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Abstract. We determine those pairs (k,v), v = 4-2%, 5.2", for which there ex-
ists a pair of Steiner quadruple systems on the-same v-set, such that the quadruples in
one system containing a particular point are the same as those in the other system and
moreover the two systems have exactly k other quadruples in common.

1. Introduction.

A Steiner system S(t—1, ¢, v) of order v is a pair (S, a) where S isav-setand a is
a collection of t-subsets of S, usually called blocks, such that every (¢ — 1) -subset
of A occurs in exactly one block of a.

A Steiner triple system is an S(2,3,v) and a Steiner quadruple system is an
S(3,4,v).

A partial Steiner system of order nis a pair (P, b) where P isan-setandbis a
collection of t-subsets of P such that every (t — 1) -subset of P occurs in at most
one block of b.

Fort =3 or4 (P,b) is called a partial Steiner triple system (PTS) or a partial
Steiner quadruple system (PQS) respectively.

Two partial Steiner systems ( P, a) and (P, b) are said to be disjoint and mutu-
ally balanced (DMB) if |a N b| = 0 and any (¢ — 1)-subset of P is contained in a
block of a if and only if it is contained in a block of b.

H. Hanani [6] proved that an S(3,4,v) (S, a) exists if and only if v = 2 or 4
(mod 6). Itis easy to see that |a| = g, = v(v — 1) (v —2)/24.

Let J(v) ([4], [9]) be the set of all integers k such that there exists a pair of
Steiner quadruple systems (S, a) and (S, b) of order v having exactly k blocks in
common (that is, |a N b] = k).

Let I(v) = {0,1,2,...,9, — 14,9, — 12,4, — 8,¢,} for every admissible
v>8.

In [3], [4], [8] and [12] the following results are proved:

(i) J(v) C I(v) forally =2 or4 (mod 6) v > 8 [4].
(i) J(4) = {1}.J(8) = {0,2,6,14}. J(10) = {0,2,4,6,8,12,14,30}
[8].
@iii) J(v) = I(v) forallv =2™2, 5.2% n > 2 ([4], [3] and [12]).

1Work done within the activity of GNSAGA, partially supported by MPI.
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The flower at a point z of a Steiner quadruple system is the set of all quadruples
containing z. The flower intersection problem for S(3,4,v) is the determination
foreachv =2 or4 (mod 6) of the set J/(v) of all k such that there exists a pair
of Steiner quadruple systems (S, @) and (S, b) of order v having k+ (v — 1) (v —
2) /6 quadruples in common, (v — 1)(v — 2) /6 of them being the quadruples of
a common flower.

The similar problem for Steiner triple systems has been completely settled by
Hoffman and Lindner [7].

Foranyv > 8 let I/(v) = {0,1,...,f, — 14, f,— 12, f,— 8, f,}. fo =
(v —1)(v — 2)(v — 4)/24. From (i) it follows easily that J/(v) C I/(v) for
v > 8. It can be checked that J/(4) = {0} and J/(8) = {7}. We prove here
that J/(10) = {0,18}, 1/(16) — {16} C J/(16) and Jf(v) = I7(v) for every
v=4.2™1 5.2% n>2,

Let F = {FA,BP,... yFam—1}and G = {G1,Gs,... ,Gam-1} be any two 1-
factorizations of the complete graph on 2m vertices. We will say that F' and G
have k edges in common if and only if k = zf:,‘" |E: N Gyl

In [13] Webb has shown that for every 2m > 8 there exist two 1-factorizations
with b + 2m — 1 edges in common, 2m — 1 of them being the edges containing
the same point z,and h € W/(2m) = {0,1,... ,Ny=(2m—1)(2m—2)/2)
—{N;y—1,Ny—2,N;—3,N;y—-5}.

Starting from Webb’s result, Lindner and Wallis proved in [10] that for any
2m > 8 there exist two 1-factorizations with k edges in common for every k €
w(2m)={0,1,..., N=2m(2m-1)/2} -{N-1,N-2,N-3,N-5}.

Now we describe two well-known constructions for quadruple systems of order
2 v which are the main tools used in what follows.

Construction A. (For example, see [9]): Let (X, a) and (Y, b) betwo S(3,4,v)
with [ XNY|=0.LetF = {F,F,... ,Fy_1}and G = {G1,G2,... ,Gy_1} be
any two 1-factorizations on X and Y respectively. Define a collection s of blocks
of S = X UY, as follows:

(al) any block belonging to a or b belongs to s;

@2) ifz1,72 € X(z1 # 32) andy1, 42 € Y(y1 # 12) then{z1, 72, 11,12} €
sifand only if {z1,z2} € F; and {y1,y2} € Gi.

It is a routine matter to check that (S, s) is an S(3,4,2v). We will denote
(8,s) by [ X UY] [a,b, F,G].

Construction B. (See [2]): Let (Q, q) be an S(3,4,v), Q' be a finite set such
that |Q] = |Q']. |Q N Q'| = 0 and let p be a bijection from Q onto Q' with
z' = p(z), for every z € Q. Obviously (Q’,¢") is an S(3,4,v) where ¢’ =
S"(Q) = {{p(z)s SD(!/),SD(Z), ‘P(U')} /{Z, v,2, u} € Q}‘

If 1 C g, we define a collection p(gq;) of blocks of P = Q U Q' as follows:

(b1) any block belonging to ¢; or g} (= p(q1)) belongs to p(q1);
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®2) {{z1,32,75,74}, {z1,7h, 23,74 }, {z1, 33, 33, ma}, {z1, 72,73, 74},
{z},z2, 75,24}, {2, 75, 23,24 }} C p(q) if andonlyif
{z1,72, 23,74} € 15

®3) {{z1,2z2,73,74}, {zl,zz,zg,:fm}, {’zl, T, 73,24 }, {7}, 12;13,/:1:4},
{-'B'l,z'z), 21'2,14}’{35’1}3%,-’53.14},{11}, 2, 75,74 }, {71,75, 75, 74 }}
C p(q) ifandonlyif {z1,22,73,74} € g — @13

®4) {z1,72,7),75} € p(q1) forevery 1, z2 € Q, 71 ¥ 22.

It is a routine matter to check that ( P, p(q1)) isan S(3,4,2v). We will denote
(P,p(q1)) by ((QUQ". (g,q1))-

2. Theorems.

Let (X,t) and (X, t') be two disjoint and mutually balanced partial quadruple
systems (DMB PQS). Let d(z) = |{b € t/z € b}|.

Theorem 2.1. k € J/(v) foreveryinteger k suchthat k > (v—1) [(v—4)
(v—2) —24]/24 and(k+ (v—1)(v—2)/6) € J(v).

Proof: Let(S,a) and (S, b) betwo S(3,4,v) having k+(v—1)(v—2) /6 blocks
incommon. Lett = a—(anb), t' = b—(anb) and X = {z € S/z € cforsome
¢ € t}. Clearly (X,t) and (X,t') are two DMB PQSs such that [t| = |t'| = m
and m < v — 1. If there is not a flower contained in e N b, it is | X | = v. However
itis [4] ), cx d(z) = 4m and d(z) >4, hencev = |X| < m. 1

Theorem 2.2. k + o + hv/2 € Jf(2v) foranyo € J(v), k € Jf(v) and
h € W/ (v).

Proof: Let(X,a),(X,b) betwoS(3,4,v) having k+(v—1)(v—2)/6 quadru-
ples in common, (v — 1)(v — 2)/6 of them being the blocks of the common
flower at a point z € X. Let F? = {F" F? ... F%} (i = 1,2) be two
1-factorizations on X having h + v — 1 edges in common, v — 1 of them being
the edges containing the same point z. Let (Y, a') and (Y, b') be two S(3,4,v)
such that [ XNY|=0 and let G={G1,G2,-.. ,Gyv-1} be a 1-factorizationon Y.

Itis easy to check that [ XUY'] [a,a’, F*, Gl and [ XUY] [b, ¥, F? ,G] are
two Steiner quadruple systems having o’ Nb'|+ hv/2+ k+ (2v—1)(2v—-2) /6
quadruples in common, (2v — 1)(2v — 2) /6 of them being the quadruples of the
common flower at the point z. 1

From Theorem 2.2 it follows, by a simple calculation,

Theorem 2.3. If Jf(v) = I/(v) and J(v) = I(v) for every admissiblev > 16
then Jf(2v) = I7(2v).

Let (Q, ) and (Q, c) be two S(3,4,v) (Q = {1,2,...,v}) such thatc; C
g N ¢, c1 being the flower at the point 1. Let Q' be a v-set such that [Q N Q'| = 0
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and let p be a bijection from Q onto Q' with z' = () for every z € Q. Ob-
viously (Q',¢') is an §(3,4,v) where ¢ = p(c) = {{p(z),0(y),0(2), (1)}
/{z,v,2,u} € c}. Let(Q',t) bean S(3,4,v) such that [t Nc}| = h(c
= p(c1)). Let F = {F,F,...,F,_1} be the 1-factorization on Q' such that,
foreveryi=1,2,... ,v—1:

D {1,(i+ 1)} e Fy;

2) {z',y'} € F;ifandonly if {1,i+ 1,x,y} € 1.
LetG = {G1,G2,... ,Gy-1} be a 1-factorization on Q such that {1,i+ 1} € G;
foreveryi = 1,2,...,v—lando = 357 |o(Gi — {{1,i + 1}}) N(F, —
{1, i+ D}

From Construction A and B, we obtain respectively that (P, s) = [Q U Q']

[g,t,G,Fland (P,p) = ((QUQ"), (c,c1)) are two §(3,4,2v).

Theorem 2.4. Let(P,s) and(P,p) be theaboveS(3,4,2v). (P,s) and(P,p)
intersect inp; U g, p; being the flower at the point 1 and |g| = h + 2 0.

Proof: Itis easy to see that the common blocks of p and s are the common blocks
either in (b1), (b2) or (b4) of Construction B.

If b € pN s is in (b1) it follows either b € c; orb € ¢; Nt.

LetU; = {p(Gi—{{1,i+1}}) n(F;—{{V', (s+ 1)'}}) }and let {z,y,vw', 2'} €
p N s be a block in (b2). It follows that {z,y,w, z} € c¢; hence either {1, + 1}
= {z,y} or {1,i+ 1} = {w,2} forsomei € {1,2,...,v—1}. If{l,i+
1} = {z,y} then {v',2'} € F; and {z,y,v',2'} = {1,i+ 1,w',2'} € p1. If
{1,i+ 1} = {w, 2} it follows {z,y,w',2'} = {1V, (i + 1)/, z,y}, {1,i+ 1,z,y}
€ c1, hence {z',y'} € F;. Moreover {1',(i + 1)’} € F; therefore {z,y} € Gi,
hence {z',y'} € U;.

At last let {z,y,z',y’'} € pN sbeablockin (t4). If 1 € {z,y}, we obtain
{z,y,2',y'} € p1. If 1 ¢ {z,y} then {z',y'} € U; for some i. This completes
the proof. |

Theorem 2.5. k+ h+ v(v—1)(v/2-—l)/2—(v—4)2(o+ 27) /4 € Jf(21))
foreveryk € Jf(v),h € J(v),0 € {0,2,3} andT € {0,1,... ,(v—4)/2}.

Proof: Let (X, a) and (X, b) be two §(3,4,v) (X = {1,2,...,v}) intersect-
ing in a; U g, a; being the flower at point 1 and |g] = k. Let (Y,¢) and (Y, d)
be two S(3,4,v) suchthat|Y N X| =0 and [cNd| = h. If (X — {1},t) isan
S(2,3,v — 1) we define the following 1-factorization F' = {F}, F3,... ,F,_1}
onX:

D) {1,i+1}€F,i=1,2,...,u—-1;

2) {z,y} € F;ifandonlyif {i+ 1,z,y} €t.
Let p be a bijection from X onto Y and let G = {G1,G2,... ,Gy_1} be the 1-
factorization on Y such that {z,y} € G; if and only if {p~!(z), 0~ !(y)} € F.
Let(S,s) = [XUY]le,c,F,Gl and (S,s') = [ X UY][b,d, F,G]. Clearly if
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{2,3,y} €tthen iy = F1 —{{1,2},{=,y}}, Hz-1 = Fo-1 —{{1,3},{2,3}},
and Hy_; = F,_1 —{{1,y},{2, z}} are three 1-factorson X — {1,2,z,y}. If 8
is a permutation on {1,z — 1,y — 1}, let &g be the set of blocks {z1,z2,y1,v2}
such that {z1,z2} € H; and {p"(yl),p‘l(yz)} € Hpg(jy. Obviously (S, s)
and (S, (8’ — Pigenity) U Pp) are two S(3,4,2v) intersecting in s; U v blocks,
s, being the flower at the point 1 and |v| = k+ h+v(v—1)(v/2 - 1) /2 —o(v—
4)2/4,0 € {0,2,3}. By repeating this argument we obtain the proof. 1
It is well-known [1] that for any even positive integer n < v/2 there exists a
1-factorization of K, containing a sub 1-factorization of K,,. Hence, similarly to
the above theorem, it is possible to prove the following
Theorem 2.6. k + h + v(v — 1)(v/2 — 1)/2 — 12¢/4 € JF(2v) for every
k € Jf(v), h € J(v),e € {0,2,3,...,v — 1} and even positive integer
v<vf2.

3. Ji(4-27).

Theorem3.1. {0,1,2,3,4,5,6,8,10,12,14,18,22,26,30,34,42}

c Jf(16).

Proof: LetQ = {1,2,...,8} and let

q={{1)2)3’4}’{1’2’5)6}’{]’!2’7)8}){1)3’5)7}){113’6)8}’

{1,4,5,8},{1,4,6,7},{2,3,5,8},{2,3,6,7},{2,4,5,7},
{2,4,6,8},{3,4,5,6},{3,4,7,8},{5,6,7,8}}.

Obviously (Q, g) is an 5(3,4,8). Let ¢ = ¢ and ¢; be the flower at the point 1.

Let Q' be the set {1,2,...,8'} and let ¢ be the bijection from Q onto Q' with

z' = p(z) forevery z € Q.

LetH1 {{1,2},{3,4}}, 2 = {{1,3},{2,4}}, H3 = {{1,4}.{2,3}},
= {{1,5}, {2,6}}, Hs = {{1,6}, {2,5}}, Hs = {{1,7}, {2,8}},

H7 = {{1,8}, {2,7}}, Hf = {{5,6}, {7,8}}. H; = {{5,7}. {6,8}},
Hy = {{5,8}, {6,7}}, H4 = {{3,7}, {4,8}}, HS = {{3,8}, {4,7}},

Hs ={{3,5},{4,6}}, Hf = {{3,6},{4.5}}.

Clearly, F; = {{p(z),0(9)}/{z,y} € HiUH}!} i=1,2,...,7isal-
factorization on Q'. Let o be a permutationon {1,2, 3} and let 8 and -y be two per-
mutations on {4,5} and {6,7}, respectively. LetG; = H; U H},, i=1,2,3,
Gi= H;UH}, i=4,5andG; = H;UH};,1=6,7.G={G1,G2,.. .,Gq7}
is a 1-factorization on () such that

7
o= Y lp(Gi—{{1,i+ DPHNEFE-{{1,(i+D'}P| € {7,9,11,13,15,21}.
i=1

If G is one of the following 1-factorizations, we obtaino € {0,1,2,3,4,5,6}.
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12 13 14 15 16 17 18 12 13 14 15 16 17 18
74 27 25 24 28 23 26 74 25 27 24 28 23 26
35 46 36 67 54 84 34 35 46 36 67 54 84 34
68 58 78 38 37 56 57 68 78 58 38 37 56 75

12 13 14 15 16 17 18 12 13 14 15 16 17 18
34 25 27 24 28 23 26 34 25 27 26 28 23 24
57 46 36 67 54 48 74 57 46 36 47 54 84 67
68 78 58 38 73 56 35 68 78 58 38 73 56 35

12 13 14 15 16 17 18 12 13 14 15 16 17 18
56 24 28 23 27 26 25 56 24 28 26 27 23 25
78 58 57 68 35 38 37 78 58 57 38 35 68 37
34 67 36 47 48 45 46 34 67 36 47 48 45 46

12 13 14 15 16 17 18
56 24 28 23 27 26 25
78 58 57 68 38 35 37
34 67 36 47 45 48 46

Clearly, forh € {0,1,3,7} thereisan S(2,3,7) (T,t"),T = {2',3,... ,8'},
such that [t' N {{z',y',2'}/{1,z,y,2} € g}| = h. Since there exists, up to iso-
morphism, only one triple system of order 7 it is of course derived. Hence the
proof follows from Theorem 2.4. 1

Theorem 3.2. {28,34,36,38,44,46,48,50,52,54,56,58,60,62,64, 66,
70,72,74,78,86} C J/(16).

Proof: Let F and F (j = 1,2,...,10) be the following 1-factorizations on
X'={0"1,..., 7} and X = {0, 1,...,7}

F P F Fy Fy Fy Fy

OI 1/ OI 2/ 0/ 3/ 0/ 4I 0/ 5I 0/ 6[ 0/ 7/
2! 3/ ll 3/ ll 2/ 1/ 5/ ll 6/ 1/ 7/ 1/ 4/
4/ 7! 4/ 5/ 4I 6/ 2/ 6I 2’ 7I 2/ 4/ 2! Sl
5/ 6/ 6/ 7/ 5/ 7I 3/ 7/ 3/ 4’ 3[ 5/ 3/ 6/
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Fl(l) Fz(l) F3(1) Fil) Fs(l) F(l) F7(1)
02 01 04 06 05 03 07
14 2 4 12 15 16 17 13
35 37 36 27 23 25 26
6 7 56 57 34 4 7 4 6 45
F:Z) F5(2) Féz) F7(2) F6(3) F_’(3) F(6) F3(6)
06 05 03 07 03 07 01 04
13 17 15 16 16 15 2 4 12
27 23 26 25 25 2 6 36 37
45 4 6 4 7 34 4 17 43 75 56

FP = FY forevery j=2,3,...,10;

F = FY R = F{Y forevery j =2,3,4,5;

FN = 9 ) = F{® forevery j=17,8,9,10;

F(3) F(2) F(3) F(Z) F(4) F(z) F(4) Fs(l)’Fé‘D = F6( 1),

F7(4) F(3) F(S) F(l) F(5) F(z) F(S) F6(3),F7(5) = F7(1),

F,S’) =F,§’ -5 forevery j =6,7,8,9,10 and k=4,5,6,7.

Let my, ms, dq, da be the following block-sets
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my my d; da
1447 1445 56 4’5’ 56 4' 6’
1456 1467 5667 56 5 7
0247 024'5 3745 37 4'6'
0256 026'7 3767 3757
104'5 104" 7 S74'6' 57 4" 7
1067 1056 5757 5756
4 2 4'5’ 4 2 4" 7 36 4'6' 364'7
4267 2 4 5 6 3657 3656
3547 6 7 4'5'
3556 6767
6 747 356'7
6 75 6' 1404
3501 1415
1401 350 ¢4
1445 3515
1504’ 150 1
1515 1545
340 4/ 3401
3415 34 4'5'

Let(X,a), (X', by) and (X', b,) be three S(3,4,8). Let(Q,q) = [X'UX]
[b1,a, F, FV] and (Q,¢") = [X'UX][by,a, F,FD]. Clearly, (Q, (¢ -
m1)Umz) and (Q, (¢ —mi)Um;) aretwo S(3,4,16). Letc) = (¢ —my)
Uma). Since d; C (g — m;) Umy and d, - c(j),(Q,(q — my) Umy) and
(Q, (" —dy) Udy) are two (3,4, 16) agreeing on the blocks of the flower at
the point 0 and exactly 7+ [bi by |+ k (k € {21,29,37,41,45,49, 53, 57,65 })
others. |

Theorem 3.3. 76,84 € J/(16).

Proof: Let X = {1,2,...,8}andY = {1',2',... ,8'}. Let y be the bijection
of X ontoY such that 2’ = p(z) forevery z € X. Let F' and G be the following
1-factorizations on X and Y respectively:
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ST v T

£,V T

ST el

PE] S |
8,5 .t /T S e v e
L.,S .t 1 AN 2 °
9.,5.,C,1 S e Tl
(S YA | /S £V T Y] B !
8 L 9,S YA S A
8 L S .,¢ S e €l n
8 9 ¢.,¢ Tl €1
L9 S.,1 ST V€ 896 ¢
8 L ¥ ¢ €L v E 8LY9YV
9 S ¥ ¢ ST T LS Ve
L9 ¢ T ] A 8 LECT
8 9 ¥ T L9ST
LS ¥ T m 9v €T
8 S ¢ ¢ 8¢V ¢
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LT 97 §T 87 €1 vy < v e
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Let b = {p(c)/c € a}. Clearly, (X,a) and (Y,b) are two S(3,4,8). Let
(Q,9) = [XUYIle,b,F,G] and ¢* = a U ¢;. Itis easy to check that (Q, q)
and (Q, (¢ — ¢*) U ¢2) are two S(3,4, 16) agreeing on the blocks of the flower
at the point 7' and exactly 84 others.

Similarly, from (Q,¢) and (Q, (g — (¢* Uv)) U (g2 Uw)) it follows 76
€ J/(16). ]

Theorem 3.4. {20,24,32,40,68,80} C J/(16).

Proof: Consider the S(3,4,8) (X, a), (Y,b), the two 1-factorizations F', G and
the bijection ¢, all defined in the Theorem 3.3.
Let FO) (j=1,2,...,6) be the following 1-factorizations on Y:

FP =@ for j=1,2,3,5,6; F? =G; for j=1,2,3;
FP =@, for j=1,2,3; F" =G, for i=4,5,6,7;
FO=F? F® =F® and F% = F® for i=4,5,6,7;
F® = F{) K = F(?.

F4(2) FS(Z) F6(2) F7(2) F4(3) F5(3) F6(3)

3/ 71 5’ 7/ II 7I 21 7l 3/ 7I 5/ 7l ll 7/
ll 8! ll 4/ 2/ 4/ 1/ 6' 1/ 4/ ll 8I 2/ 8/
2/ 6/ 2/ 8/ 3/ 8/ 3/ 4/ 2! 6I 2/ 4/ 3! 4/
4/ 5[ 3/ 6/ SI 6/ 5/ 8/ 5/ 8/ 3/ 61 5/ 6I

F7(3) F1(4) F2(4) F3(4) Fz(S) F3(5)
2/ 7/ 7/ 8/ 7/ 4I 7/ 6l 1/ 3/ 1/ 5/
3/ 8/ ll 3/ ll 2/ 1/ 5/ 2/ 5/ 2/ 3[
ll 6/ 2/ 5/ 3/ 5/ 2/ 3/ 4/ 8I 6/ 8/
4/ 5/ 4/ 6/ 4' 6/ 6/ 8/ 6! 71 7/ 4/

234



S1 S22

172" 3" 5 8 2/ 35

12 35 1247 12 3 4 1256
12 6 8 13438 127 8 1357
1456 1578 146 7 136 8
136 7 2458 145 8 2358
23 46 25617 2457 246 8
237 8 3457 236 7 3456
46 78 356 8 3478 58 15
56 1 2/ 7835’ 57 25 6 81 3
58 13 5723 6 7 2" 3 56 71
68 15 6725 56 8 2 57 8 3
5715 5825 67 8 5 5123
67 1 3 6 8 23 61 2 5 7135’

Let (S,s) = [X UY]la,b, F,F(V] and (S,5”) = [X UY]la,b,F, F"]
(j=1,2,...,6). Since s; C s, (8,s) and (S, (s'” — 5;) Usy) agreeing on
the blocks of the flower at the point 7' and exactly k € {20,24,32,40,68,80}
others. 1

Theorem 3.5. I7(16) — {16} C J/(16).

Proof: From [4] (Theorem 3.2) it follows that82 € J f(16). From [12] (Theorem
2.1) it follows that 87,88 € J/(v). The theorems of Section 2 and the above
theorems complete the proof. |

Remarks: The authors have not been able to handle the case 16 € J/(16). There-
fore it is an open problem.

Corollary 3.1. J/(4.2™) = [/(4-2") forevery integer n > 3.

Proof: The (i) of Section 1 and Theorem 2.3 imply I/(32) — {996} C J/(32).
The Theorem 2.5 gives 996 € J f(32). Atlast the (iii) of Section 1 and Theorem
2.3 complete the proof. [}

4. J1(5-2%).

Theorem 4.1. J/(10) = {0,18}.
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Proof: Since J(10) = {0,2,4,6,8,12,14,30} [8] itis J7(10) c {0,2,18}.
Let

p1 273 t
2438 24009 1245
24609 2463 1289
2470 2487 1260
2580 2539 1237
2579 256 8 1468
2536 2570 1479
4578 4573 1430
4560 4569 1590
4539 4580 1567
2678 2380 1538
2390 2679 1780
4367 4389 1369
4890 4607
5689 5360
5370 5789
3789 376 8
3680 3790
6790 6890

Clearly, (X,p1 Ut) and (X,py Ut) (X = {0,1,...,9}) are two S(3, 4, 10)
intersecting in the flower ¢ at the point 1. Hence, 0 € J/(10).

Now we will show that2 ¢ J/(10). Assume 2 € J/(10), there are two DMB
PQSs (A,a1) and (A, az) such that |A] = 9 and |a,| = laz| = 16. Obviously
forevery z € A|{c € a;/z € c}| < 8 and there is at least one element say z’ in
Asuch that |s; = {c € a;/2' € c}| =8 fori=1,2. Letr; = {c— {z'}/c € s;}
and D = A — {z'}. Obviously (D, ;) are two DMB PTSs. It is proved in [11]
that there exist, to within isomorphism, only two DMB PTSs with |ri| = 8 blocks
and |D| = 8 elements. Moreover every z of D appears in precisely three blocks
of r;. Itis easy to see that a; — s; = {{z}Ub/b € r;, forsome = € D}, i # j and
{i,j}={1,2}. Let{z, z1, 72,23} € a1 —s; with {z1,72,73} € r2. Obviously
itisI" = {{z,zl,zg,yl}, {z,zl,z3,y2}, {I,$2,I3,y3}} C az — s2. Moreover
 occurs in exactly three blocks of s; and in at least three blocks of ay — (s, U T).
Hence, there exist at least 9 blocks of a; containing . 1

Theorem 4.2. J/(20) = I/(20).
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Proof: Let (Q,q) bean S(3,4,10) (Q ={0,1,...,9}) containing the flower

C]={{1,2,3,4},{1,2,5,6},{1,2,7,8},{1,2,0,9},{1,3,5,8},
{1)317)9}){1131016}1{1$415)9}){1)417x6}!{1’4!0’8}’
{1s5)7)0}’{1)6)839}}’

Let ¢ = g and let p be the bijection from Q onto Q' = {0’,1',...,9'} with

! = p(z) for z € Q. Let F and G be the two following 1-factorizations on Q'
and Q) respectively:

F F F F, F F F F R,

ll 2/ ll 3! ll 4! ll 5[ ll 6/ 1! 7! ll 8/ 1/ 9! ll ol
3/ 4I 2! 4/ 2/ 3/ 2/ 6/ 2/ 5/ 2/ 8! 2/ 7l 2/ 0/ 2! 9/
SI 6! 5/ 8/ 5/ 9/ 3/ 8/ 3/ 0/ 3' 9/ 3[ SI 4I SI 3/ 6/
7' 8! 7! 9/ 7! 6! 4' 9’ 4' 7' 4' 6' 4' o 6' 8' 4' 8!
9/ OI OI 6I 8/ OI 7/ OI 8/ 9I 5/ OI 6! 9[ 3/ 7I 5/ 7/

12 13 14 15 16 17 18 19 10
35 25 26 23 2 4 20 29 28 217
46 49 39 40 37 36 30 34 38
70 617 50 79 58 59 56 517 54
9 8 80 78 6 8 90 4 8 47 6 0 6 9

Forh = 1,3 thereisan $(2,3,9) (T,t) (T ={2',3',...,9',0'}) such that
[t 0 {{,v',2'}/{1,2,y,2} € g}| = h. Since there exists, up to isomorphism,
only one triple system of order 9 it is of course derived. Hence from Theorem 2.4
it follows that 1,3 € J/(20).

Let (X,a;) i=1,2 betwo S(3,4,10) (X ={0,1,...,9}) such that |
Naz| € {0,2,14,30}. Let (Y,b;) be two S(3,4,10) (Y ={0',1',... 9D
agreeing on the blocks of the flower at the-point 9’ and exactly 18 others. Let
F= {Fl,Fz,... ,Fg},G= {G1,Gz,... ,G9}, G' = {G’l, '2, , '9}bcthe
following 1-factorizations:

R B I3} Fy Fs Fs P F3 Fy
12 13 14 15 45 46 16 17 19
56 75 58 4 8 69 59 28 26 25
78 4 2 39 29 18 217 35 34 36
30 6 8 20 37 23 38 79 89 47
49 90 76 60 70 10 40 50 80
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