The Flower Intersection Problem for Steiner Systems S(3,4,v), $v = 4 \cdot 2^n$, $5 \cdot 2^{n-1}$

Salvatore Milici, Gaetano Quattrocchi

Dipartimento di Matematica Universita' di Catania viale A. Doria 6, 95125 Catania, ITALY

Abstract. We determine those pairs (k, v), $v = 4 \cdot 2^n$, $5 \cdot 2^n$, for which there exists a pair of Steiner quadruple systems on the same v-set, such that the quadruples in one system containing a particular point are the same as those in the other system and moreover the two systems have exactly k other quadruples in common.

1. Introduction.

A Steiner system S(t-1,t,v) of order v is a pair (S,a) where S is a v-set and a is a collection of t-subsets of S, usually called blocks, such that every (t-1)-subset of A occurs in exactly one block of a.

A Steiner triple system is an $S(2,3,\nu)$ and a Steiner quadruple system is an $S(3,4,\nu)$.

A partial Steiner system of order n is a pair (P, b) where P is a n-set and b is a collection of t-subsets of P such that every (t-1)-subset of P occurs in at most one block of b.

For t=3 or 4 (P,b) is called a partial Steiner triple system (PTS) or a partial Steiner quadruple system (PQS) respectively.

Two partial Steiner systems (P, a) and (P, b) are said to be disjoint and mutually balanced (DMB) if $|a \cap b| = 0$ and any (t - 1)-subset of P is contained in a block of a if and only if it is contained in a block of b.

H. Hanani [6] proved that an S(3,4,v) (S,a) exists if and only if $v \equiv 2$ or 4 (mod 6). It is easy to see that $|a| = q_v = v(v-1)(v-2)/24$.

Let J(v) ([4], [9]) be the set of all integers k such that there exists a pair of Steiner quadruple systems (S, a) and (S, b) of order v having exactly k blocks in common (that is, $|a \cap b| = k$).

Let $I(v) = \{0, 1, 2, \dots, q_v - 14, q_v - 12, q_v - 8, q_v\}$ for every admissible v > 8.

In [3], [4], [8] and [12] the following results are proved:

- (i) $J(v) \subset I(v)$ for all $v \equiv 2$ or 4 (mod 6) $v \ge 8$ [4].
- (ii) $J(4) = \{1\}$. $J(8) = \{0, 2, 6, 14\}$. $J(10) = \{0, 2, 4, 6, 8, 12, 14, 30\}$ [8].
- (iii) J(v) = I(v) for all $v = 2^{n+2}$, $5 \cdot 2^n$ $n \ge 2$ ([4], [3] and [12]).

¹ Work done within the activity of GNSAGA, partially supported by MPI.

The flower at a point x of a Steiner quadruple system is the set of all quadruples containing x. The flower intersection problem for $S(3,4,\nu)$ is the determination for each $v \equiv 2$ or 4 (mod 6) of the set $J^f(v)$ of all k such that there exists a pair of Steiner quadruple systems (S,a) and (S,b) of order v having k+(v-1)(v-2)/6 quadruples in common, (v-1)(v-2)/6 of them being the quadruples of a common flower.

The similar problem for Steiner triple systems has been completely settled by Hoffman and Lindner [7].

For any $v \ge 8$ let $I^f(v) = \{0, 1, ..., f_v - 14, f_v - 12, f_v - 8, f_v\}, f_v = (v-1)(v-2)(v-4)/24$. From (i) it follows easily that $J^f(v) \subseteq I^f(v)$ for $v \ge 8$. It can be checked that $J^f(4) = \{0\}$ and $J^f(8) = \{7\}$. We prove here that $J^f(10) = \{0, 18\}, I^f(16) - \{16\} \subseteq J^f(16)$ and $J^f(v) = I^f(v)$ for every $v = 4 \cdot 2^{n+1}, 5 \cdot 2^n$ n > 2.

Let $F = \{F_1, F_2, \dots, F_{2m-1}\}$ and $G = \{G_1, G_2, \dots, G_{2m-1}\}$ be any two 1-factorizations of the complete graph on 2m vertices. We will say that F and G have k edges in common if and only if $k = \sum_{i=1}^{2m-1} |F_i \cap G_i|$.

In [13] Webb has shown that for every $2m \ge 8$ there exist two 1-factorizations with h+2m-1 edges in common, 2m-1 of them being the edges containing the same point x, and $h \in W^f(2m) = \{0, 1, \ldots, N_f = (2m-1)(2m-2)/2\} - \{N_f - 1, N_f - 2, N_f - 3, N_f - 5\}.$

Starting from Webb's result, Lindner and Wallis proved in [10] that for any $2m \ge 8$ there exist two 1-factorizations with k edges in common for every $k \in W(2m) = \{0, 1, ..., N = 2m(2m-1)/2\} - \{N-1, N-2, N-3, N-5\}$.

Now we describe two well-known constructions for quadruple systems of order 2ν which are the main tools used in what follows.

Construction A. (For example, see [9]): Let (X, a) and (Y, b) be two S(3, 4, v) with $|X \cap Y| = 0$. Let $F = \{F_1, F_2, \ldots, F_{v-1}\}$ and $G = \{G_1, G_2, \ldots, G_{v-1}\}$ be any two 1-factorizations on X and Y respectively. Define a collection s of blocks of $S = X \cup Y$, as follows:

- (a1) any block belonging to a or b belongs to s;
- (a2) if $x_1, x_2 \in X(x_1 \neq x_2)$ and $y_1, y_2 \in Y(y_1 \neq y_2)$ then $\{x_1, x_2, y_1, y_2\} \in s$ if and only if $\{x_1, x_2\} \in F_i$ and $\{y_1, y_2\} \in G_i$.

It is a routine matter to check that (S, s) is an S(3,4,2v). We will denote (S, s) by $[X \cup Y]$ [a, b, F, G].

Construction B. (See [2]): Let (Q,q) be an S(3,4,v), Q' be a finite set such that |Q| = |Q'|, $|Q \cap Q'| = 0$ and let φ be a bijection from Q onto Q' with $x' = \varphi(x)$, for every $x \in Q$. Obviously (Q',q') is an S(3,4,v) where $q' = \varphi(q) = \{\{\varphi(x), \varphi(y), \varphi(z), \varphi(u)\} / \{x,y,z,u\} \in q\}$.

If $q_1 \subseteq q$, we define a collection $p(q_1)$ of blocks of $P = Q \cup Q'$ as follows:

(b1) any block belonging to q_1 or q_1' (= $\varphi(q_1)$) belongs to $p(q_1)$;

- (b2) $\{\{x_1, x_2, x_3', x_4'\}, \{x_1, x_2', x_3, x_4'\}, \{x_1, x_2', x_3', x_4\}, \{x_1', x_2, x_3, x_4'\}, \{x_1', x_2, x_3', x_4\}, \{x_1', x_2', x_3, x_4\}\} \subset p(q_1)$ if and only if $\{x_1, x_2, x_3, x_4\} \in q_1$;
- (b3) $\{\{x_1, x_2, x_3, x_4'\}, \{x_1, x_2, x_3', x_4\}, \{x_1, x_2', x_3, x_4\}, \{x_1', x_2, x_3, x_4\}, \{x_1', x_2', x_3', x_4\}, \{x_1', x_2', x_3, x_4'\}, \{x_1', x_2, x_3', x_4'\}, \{x_1, x_2', x_3', x_4'\}\}$ $\subset p(q_1)$ if and only if $\{x_1, x_2, x_3, x_4\} \in q - q_1$;
- (b4) $\{x_1, x_2, x_1', x_2'\} \in p(q_1)$ for every $x_1, x_2 \in Q, x_1 \neq x_2$.

It is a routine matter to check that $(P, p(q_1))$ is an $S(3, 4, 2\nu)$. We will denote $(P, p(q_1))$ by $((Q \cup Q'), (q, q_1))$.

2. Theorems.

Let (X,t) and (X,t') be two disjoint and mutually balanced partial quadruple systems (DMB PQS). Let $d(x) = |\{b \in t/x \in b\}|$.

Theorem 2.1. $k \in J^f(v)$ for every integer k such that $k \ge (v-1)[(v-4)(v-2)-24]/24$ and $(k+(v-1)(v-2)/6) \in J(v)$.

Proof: Let (S,a) and (S,b) be two S(3,4,v) having k+(v-1)(v-2)/6 blocks in common. Let $t=a-(a\cap b)$, $t'=b-(a\cap b)$ and $X=\{x\in S/x\in c \text{ for some }c\in t\}$. Clearly (X,t) and (X,t') are two DMB PQSs such that |t|=|t'|=m and $m\leq v-1$. If there is not a flower contained in $a\cap b$, it is |X|=v. However it is $[4]\sum_{x\in X}d(x)=4m$ and $d(x)\geq 4$, hence $v=|X|\leq m$.

Theorem 2.2. $k + \sigma + hv/2 \in J^f(2v)$ for any $\sigma \in J(v)$, $k \in J^f(v)$ and $h \in W^f(v)$.

Proof: Let (X, a), (X, b) be two S(3, 4, v) having k + (v-1)(v-2)/6 quadruples in common, (v-1)(v-2)/6 of them being the blocks of the common flower at a point $x \in X$. Let $F^{(i)} = \{F_1^{(i)}, F_2^{(i)}, \ldots, F_{v-1}^{(i)}\}$ (i = 1, 2) be two 1-factorizations on X having h + v - 1 edges in common, v - 1 of them being the edges containing the same point x. Let (Y, a') and (Y, b') be two S(3, 4, v) such that $|X \cap Y| = 0$ and let $G = \{G_1, G_2, \ldots, G_{v-1}\}$ be a 1-factorization on Y.

It is easy to check that $[X \cup Y]$ $[a, a', F^{(1)}, G]$ and $[X \cup Y]$ $[b, b', F^{(2)}, G]$ are two Steiner quadruple systems having $|a' \cap b'| + hv/2 + k + (2v - 1)(2v - 2)/6$ quadruples in common, (2v - 1)(2v - 2)/6 of them being the quadruples of the common flower at the point x.

From Theorem 2.2 it follows, by a simple calculation,

Theorem 2.3. If $J^f(v) = I^f(v)$ and J(v) = I(v) for every admissible $v \ge 16$ then $J^f(2v) = I^f(2v)$.

Let (Q, q) and (Q, c) be two S(3, 4, v) $(Q = \{1, 2, ..., v\})$ such that $c_1 \subset q \cap c$, c_1 being the flower at the point 1. Let Q' be a v-set such that $|Q \cap Q'| = 0$

and let φ be a bijection from Q onto Q' with $x' = \varphi(x)$ for every $x \in Q$. Obviously (Q',c') is an S(3,4,v) where $c' = \varphi(c) = \{\{\varphi(x),\varphi(y),\varphi(z),\varphi(u)\}\}$ $\{x,y,z,u\} \in c\}$. Let (Q',t) be an S(3,4,v) such that $|t \cap c'_1| = h(c'_1) = \varphi(c_1)$. Let $F = \{F_1,F_2,\ldots,F_{v-1}\}$ be the 1-factorization on Q' such that, for every $i = 1,2,\ldots,v-1$:

- 1) $\{1', (i+1)'\} \in F_i$;
- 2) $\{x', y'\} \in F_i$ if and only if $\{1, i + 1, x, y\} \in c_1$.

Let $G = \{G_1, G_2, \dots, G_{v-1}\}$ be a 1-factorization on Q such that $\{1, i+1\} \in G_i$ for every $i = 1, 2, \dots, v-1$ and $\sigma = \sum_{i=1}^{v-1} |\varphi(G_i - \{\{1, i+1\}\}) \cap (F_i - \{\{1', (i+1)'\}\})|$.

From Construction A and B, we obtain respectively that $(P, s) = [Q \cup Q']$ [q, t, G, F] and $(P, p) = ((Q \cup Q'), (c, c_1))$ are two S(3, 4, 2v).

Theorem 2.4. Let (P, s) and (P, p) be the above S(3, 4, 2v). (P, s) and (P, p) intersect in $p_1 \cup g$, p_1 being the flower at the point 1 and $|g| = h + 2\sigma$.

Proof: It is easy to see that the common blocks of p and s are the common blocks either in (b1), (b2) or (b4) of Construction B.

If $b \in p \cap s$ is in (b1) it follows either $b \in c_1$ or $b \in c'_1 \cap t$.

Let $U_i = \{\varphi(G_i - \{\{1, i+1\}\}) \cap (F_i - \{\{1', (i+1)'\}\})\}$ and let $\{x, y, w', z'\} \in p \cap s$ be a block in (b2). It follows that $\{x, y, w, z\} \in c_1$ hence either $\{1, i+1\} = \{x, y\}$ or $\{1, i+1\} = \{w, z\}$ for some $i \in \{1, 2, ..., v-1\}$. If $\{1, i+1\} = \{x, y\}$ then $\{w', z'\} \in F_i$ and $\{x, y, w', z'\} = \{1, i+1, w', z'\} \in p_1$. If $\{1, i+1\} = \{w, z\}$ it follows $\{x, y, w', z'\} = \{1', (i+1)', x, y\}, \{1, i+1, x, y\} \in c_1$, hence $\{x', y'\} \in F_i$. Moreover $\{1', (i+1)'\} \in F_i$ therefore $\{x, y\} \in G_i$, hence $\{x', y'\} \in U_i$.

At last let $\{x, y, x', y'\} \in p \cap s$ be a block in (b4). If $1 \in \{x, y\}$, we obtain $\{x, y, x', y'\} \in p_1$. If $1 \notin \{x, y\}$ then $\{x', y'\} \in U_i$ for some *i*. This completes the proof.

Theorem 2.5. $k + h + v(v-1)(v/2-1)/2 - (v-4)^2(\sigma+2\tau)/4 \in J^f(2v)$ for every $k \in J^f(v)$, $h \in J(v)$, $\sigma \in \{0,2,3\}$ and $\tau \in \{0,1,\ldots,(v-4)/2\}$.

Proof: Let (X, a) and (X, b) be two S(3, 4, v) $(X = \{1, 2, ..., v\})$ intersecting in $a_1 \cup g$, a_1 being the flower at point 1 and |g| = k. Let (Y, c) and (Y, d) be two S(3, 4, v) such that $|Y \cap X| = 0$ and $|c \cap d| = h$. If $(X - \{1\}, t)$ is an S(2, 3, v - 1) we define the following 1-factorization $F = \{F_1, F_2, ..., F_{v-1}\}$ on X:

- 1) $\{1, i+1\} \in F_i, i=1,2,\ldots,v-1;$
- 2) $\{x,y\} \in F_i$ if and only if $\{i+1,x,y\} \in t$.

Let φ be a bijection from X onto Y and let $G = \{G_1, G_2, \ldots, G_{v-1}\}$ be the 1-factorization on Y such that $\{x, y\} \in G_i$ if and only if $\{\varphi^{-1}(x), \varphi^{-1}(y)\} \in F_i$. Let $(S, s) = [X \cup Y][a, c, F, G]$ and $(S, s') = [X \cup Y][b, d, F, G]$. Clearly if

 $\{2, x, y\} \in t \text{ then } H_1 = F_1 - \{\{1, 2\}, \{x, y\}\}, H_{x-1} = F_{x-1} - \{\{1, x\}, \{2, y\}\},$ and $H_{y-1} = F_{y-1} - \{\{1, y\}, \{2, x\}\}$ are three 1-factors on $X - \{1, 2, x, y\}$. If β is a permutation on $\{1, x - 1, y - 1\}$, let Φ_{β} be the set of blocks $\{x_1, x_2, y_1, y_2\}$ such that $\{x_1, x_2\} \in H_j$ and $\{\varphi^{-1}(y_1), \varphi^{-1}(y_2)\} \in H_{\beta(j)}$. Obviously (S, s) and $(S, (s' - \Phi_{\text{identity}}) \cup \Phi_{\beta})$ are two S(3, 4, 2v) intersecting in $s_1 \cup v$ blocks, s_1 being the flower at the point 1 and $|v| = k + h + v(v - 1)(v/2 - 1)/2 - \sigma(v - 4)^2/4$, $\sigma \in \{0, 2, 3\}$. By repeating this argument we obtain the proof.

It is well-known [1] that for any even positive integer $n \le v/2$ there exists a 1-factorization of K_v containing a sub 1-factorization of K_n . Hence, similarly to the above theorem, it is possible to prove the following

Theorem 2.6. $k + h + v(v - 1)(v/2 - 1)/2 - v^2 \varepsilon/4 \in J^f(2v)$ for every $k \in J^f(v)$, $h \in J(v)$, $\varepsilon \in \{0, 2, 3, \dots, \nu - 1\}$ and even positive integer $\nu \leq v/2$.

3. $J^f(4\cdot 2^n)$.

Theorem 3.1. $\{0,1,2,3,4,5,6,8,10,12,14,18,22,26,30,34,42\}$ $\subset J^f(16)$.

Proof: Let $Q = \{1, 2, \dots, 8\}$ and let

$$q = \{\{1,2,3,4\}, \{1,2,5,6\}, \{1,2,7,8\}, \{1,3,5,7\}, \{1,3,6,8\}, \\ \{1,4,5,8\}, \{1,4,6,7\}, \{2,3,5,8\}, \{2,3,6,7\}, \{2,4,5,7\}, \\ \{2,4,6,8\}, \{3,4,5,6\}, \{3,4,7,8\}, \{5,6,7,8\}\}.$$

Obviously (Q, q) is an S(3, 4, 8). Let c = q and c_1 be the flower at the point 1. Let Q' be the set $\{1', 2', \ldots, 8'\}$ and let φ be the bijection from Q onto Q' with $x' = \varphi(x)$ for every $x \in Q$.

Let $H_1 = \{\{1,2\}, \{3,4\}\}, H_2 = \{\{1,3\}, \{2,4\}\}, H_3 = \{\{1,4\}, \{2,3\}\}, H_4 = \{\{1,5\}, \{2,6\}\}, H_5 = \{\{1,6\}, \{2,5\}\}, H_6 = \{\{1,7\}, \{2,8\}\}, H_7 = \{\{1,8\}, \{2,7\}\}, H_1^* = \{\{5,6\}, \{7,8\}\}, H_2^* = \{\{5,7\}, \{6,8\}\}, H_3^* = \{\{5,8\}, \{6,7\}\}, H_4^* = \{\{3,7\}, \{4,8\}\}, H_5^* = \{\{3,8\}, \{4,7\}\}, H_6^* = \{\{3,5\}, \{4,6\}\}, H_7^* = \{\{3,6\}, \{4,5\}\}.$

Clearly, $F_i = \{\{\varphi(x), \varphi(y)\}/\{x,y\} \in H_i \cup H_i^*\}$ $i = 1, 2, \ldots, 7$ is a 1-factorization on Q'. Let α be a permutation on $\{1, 2, 3\}$ and let β and γ be two permutations on $\{4, 5\}$ and $\{6, 7\}$, respectively. Let $G_i = H_i \cup H_{\alpha(i)}^*$ $i = 1, 2, 3, G_i = H_i \cup H_{\beta(i)}^*$ i = 4, 5 and $G_i = H_i \cup H_{\gamma(i)}^*$ i = 6, 7. $G = \{G_1, G_2, \ldots, G_7\}$ is a 1-factorization on Q such that

$$\sigma = \sum_{i=1}^{7} |\varphi(G_i - \{\{1, i+1\}\}) \cap (F_i - \{\{1', (i+1)'\}\})| \in \{7, 9, 11, 13, 15, 21\}.$$

If G is one of the following 1-factorizations, we obtain $\sigma \in \{0, 1, 2, 3, 4, 5, 6\}$.

1 2 7 4 3 5 6 8	1 3 2 7 4 6 5 8	1 4 2 5 3 6 7 8	1 5 2 4 6 7 3 8	1 6 2 8 5 4 3 7	17 23 84 56	1 8 2 6 3 4 5 7	1 7 7 7 3 3 5 6 5	4 5	1 3 2 5 4 6 7 8	1 4 2 7 3 6 5 8	1 5 2 4 6 7 3 8	1 6 2 8 5 4 3 7	17 23 84 56	1 8 2 6 3 4 7 5
1 2 3 4 5 7 6 8	1 3 2 5 4 6 7 8	1 4 2 7 3 6 5 8	1 5 2 4 6 7 3 8	1 6 2 8 5 4 7 3	17 23 48 56	1 8 2 6 7 4 3 5	1 2 3 4 5 7 6 8	4 7	1 3 2 5 4 6 7 8	1 4 2 7 3 6 5 8	1 5 2 6 4 7 3 8	1 6 2 8 5 4 7 3	17 23 84 56	1 8 2 4 6 7 3 5
1 2 5 6 7 8 3 4	1 3 2 4 5 8 6 7	1 4 2 8 5 7 3 6	1 5 2 3 6 8 4 7	1 6 2 7 3 5 4 8	17 26 38 45	1 8 2 5 3 7 4 6	1 2 5 6 7 8 3 4	5 8	1 3 2 4 5 8 6 7	1 4 2 8 5 7 3 6	1 5 2 6 3 8 4 7	1 6 2 7 3 5 4 8	17 23 68 45	1 8 2 5 3 7 4 6
1 2 5 6 7 8 3 4	1 3 2 4 5 8 6 7	1 4 2 8 5 7 3 6	1 5 2 3 6 8 4 7	1 6 2 7 3 8 4 5	17 26 35 48	1 8 2 5 3 7 4 6						•		

Clearly, for $h \in \{0, 1, 3, 7\}$ there is an S(2, 3, 7) $(T, t'), T = \{2', 3', \dots, 8'\}$, such that $|t' \cap \{\{x', y', z'\}/\{1, x, y, z\} \in q\}| = h$. Since there exists, up to isomorphism, only one triple system of order 7 it is of course derived. Hence the proof follows from Theorem 2.4.

Theorem 3.2. $\{28, 34, 36, 38, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 70, 72, 74, 78, 86\} \subset J^f(16)$.

Proof: Let F and $F^{(j)}$ $(j=1,2,\ldots,10)$ be the following 1-factorizations on $X'=\{0',1',\ldots,7'\}$ and $X=\{0,1,\ldots,7\}$

F_1'	F_2'	F_3'	F_4'	F_5'	F_6'	F_7'
0' 1'	0' 2'	0' 3'	0' 4'	0' 5'	0' 6'	0' 7'
2' 3'	1' 3'	1' 2'	1' 5'	1' 6'	1' 7'	1' 4'
4' 7'	4' 5'	4' 6'	2' 6'	2' 7'	2' 4'	2' 5'
5' 6'	6' 7'	5' 7'	3' 7'	3' 4'	3' 5'	3' 6'

$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$	$F_4^{(1)}$	$F_5^{(1)}$	$F_6^{(1)}$	$F_7^{(1)}$
0 2	0 1	0 4	0 6	0 5	0 3	0 7
1 4	2 4	1 2	1 5	1 6	1 7	1 3
3 5	3 7	3 6	2 7	2 3	2 5	2 6
6 7	5 6	5 7	3 4	4 7	4 6	4 5

$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$	$F_6^{(3)}$	$F_7^{(3)}$	$F_2^{(6)}$	$F_3^{(6)}$
0 6	0 5	0 3	0 7	0 3	0 7	0 1	0 4
1 3	1 7	1 5	1 6	1 6	1 5	2 4	1 2
2 7	2 3	2 6	2 5	2 5	2 6	3 6	3 7
4 5	4 6	4 7	3 4	4 7	4 3	7 5	5 6

$$\begin{split} F_1^{(j)} &= F_1^{(1)} &\text{ for every } j = 2\,,3\,,\dots\,,10; \\ F_2^{(j)} &= F_2^{(1)}\,,\,F_3^{(j)} = F_3^{(1)} &\text{ for every } j = 2\,,3\,,4\,,5; \\ F_2^{(j)} &= F_2^{(6)}\,,\,F_3^{(j)} = F_3^{(6)} &\text{ for every } j = 7\,,8\,,9\,,10; \\ F_4^{(3)} &= F_4^{(2)}\,,\,F_5^{(3)} = F_5^{(2)}\,,\,F_4^{(4)} = F_4^{(2)}\,,\,F_5^{(4)} = F_5^{(1)}\,,\,F_6^{(4)} = F_6^{(1)}\,,\\ F_7^{(4)} &= F_7^{(3)}\,,\,F_4^{(5)} = F_4^{(1)}\,,\,F_5^{(5)} = F_5^{(2)}\,,\,F_6^{(5)} = F_6^{(3)}\,,\,F_7^{(5)} = F_7^{(1)}\,,\\ F_k^{(j)} &= F_k^{(j-5)} &\text{ for every } j = 6\,,7\,,8\,,9\,,10 &\text{ and } k = 4\,,5\,,6\,,7\,. \end{split}$$

Let m_1, m_2, d_1, d_2 be the following block-sets

m_1	m_2
1 4 4' 7'	1 4 4' 5'
1 4 5' 6'	1 4 6' 7'
0 2 4' 7'	0 2 4' 5'
0 2 5' 6'	0 2 6' 7'
1 0 4' 5'	1 0 4' 7'
1 0 6' 7'	1 0 5' 6'
4 2 4' 5'	4 2 4' 7'
4 2 6' 7'	2 4 5' 6'

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5 6 6' 7' 5 6 5' 7' 3 7 4' 5' 3 7 4' 6' 3 7 6' 7' 3 7 5' 7' 5 7 4' 6' 5 7 4' 7' 5 7 5' 7' 5 7 5' 6' 3 6 4' 6' 3 6 4' 7' 3 6 5' 7' 3 6 5' 6' 3 5 4' 7' 6 7 4' 5' 3 5 5' 6' 6 7 6' 7' 6 7 4' 7' 3 5 6' 7' 6 7 5' 6' 1 4 0' 4' 3 5 0' 1' 1 4 1' 5' 1 4 0' 1' 3 5 0' 4' 1 5 0' 4' 1 5 0' 1' 1 5 1' 5' 1 5 4' 5' 3 4 0' 4' 3 4 0' 1'	d_1	d_2
3 4 1' 5' 3 4 4' 5'	5 6 6' 7' 3 7 4' 5' 3 7 6' 7' 5 7 4' 6' 5 7 5' 7' 3 6 4' 6' 3 6 5' 7' 3 5 4' 7' 3 5 5' 6' 6 7 4' 7' 6 7 5' 6' 3 5 0' 1' 1 4 0' 1' 1 4 4' 5' 1 5 0' 4' 1 5 1' 5' 3 4 0' 4'	5 6 5' 7' 3 7 4' 6' 3 7 5' 7' 5 7 4' 7' 5 7 5' 6' 3 6 4' 7' 3 6 5' 6' 6 7 4' 5' 6 7 6' 7' 3 5 6' 7' 1 4 0' 4' 1 4 1' 5' 3 5 0' 4' 3 5 1' 5' 1 5 0' 1' 1 5 4' 5' 3 4 0' 1'

Let (X,a), (X',b_1) and (X',b_2) be three S(3,4,8). Let $(Q,q) = [X' \cup X]$ $[b_1,a,F,F^{(1)}]$ and $(Q,q^{(j)}) = [X' \cup X]$ $[b_2,a,F,F^{(j)}]$. Clearly, $(Q,(q-m_1)\cup m_2)$ and $(Q,(q^{(j)}-m_1)\cup m_2)$ are two S(3,4,16). Let $c^{(j)} = (q^{(j)}-m_1)\cup m_2$). Since $d_1 \subseteq (q-m_1)\cup m_2$ and $d_1 \subseteq c^{(j)}$, $(Q,(q-m_1)\cup m_2)$ and $(Q,(c^{(j)}-d_1)\cup d_2)$ are two S(3,4,16) agreeing on the blocks of the flower at the point 0 and exactly $7+|b_1\cap b_2|+k$ ($k\in\{21,29,37,41,45,49,53,57,65\}$) others.

Theorem 3.3. $76,84 \in J^f(16)$.

Proof: Let $X = \{1, 2, ..., 8\}$ and $Y = \{1', 2', ..., 8'\}$. Let φ be the bijection of X onto Y such that $x' = \varphi(x)$ for every $x \in X$. Let F and G be the following 1-factorizations on X and Y respectively:

5, 3, 2, 8

1, 3, 2, 1

5 t 5, 2, 5 \$ 5, 3, 1 3 5, 2, 131,3, 3 4 3, 2,

3 4 1, 5,

2, 3, 2, 1 9, 3, 2, 1 9, 2, 3, 3 8, 2, 9, 9 8, 2, 2 8, 9, 2, 2 8, 9, 2, 2 8, 9, 2, 3 8, 9, 5, 7 8, 9, 7 8, 9, 7 8, 9, 7 8, 9, 7 8, 9, 7 8, 9, 7 8, 1 8, 1 8, 1 8, 1 8, 1 8, 1 8, 1 8, 2 8, 3 8, 4 8, 7 8,		1, 2, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		8 9 1 8 2 4 9 9 9 8 8 4 4 5 9 9 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	1 7 1 7 2 1
7, 8, 4, 2, 7, 7, 7, 7, 7, 8, 7, 7, 1, 8, 7, 1,	3, 8, 5 7, 4, 5 1, 9, 1,	2, 9, 3, 4, 5, 8, 1, 4,	9, 1, 4, 8, 5, 3, 1, 2,	9, 8, 4, 1, 7, 2, 1, 3,	3, 8, 4, 9, 3, 2, 1, 5,
LD 95		75	£9	75	¹ D
9 E S S S S S S S S S S S S S S S S S S	2 8 8 2	9 † 2 8 7 5 I	2 8 8 2 8 4 4 1	7 5 7 7 8 9 8 9	2 I 9 S 4 S 8 L
्रास् _य ९स	F ₂	₽ ₽	FJ	F ₂	F ₁

Let $b = \{\varphi(c)/c \in a\}$. Clearly, (X, a) and (Y, b) are two S(3, 4, 8). Let $(Q, q) = [X \cup Y][a, b, F, G]$ and $q^* = a \cup q_1$. It is easy to check that (Q, q) and $(Q, (q - q^*) \cup q_2)$ are two S(3, 4, 16) agreeing on the blocks of the flower at the point 7' and exactly 84 others.

Similarly, from (Q,q) and $(Q,(q-(q^*\cup v))\cup (q_2\cup w))$ it follows 76 $\in J^f(16)$.

Theorem 3.4. $\{20, 24, 32, 40, 68, 80\} \subset J^f(16)$.

Proof: Consider the S(3,4,8) (X,a), (Y,b), the two 1-factorizations F,G and the bijection φ , all defined in the Theorem 3.3.

Let $F^{(j)}$ (j = 1, 2, ..., 6) be the following 1-factorizations on Y:

$$F_1^{(j)} = G_1$$
 for $j = 1, 2, 3, 5, 6$; $F_2^{(j)} = G_3$ for $j = 1, 2, 3$; $F_3^{(j)} = G_2$ for $j = 1, 2, 3$; $F_i^{(1)} = G_i$ for $i = 4, 5, 6, 7$; $F_i^{(4)} = F_i^{(2)}$, $F_i^{(5)} = F_i^{(2)}$ and $F_i^{(6)} = F_i^{(3)}$ for $i = 4, 5, 6, 7$; $F_2^{(6)} = F_2^{(5)}$, $F_3^{(6)} = F_3^{(2)}$.

$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$	$F_4^{(3)}$	$F_5^{(3)}$	$F_6^{(3)}$
3' 7'	5' 7'	1' 7'	2' 7'	3' 7'	5' 7'	1' 7'
1' 8'	1' 4'	2' 4'	1' 6'	1' 4'	1' 8'	2' 8'
2' 6'	2' 8'	3' 8'	3' 4'	2' 6'	2' 4'	3' 4'
4' 5'	3' 6'	5' 6'	5' 8'	5' 8'	3' 6'	5' 6'

$F_7^{(3)}$	$F_1^{(4)}$	$F_2^{(4)}$	F ₃ ⁽⁴⁾	$F_2^{(5)}$	$F_3^{(5)}$
2' 7'	7' 8'	7' 4'	7' 6'	1' 3'	1' 5'
3' 8'	1' 3'	1' 2'	1' 5'	2' 5'	2' 3'
1' 6'	2' 5'	3' 5'	2' 3'	4' 8'	6' 8'
4' 5'	4' 6'	4' 6'	6' 8'	6' 7'	7' 4'

Let

s_1	
1' 2' 3' 5'	
1 2 3 5	1247
1268	1 3 4 8
1456	1 5 7 8
1 3 6 7	2 4 5 8
2 3 4 6	2 5 6 7
2 3 7 8	3 4 5 7
4678	3 5 6 8
5 6 1' 2'	7 8 3′ 5′
5 8 1' 3'	5 7 2' 3'
6 8 1' 5' 5 7 1' 5'	6 7 2' 5'
5 7 1' 5'	5 8 2' 5'
6 7 1' 3'	6 8 2' 3'

s_2	
8 2' 3' 5' 1 2 3 4 1 2 7 8 1 4 6 7 1 4 5 8 2 4 5 7 2 3 6 7	1 2 5 6 1 3 5 7 1 3 6 8 2 3 5 8 2 4 6 8 3 4 5 6
3 4 7 8	5 8 1' 5' 6 8 1' 3'
6 7 2′ 3′	5 6 7 1'
5 6 8 2' 6 7 8 5' 6 1' 2' 5'	5 7 8 3' 5 1' 2' 3' 7 1' 3' 5'

Let $(S, s) = [X \cup Y][a, b, F, F^{(1)}]$ and $(S, s^{(j)}) = [X \cup Y][a, b, F, F^{(j)}]$ (j = 1, 2, ..., 6). Since $s_1 \subseteq s^{(j)}$, (S, s) and $(S, (s^{(j)} - s_1) \cup s_2)$ agreeing on the blocks of the flower at the point 7' and exactly $k \in \{20, 24, 32, 40, 68, 80\}$ others.

Theorem 3.5. $I^f(16) - \{16\} \subseteq J^f(16)$.

Proof: From [4] (Theorem 3.2) it follows that $82 \in J^f(16)$. From [12] (Theorem 2.1) it follows that $87, 88 \in J^f(v)$. The theorems of Section 2 and the above theorems complete the proof.

Remarks: The authors have not been able to handle the case $16 \in J^f(16)$. Therefore it is an open problem.

Corollary 3.1. $J^f(4 \cdot 2^n) = I^f(4 \cdot 2^n)$ for every integer $n \ge 3$.

Proof: The (i) of Section 1 and Theorem 2.3 imply $I^f(32) - \{996\} \subseteq J^f(32)$. The Theorem 2.5 gives $996 \in J^f(32)$. At last the (iii) of Section 1 and Theorem 2.3 complete the proof.

4. $J^f(5\cdot 2^*)$.

Theorem 4.1. $J^f(10) = \{0, 18\}.$

Proof: Since $J(10) = \{0, 2, 4, 6, 8, 12, 14, 30\}$ [8] it is $J^f(10) \subseteq \{0, 2, 18\}$. Let

	7	21		
2	4	3	8	
2	4	6	9	
2	4	7	0	
2	5	8	0	
2	5	7	9	
2	5	3	6	
4	5	7	8	
4	5	6	0	
4	5	3	9	
2	6	7	8	
2	3	9	0	
4	3	6	7	
4	8	9	0	
5	6	8	9	
5	3	7	0	
3	7	8	9	
3	6	8	0	
6	7	9	0	

	p_2							
2	4	0	9					
2	4	6	3					
2	4	8	7					
2	5	3	9					
2	5 5	6	8					
2	5	7	0					
4	5	7	3					
4 4	5 5	6	9					
4	5	8	0					
2	3	8	0					
2	6	7	9					
4	3	8	9					
4 4	6	0	7					
5	3	6	0					
5	7	8						
3	7	6	8					
3	7	9	0					
6	8	9	0					
5 3 3	7 7 7	8 6 9	9 8 0					

		t		
1	2	4	5	
1	2	8	9	
1	2	6	0	
1	2	3	7	
1	4		8	
1	4	7	9	
1	4	3	0	
1	5	9	0	
1	5	6	7	
1	-5	3	8	
1	7	8		
1	3	6	0 9	

Clearly, $(X, p_1 \cup t)$ and $(X, p_2 \cup t)$ $(X = \{0, 1, ..., 9\})$ are two S(3, 4, 10) intersecting in the flower t at the point 1. Hence, $0 \in J^f(10)$.

Now we will show that $2 \notin J^f(10)$. Assume $2 \in J^f(10)$, there are two DMB PQSs (A, a_1) and (A, a_2) such that |A| = 9 and $|a_1| = |a_2| = 16$. Obviously for every $x \in A \mid \{c \in a_i/x \in c\} \mid \leq 8$ and there is at least one element say x' in A such that $|s_i| = \{c \in a_i/x' \in c\} \mid = 8$ for i = 1, 2. Let $r_i = \{c - \{x'\}/c \in s_i\}$ and $D = A - \{x'\}$. Obviously (D, r_i) are two DMB PTSs. It is proved in [11] that there exist, to within isomorphism, only two DMB PTSs with $|r_i| = 8$ blocks and |D| = 8 elements. Moreover every x of D appears in precisely three blocks of r_i . It is easy to see that $a_i - s_i = \{\{x\} \cup b/b \in r_j, \text{ for some } x \in D\}, i \neq j \text{ and } \{i,j\} = \{1,2\}$. Let $\{x,x_1,x_2,x_3\} \in a_1-s_1$ with $\{x_1,x_2,x_3\} \in r_2$. Obviously it is $\Gamma = \{\{x,x_1,x_2,y_1\},\{x,x_1,x_3,y_2\},\{x,x_2,x_3,y_3\}\} \subset a_2-s_2$. Moreover x occurs in exactly three blocks of s_2 and in at least three blocks of $a_2 - (s_2 \cup \Gamma)$. Hence, there exist at least 9 blocks of a_2 containing x.

Theorem 4.2. $J^f(20) = I^f(20)$.

Proof: Let (Q, q) be an S(3, 4, 10) $(Q = \{0, 1, ..., 9\})$ containing the flower

$$c_1 = \{\{1,2,3,4\}, \{1,2,5,6\}, \{1,2,7,8\}, \{1,2,0,9\}, \{1,3,5,8\}, \\ \{1,3,7,9\}, \{1,3,0,6\}, \{1,4,5,9\}, \{1,4,7,6\}, \{1,4,0,8\}, \\ \{1,5,7,0\}, \{1,6,8,9\}\}.$$

Let c=q and let φ be the bijection from Q onto $Q'=\{0',1',\ldots,9'\}$ with $x'=\varphi(x)$ for $x\in Q$. Let F and G be the two following 1-factorizations on Q' and Q respectively:

F_1'	F_2'	F_3'	F_4'	F_5'	F_6'	F_7'	F_8'	F_9'
1' 2'	1' 3'	1' 4'	1' 5'	1' 6'	1' 7'	1' 8'	1' 9'	1' 0'
3' 4'	2' 4'	2' 3'	2' 6'	2' 5'	2' 8'	2' 7'	2' 0'	2' 9'
5' 6'	5' 8'	5' 9'	3' 8'	3' 0'	3' 9'	3' 5'	4' 5'	3' 6'
7' 8'	7' 9'	7' 6'	4' 9'	4' 7'	4' 6'	4' 0'	6' 8'	4' 8'
9' 0'	0' 6'	8' 0'	7' 0'	8' 9'	5' 0'	6' 9'	3' 7'	5' 7'

G_1	G_2	G_3	G ₄	G ₅	G_6	G ₇	G_8	G_9
1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	1 0
3 5	2 5	2 6	2 3	2 4	2 0	2 9	2 8	2 7
4 6	4 9	3 9	4 0	3 7	3 6	3 0	3 4	3 8
7 0	6 7	5 0	7 9	5 8	5 9	5 6	5 7	5 4
9 8	8 0	7 8	6 8	9 0	4 8	4 7	6 0	6 9

For h=1,3 there is an S(2,3,9) (T,t') $(T=\{2',3',\ldots,9',0'\})$ such that $|t'\cap\{\{x',y',z'\}/\{1,x,y,z\}\in q\}|=h$. Since there exists, up to isomorphism, only one triple system of order 9 it is of course derived. Hence from Theorem 2.4 it follows that $1,3\in J^f(20)$.

Let (X, a_i) i = 1, 2 be two S(3, 4, 10) $(X = \{0, 1, ..., 9\})$ such that $|a_1 \cap a_2| \in \{0, 2, 14, 30\}$. Let (Y, b_i) be two S(3, 4, 10) $(Y = \{0', 1', ..., 9'\})$ agreeing on the blocks of the flower at the point 9' and exactly 18 others. Let $F = \{F_1, F_2, ..., F_9\}$, $G = \{G_1, G_2, ..., G_9\}$, $G' = \{G'_1, G'_2, ..., G'_9\}$ be the following 1-factorizations:

F_1	F ₂	F ₃	F ₄	F ₅	F_6	F_7	F ₈	F9
1 2	1 3	1 4	1 5	4 5	4 6	1 6	1 7	1 9
5 6	7 5	5 8	4 8	6 9	5 9	2 8	2 6	2 5
7 8	4 2	3 9	2 9	1 8	2 7	3 5	3 4	3 6
3 0	6 8	2 0	3 7	2 3	3 8	7 9	8 9	4 7
4 9	9 0	7 6	6 0	7 0	1 0	4 0	5 0	8 0

4, 6, 3, 6, 5, 2, 1, 1, 0, 8,	3, 8, 7, 9, 1, 4, 0, 1,	9, 8, 1, 6, 5, 4, 3, 1, 0, 2,	4, 8, 3, 2, 5, 1, 1, 9, 0, 6,	2, 6, 3, 4, 2, 8, 1, 5, 0, 9,	1, 8, 9, 6, 5, 3, 1, 2, 0, 4,	3, 6, 5, 8, 0, 1, 0, 1, 4, 2,	7, 6, 1, 8, 0, 3, 2, 9,	8, 6, 1, 3, 0, 5, 2, 1,
69	ిల	^L D	95	SD	[†] 5	દગ	⁷ Ð	G ^I

7, 6, I, 8, 0, 3, 2, 9, 4, 4,	8, 6, I, 3, 0, 5, 2, 1,
⁷ ,5	^I ,Đ

$$G_i' = G_i$$
 for $i = 2, 3, \dots, 9$.

 $(Q,q_i)=[X\cup Y][a_i,b_i,F,G]$ and $(Q,q^\star)=[X\cup Y][a_i,b_i,F,G']$ are four S(3,4,20). Let

15 17 8 7	,5 ,1 8 7
/I /0 8 t	17 10 8 7
15 17 S I	15,151
120,1,	1 2 0, 4,
,S ,I 8 S	15 17 t I
17 10 8 5	1 + 0, 1,
15 , I t I	71,085
1 t 0, t,	19 15 L 9
1L 19 8 S	16 17 6 9
1L19L9	,9 ,5 8 5
15 17 L 9	16 17 8 5
,9 ,5 8 9	1L 15 8 9
14,1789	19 17 8 9
19 15 L S	$L_{I}S_{I}S_{I}S_{I}$
, L , t L S	19 17 L S
12 15 8 L	14 19 8 L
19 17 8 L	15 17 8 L
,L,S9S	,L,995
,9,795	15 17 9 5
770	Im
z_p	$^{\mathfrak{l}p}$

19 15 L 9	16 19 6 9
,L,+L9	15 17 L 9
,9 ,5 8 5	,4,985
16 17 18 5	15 17 8 5
1L 15 8 9	,9 ,5 8 9
19 17 8 9	14,1789
, L , S L S	19 15 L S
19 17 L S	1L1+ LS
14 19 8 L	14 15 8 L
15 17 8 L	19 17 8 L
1L 19 9 S	1L 1S 9 S
15 17 9 5	,9,795
დუ	CJ

,8,565	18 17 6 5
17 8 31 41	18 18 9 7
18 15 9 7	18 17 9 7
1E 1S 6 9	17 18 6 9
18 17 6 9	,8 ,5 6 9
18 18 5 7	17 18 5 7
18 17 5 7	,8 ,S S t
17 18 6 5	18 18 6 5
۲.۶	Ţ,

Let $f_i = (q_i^* - c_1) \cup c_2$ and $f_i^* = (q_i - c_1) \cup c_2$. (Q, f_1) and $(Q, (f_2 - (d_1 \cup r_1)) \cup (d_2 \cup r_2)$, (Q, f_1) and $(Q, (f_2 - (r_1 \cup r_2)) \cup (d_2 \cup r_2)$, and $(Q, (f_2 - d_1) \cup d_2)$. Hence it is easy to see that $(f_1) \cup (f_2 \cup f_2) \cup (f_2 \cup f_2)$ are three pairs of S(3, 4, 20). Hence it is easy to see that $\{189, 179, 181, 185, 201\} \subset J^1(20)$.

From [3, Theorem 2.1] and [5, Theorem 2.1] it follows that $\{187, 195, 203, 205, 199, 207\} \subset J^{1}(20)$ and $191, 197 \in J^{1}(20)$.

Theorems 2.1, 2.2, 2.5 and 2.6 complete the proof.

The (iii) of Section 1 and Theorem 2.1 and Theorem 4.2 give the following

Corollary 4.1. $J^f(S \cdot L^n) = I^f(S \cdot L^n)$ for every indeger $n \ge L$.

Acknowledgement.

corollary.

Thanks to the referees for useful comments.

References

- 1. A. Cruse, On embedding incomplete symmetric Latin squares, J. Comb. Theory Ser. A (1974), 19-22.
- 2. J. Doyen and M. Vandensavel, *Nonisomorphic Steiner quadruple systems*, Bull. Soc. Math. Belgique 33 (1971), 393-410.
- 3. M. Gionfriddo, Intersections of Steiner systems S(3,4,v) with $v=5\cdot 2^n$, Journal of Geometry 24 (1985), 103-111.
- 4. M. Gionfriddo and C.C. Lindner, Construction of Steiner quadruple systems having a prescribed number of blocks in common, Discrete Math. 34 (1981), 31-42.
- 5. M. Gionfriddo and M.C. Marino, On Steiner systems S(3,4,20) and S(3,4,32), Utilitas Mathematica 25 (1984), 331-338.
- 6. H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
- 7. D.G. Hoffman and C.C. Lindner, *The flower intersection problem for Steiner triple systems*, Annals of Discrete Math. 34 (1987), 243-248.
- 8. E.S. Kramer and D.M. Mesner, *Intersections among Steiner systems*, J. Comb. Theory Ser. A 16 (1974), 273-285.
- 9. C.C. Lindner and A. Rosa, Steiner quadruple systems a survey, Discrete Math. 21 (1978), 147-181.
- 10. C.C. Lindner and W.D. Wallis, A note on one-factorizations having a prescribed number of edges in common, Annals of Discrete Math. 12 (1982), 203-209.
- 11. A. Lizzio and S. Milici, On some pairs of partial triple systems, Rend. Ist. Matem. Trieste XVII (1985), 21-29.
- 12. G. Lo Faro, Steiner quadruple systems having a prescribed number of quadruples in common, Discrete Math. 58 (1986), 167-174.
- 13. T. M. Webb, On idempotent commutative Latin squares with a prescribed number of common entries, Ph.D. thesis (1980), Auburn University.