case (1) if a;_1,b;_1 satisfy the cases (0),(1).,(2);
case (2) if a;_y,b;_; satisfy the cases (0),(1),(2).(3),4);
case (3) if a;_1,b;_1 satisfy the cases (0),(3),(4);
case (4) if a;_1, b1 satisfy the cases (0),(1),(2),(3),(4).
From this we see that 7°(0,t) = T(2,t) = T'(4,t) and that T'(1,t) = T(3,1).
Therefore, we can write out the recurrence equations that represent these possibil-

ities as follows:
T0,t)| _|3 2{|T(0,t-1)
T, |2 1|lTQQ,t-D )|
. 3 2 . . . .
Since [2 l] has eigenvalue (2 + V/5) with corresponding eigenvector

[( \/5—1 /2 ] we derive that the number of MCFHC'’s that can be constructed

is:
T(0,m) > 2+ V5™ = (2+V5) I,

Therefore, W5 (n) > (2+ v/5)™ /2 > (2.058)*3.

Conclusion

Let ¥; (n) denote the maximum number of MCFHC’s under the assumption that
Ty < Tz < -+ < Tn,and let ¥2(n) denote the maximum number of MCFHC’s
with z; < 79 < --- < T,. We have shown that:

n-3
(l +2ﬁ) < Wi(m) <2002

and

(2+V3) ™I < Wy (m) < (V5D

Exact values for ¥; (n) and W, (n) remain unknown.
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