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ABSTRACT

Standard doubling and tripling constructions for block designs with
block size three (triple systems) employ factorizations of complete
graphs and of complete bipartite graphs. In these constructions,
repeated edges in a factor lead to repeated blocks in the design. Hence
the construction of triple systems with a prescribed number of repeated
blocks is facilitated by determining the possible structure of repeated
edges in the factors of a \-factorization of AK,, and K, ,. For A\=3, a
complete determination of the possible combinations of numbers of dou-
bly and triply repeated edges in 3-factorizations of MK, has been com-
pleted for n>12. In this paper, we solve the analogous problem for the
complete bipartite graphs in the case A=3. The case A=1 is trivial, and
the case A=2 has been previously solved by Fu.

1. The Background

Let G =(V,E) be a multigraph. A \-factor of G is a A-regular spanning submulti-
graph of G, and a \-factorization is a partition of the edges into \-factors. When G
has multiple edges, the A-factors may also contain multiple edges. We are interested in
classifying certain factorizations according to the number of repeated edges of each
multiplicity. Our particular interest is in 3-factorizations, and hence we define the
type of such a factorization to be the pair (¢,8), where ¢ is the total number of doubly
repeated edges in factors, and |E |/3—s is the total number of triply repeated edges.

Given a simple graph G, the multigraph AG is obtained by repeating each edge of
G X times. In a previous paper, we determined the possible types of 3-factorizations of
3K, for all n, leaving some possible exceptions for n=4 and 5. In this paper, we con-
sider the analogous problem for 3K,, ,,.

Before stating the main result, it is important to address the motivation for this
research. Our main motivation arises in the construction of triple systems, i.e. bal-
anced incomplete block designs with block size three. In the standard v —2v+1 con-
struction for triple systems with index X\, a primary ingredient is a A\-factorization of
AK,,,. Repeated edges in the factorization lead to repeated blocks in the triple sys-
tem. Hence a characterization of types of repeated edges assists in the determination of
types of repeated blocks.

The 2v+1 construction alone is not sufficient, and is typically supplemented by a
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v—2v+7 construction (see, for example, [3]). In this case, however, the factorization
employed is of some subgraph of AK,,;. A particularly useful 2v+47 construction
employs, as a portion of the required M-factorization, a M\-factorization of
MK y(y47)%(v+7) In this context, the possible types of repeated edges are of some
interest; hence we address the smallest open case, A=3. The case A=2 has been set-
tled by Fu [2], and the analogous problem for twofold triple systems settled by Rosa
and Hoffman [4]. The determination of the types of threefold triple systems is the sub-
ject of a paper under preparation by Mathon, Rosa, Shalaby and the present author.

Let G be a regular bipartite graph on 2n vertices. We let ¥(G) denote the set of
types of 3-factorizations of 3G. Then Y(n,d) denotes the union of Y(G) over all
d-regular bipartite graphs G on 2n vertices. In this terminology, our goal is to deter-
mine Y(n,n).

Our task breaks naturally into two parts. First, we must determine necessary
conditions for a pair (t,s) to be in ¥(n,d). Second, we must provide constructions for
factorizations of all types which can be realized. It will become apparent that both
problems are complicated by a very large number of cases. Hence we will in general
just present the method by which the factorizations are obtained, and avoid an explicit
presentation of the thousands of factorizations that are needed.

Now we can state the main theorem of [1], followed by the main theorem of this
paper.

Let A(n,d) = {(t,8) : 0<t<s<nd} \{0,1), (0,2), (0,3), (0,4), (0,5), (0,7), (0,8),
(1’1)’ (1’2)’ (1’3)Y (1’4)’ (1’5)’ (1'6)’ (1’7)’ (1’8)’ (1’9)' (l'lo)’ (l’ll)’ (2’2), (2’3)7 (2’4)1
(2,5), (2,8), (27), (2.8), (2,8), (2,10), (3,3), (3.4), (355), (3,8), (3.7), (3,8), (3,10), (4,5),
(4,7), (4,8), (5,5), (5,8), (5,7), (5.,8), (5,9), (5,10)}.

Theorem A [1]: For n 28, there is a 3-factorization of 3K, of type (t,s) if and only if
(t,s) €A(n,2n—1).0

In order to state the theorem for 3K, ,, we define B(n,d)= A(n,d) \ {(0,6),
(0,10, (0,11), (0,13), (1,12), (1,13), (1,14), (1,17), (2,11), (2,12), (2,13), (3.9), (3,11),
(3,13), (4,8), (4,10), (4,11), (5,11), (5,12), (5,13), (6,10), (7,10), (7,11)}. Then we have

Main Theorem: For n 210, Y(n,n) = B(n,n).

In section 2, we establish the necessary conditions. Then in section 3, we recall
the main recursive constructions used in establishing sufficiency from [1]. We develop
additional constructions for the bipartite case as well. Subsequent sections then out-
line the construction of the small examples required in the recursions.

2. Necessary Conditions

We follow the same strategy as [1] in determining the necessary conditions. Sup-
pose that a 3-factorization ¥ of 3K, , of type (t,s) exists. Let R(F) be the graph
whose edges are those edges not appearing in three-times repeated edges in a factor of
F; we call this the remainder of . Each factor of ¥ induces a cubic submultigraph of
R(¥) having no three-times repeated edges; these submultigraphs are termed portions.
In [1], it is observed that if a vertex of R(¥) has degree d, it belongs to precisely d of
the portions. Hence the minimum degree in R(¥) is at least two. Moreover, the
number of two-times repeated edges must be at least as large as the number of edges
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in R(¥) incident with a vertex of degree two. We make a further observation along
these lines: if a two-times repeated edge of a factor is incident with a vertex of degree
three in R(¥), at least two doubly repeated edges in factors are incident with this ver-
tex. From this, it is easy to deduce that if R(¥) has maximum degree 3, ¢ & {1,2,3,5}.

Our basic strategy is to consider candidates for R(¥), and to establish in the
required cases that no suitable set of portions exist which partition 3G. We first
determine all portions on fewer than ten vertices, depicted next:

PIAV % L O

In total, there are sixty-six pairs (¢,8) which we must eliminate. However, forty-
three of these are eliminated by observing that every 3-factorization of 3G can be com-
pleted 'to a 3-factorization of 3K, of the same type, provided that n is large enough
(this follows from standard embedding theorems for latin squares). Hence we need only
treat the remaining twenty-three pairs.

Lemma 2.1: If (t,8) € B(n,n), there is no 3-factorization of 3K, , of type (t,s).
Proof:

We consider the remaining values, by treating each value of s in turn. First, if
8=6, R(¥) must be a bipartite graph with six edges, and minimum degree 2. But then
the only candidates are Cg and K, 3; both have six edges incident with degree 2 ver-
tices, and hence force t =6.

Now if 8 =9, we may have three portions of size 4 and one of size 6, or three por-
tions of size 6. In the first case, we have ¢ >6 since each portion of size 4 contributes 2
doubly repeated edges. In the second case, two portions must be Kg3 (=P;), and
hence R(¥) is K33 since it has only nine edges. But then t =0 or t >4.

If 8=10, first observe that no portion is Ps or Pg since both require more than ten
edges. Moreover, since the unique ten-edge graph containing K33 has a degree 1 ver-
tex, no portion is P,. Now consider the possible portion sizes; they are {8,6,6},
{8,4,4,4}, {6,6,4,4} and {4,4,4,4,4}. The last two require ¢t >8 since each possible por-
tion has at least two double edges. Similarly, {8,4,4,4} requires ¢t >8 since the portion
of size 8 has at least two double edges. This leaves only {8,6,6}. Now consider the
degrees in a class of the bipartition of R(¥). They must be {4,2,2,2}, {3,3,2,2} or
{2,2,2,2,2}. The last requires ¢ >10, and the first forces the presence of at least 8 edges
incident with degree 2 vertices, and hence ¢t >8. Three nonisomorphic candidates for
R(F) remain. One contains eight edges incident with degree 2 vertices, forcing t >8.
A second contains an induced path on four vertices whose interior vertices have degree
2. Replacing the three edges by a single edge, and deleting the interior vertex, yields
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in the obvious way a factorization of a graph on 8 edges having two fewer double
edges. But this requires ¢ >10. The final candidate has six edges incident with degree
2 vertices, and hence ¢ >6; moreover, ¢ can be less than eight only if at most one edge
not incident with a degree 2 vertex appears as a double edge. One can verify that this
cannot be achieved in this last candidate, which we display here:

If s=11, first suppose that there is a portion isomorphic to P,. Then R(%)is

and the portion sizes are {6,6,8,4} if t <7. If the degree 2 vertex is in the portion of
size 4, let F, and F, be the portions not incident with the vertex of degree 2. Then
{F\,F,3K33—F,—F,} forms a 3-factorization of type (t—2,8—2) with t—2>1, and
hence ¢t =6 or t >8. On the other hand, if the degree 2 vertex is not in the portion of
size 4, t >6 is immediate; exhaustive checking eliminates ¢t =7,

If no portion of P, is present, a portion of Pg must be present, with portion sizes
{8,6,4,4}. Since s=11, R(¥)is

and hence if ¢ <7, the portion of size 6 is P;. Now whenever R(¥) contains an induced
path of length 3, we can replace this path by a single edge, making the obvious modifi-
cations to two of the factors, to obtain a 3-factorization of type (t—3,s—3) with
t—32>1. Hence t>9 in this case.

If §=12, the possible portion sizes are {8,8,8}, {8,8,4,4}, {8,6,6,4} and {6,6,6,6} for
t <5. If some portion is Ps, R(¥) is Ps (the 3-cube). The remaining factors partition
2P;, and hence by Fu's theorem [2], t#{1,2,3,5}. This eliminates {8,8,4,4}. If some
portion is Pg, R(¥) is

whence t >3 is immediate. Moreover, since this graph has minimum degree 2, {8,8,8} is
eliminated since all portions would have at least two doubly repeated edges. However,
we must still consider {8,6,8,4}. If the degree two vertices appear in a portion of size 6,
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that portion must be P, (since a portion Pg must remain). This leads to t >6. Other-
wise the degree 2 vertices appear in the portion of size 4. By eliminating the portion of
size 4, and modifying the portion of size 8, we obtain a 3-factorization of type
(t—3,8—3) and hence ¢t #5. Moreover, if any of portions P;—P,, is present, so must
portion P,, and hence the graph is as depicted above. This eliminates {8,6,6,4}.

What remains for s =12 is the set {6,6,8,8} of portion sizes. Now ¢ 1, as no por-
tion of size 6 has exactly one doubly repeated edge. The unique candidate for R(¥) is
K34, and it is an easy exercise to check that t €{1,2,3,5} here.

Next we turn to s =13. If there is a component of size 10, R(¥) either has max-
imum degree 3 (whence ¢ ¢ {1,2,3,5}) or it has at least five vertices of degree 2. In the
latter case, at least six edges are incident with such vertices and hence t>8. The
remaining sets of portion sizes which are candidates for ¢ <6 are {8,8,6,4} and {8,6,6,6}.
If P; is a portion, R(¥) is

and hence neither P, nor Pg are portions. This eliminates {8,8,6,4}, and also eliminates
P as a possible portion. Hence for t>5, P, must be a portion. If Pg is a portion,

R(¥F)is

and the portions must be {P2,P3,P3,P5}. However, after removing portions of P, and
Pg, no portion of P3 remains. Hence Pg is not a portion, and there are two portions of
P,. These are necessarily on the same vertex set since s =13 (otherwise, K3, is con-
tained or more than 13 edges result). But then all remaining vertices have degree 2
and appear in both remaining portions. From this, t >4 and R(¥) is

Once two portions of P, are taken, the remainder partitions into {P3,P;} giving t =4.
Hence t =4 or t >6.

Next we consider 8=14. We must establish that ts1. If there is a portion of
size 10, there are at least two edges incident with a degree 2 vertex. If there is a por-
tion of size 4, t >2 is immediate. Hence the portion sizes must be {8,8,6,6}, with por-
tions {P,,P,,P5,Pg}. However, the double edge of the Pg is forced to be incident with a
degree three vertex in R(¥), but then ¢ >2.
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Finally, we consider s=17, and must prove that t 1. There are no portions of
size 12. If there were a portion of size 10 with one double edge, we would require 8218
since both incident vertices require degree at least four. Hence ¢ =1 implies that Pgis
a portion. Now if there is a portion of size 10 at all, either a degree two vertex is
present or the double edge is incident to a degree 3 vertex; both are forbidden. Hence
the portion sizes are {8,8,6,6,8} and the portions are {P,,P,,P,,Ps,Pg}, and R(¥) has
nine vertices. The only possibility is K45 minus three disjoint edges; here t=0 or
t >4. This completes the proof. O

Naturally, this type of proof is better suited to computational verification than to
hand calculations. We have verified by computer that all candidates for R(¥) were
considered.

3. 3-latin rectangles and squares

In proving sufficiency in the Main Theorem, we develop a number of constructions
for 3-factorizations. A useful device in these constructions is the use of an equivalent
combinatorial structure. A $-latin rectangle is a dXn array on symbols {1, - - - ,n},
satisfying

(1) each entry contains three (not necessarily distinct) symbols,
(2) each symbol appears three times in each row, and
(3) each symbol appears zero or three times in each column.

A S-latin square of order n is an nXn 3-latin rectangle. Now let G be a d-regular
subgraph of K, , and let {F}, -+ - ,F;} be a 3-factorization of 3G. Suppose that the
bipartition of G is {z;, - *,2,} U {y}, - - - 9a}. Form a 3-latin rectangle as follows:
for each occurrence of edge {a:j,yk} in factor Fj, place symbol k in entry (¢,7). This
process is reversible to recover the 3-factorization. The type is easily obtained from
the 3-latin square: s is just nd minus the number of entries of the form {z,z,z}, while
¢ is the number of entries of the form {z,z,y}.

We give some examples here:
(0,9) 123 123 123 (4,9) 113 223 123 (8,8) 111 223 233
123 123 123 223 113 123 233 111 223
123 123 123 123 123 123 223 233 111

(6,8) 111 223 233 (6,9) 123 112 233 (7,8) 111 223 233
223 113 123 233 123 112 223 123 113
233 123 112 112 233 123 233 113 122

(7,9) 123 112 233 (9,9) 112 223 133 (0,0) 111 222 333
122 133 123 133 112 223 333 111 222
133 223 112 223 133 112 222 333 111

This effectively translates our problem into one concerning 3-latin squares, and
hence suggests that standard techniques for constructing latin squares be employed
here. In this vein, we observe that every latin rectangle can be completed to a latin
square. A similar argument can be used here, to obtain what we call the basic con-
struction.
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Lemma 3.1: Let (¢,8) be the type of a dXn 3-latin rectangle, and let z,y be integers
satisfying 0<z<y<n—d and (z,9)# (0,1), (0,2), (1,1), (1,2) or (1,3). Then
(zn+t,yn+s) is the type of an nXn 3-latin square.

Proof:

Given a dXn 3-latin rectangle, form a bipartite graph whose two parts are the n
columns and the n symbols. Join a symbol and a column if and only if that symbol
does not appear in the specified column. Now form a 1-factorization {Fy, " Fa_a}of
the bipartite graph. Take three copies of each 1-factor, to obtain 3n—3d 1-factors in
total. Group these in threes, so that n—d—y groups contain three identical 1-factors,
and z groups contain precisely two the same. For the sth resulting 3-factor, fill row
d+i by placing for each column (vertex) the three symbols corresponding to the sym-
bol vertices adjacent to it. The only issue is to accomplish the grouping appropriately,
and it is easy to see that this can be done with the exceptions listed above (see 1p. o

The next main tool is to combine small 3-latin rectangles to form larger ones. We
first consider adding columns to 3-latin rectangles (since adding rows may be accom-
plished by the basic construction). Perhaps the simplest method is to simply ‘‘caten-
ate” two rectangles:

Lemma 3.2: If (t,8) is the type of a dXn 3-latin rectangle and (t',8) is the type of a
dxn' 3-latin rectangle, then (t+t',s+s") is the type of a dX(n+n') 3-latin rectangle.

Proof:

Write the first rectangle on symbols {1,---,n} and the second on symbols
{n+1, - - - ;n+n'}; now simply concatenate the rows. O

We can add fewer columns by “splicing” two rectangles together. Define the pro-
file of a column to be the multiset of pairs {(r.e): symbol e appears in row r in the
column}, and the profile of a symbol to be the multiset of pairs {(r,c): the symbol
appears in entry (r,c)} (multiple occurrences are included multiple times). The type of
a profile is, as one would expect, the pair (b,a) where b is the number of doubly
repeated entries, and d—a is the number of triply repeated entries. Then we have

Lemma 3.3: Let L be & dXn 3-latin rectangle of type (¢,8), and let L' be a dXn'
3-latin rectangle of type (t',s). Suppose there is a column of L and a symbol of L'
having the same profile, and that the type of this profile is (b,a). Then there is a
dX(n+n'—1) 3-latin rectangle of type (¢+t'—b,s+s'—a).

Proof:

We outline the strategy. Let ¢ be the column of L and e be the symbol of L'
having the same profile. Form L’ on symbols disjoint from those in L and then caten-
ate the two rectangles. Now strike out all occurrences of symbol s. The equality of
the profiles guarantee that, if s is removed from a column of L', there is a symbol in
column ¢ appearing precisely in the rows which symbol s occupied. Hence for each
such column vacated by symbol 8, we can replace it by one of the symbols in column
¢. In the process, column ¢ is emptied, and can then be removed. O

Since there is a natural duality between columns and symbols in a 3-latin rectan-
gle, the same 3-latin rectangle can be used to provide both rectangles used in Lemma
3.3; this is particularly useful if one wants to avoid cataloguing solutions by column
profile.
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An illustration of Lemma 3.3 may be helpful. Take the 3X3 3-latin rectangle of
type (7,9) given earlier. The last column has profile type (2,3). Interchanging the roles
of columns and symbols, we obtain the 3-latin square with rows 122 123 133, 123 113
223, 133 223 112. The profile of symbol 3 is the same as the original profile of column
3. Applying Lemma 3.3, we obtain

123 112 455 245 334

122 133 145 244 355

133 223 114 255 445
The type is (7+7-2,9+9-3) = (12,15) as expected.

Both Lemmas 3.2 and 3.3 have the drawback that they add at least d—1 columns.
It is possible, however, to add a single column. A near S-transversal is a set
€1 ** " 4eq— of distinet columns, and a set ey, * * * ,¢4_; of distinet symbols, so that ¢;
appears in column ¢;, and for each row, the total number of occurrences of e; in ¢;, for
1<i<d, is at most three. The type of the near 3-transversal is obtained as follows.
Let z be the number of double occurrences of ¢; in the same row of ¢;, and let y be
the number of triple occurrences. Now since only d—1 pairs have been chosen, the row
sums add up to 3d—3, not to 3d. Three possibilities arise. If any row sum is zero, we
add one to y. If any row sum is 1, we add 1 to z. Otherwise, three row sums are 2
and the rest are three; in this case, we leave z and y unchanged. Now the type is
(z,d—y).

Lemma 3.4: Let L be a dXn 3-latin rectangle of type (t,8) having a near 3-transver-
sal of type (b,a). Then there is a dX(n+1) 3-latin rectangle of type (t+b,8+a).

Proof:

We append an n+1'st column; whenever symbol e¢; appears in column ¢;, it is
moved to the new column (without changing its row), and is replaced by the symbol
n+1. The last column then has up to three entries not fully occupied; the symbol n+1
is placed in each enough times so that each contains three symbols. O

Again, an example may prove helpful. Consider again the 3-latin rectangle of type
(7.9). A near 3-transversal {(c;,¢;)} is {(2,3),(3,1)}. Its type is (2,2). Applying Lemma
3.4, we obtain

123 112 233 444

122 144 234 133

133 224 244 113
which has type (9,11) as expected.

These tools enable us to construct a large number of small examples. Our stra-
tegy for settling sufficiency is to determine cases for d =3 and d =4. Applying Lemmas
3.2 and 3.3 then determines the spectrum for ¥(n,4) for all n>12. Using Lemma 3.1
to factorize the (n—4)-regular complement, we use this to determine Y(n,n) for all
n2>16. Finally, some ad hoc constructions are used to establish sufficiency for
10<n <15.

4. The case d=3

In this section, we exhibit a number of small 3Xn 3-latin rectangles. In the previ-
ous section, we gave nine examples; these are, in fact, all the cases for n=3. For
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n =4, in addition to those produced by Lemma 3.1, we obtain the following.

(4,4) 112 122 333 444  (6,7) 122 112 444 333
122 112 444 333 444 233 223 111
333 444 111 222 112 123 233 444
(6,9) 111 234 224 334  (6,11) 111 224 334 234
222 334 114 134 223 114 134 234
333 224 124 114 233 124 114 234
(6,12) 344 224 123 113 (7,7) 112 122 444 333
223 114 123 344 444 233 223 111
234 124 123 134 122 113 233 444
(7,12) 234 112 334 124  (8,9) 111 223 244 334
224 133 134 124 334 111 224 234
334 223 114 124 344 233 111 224
(8,10) 111 224 244 333  (8,11) 111 223 334 244
223 334 112 144 223 344 134 112
233 234 124 114 233 234 114 124
(9,10) 111 223 233 444  (9,11) 111 344 233 224
344 234 113 122 224 134 113 234
334 344 122 112 244 113 122 334
(9,12) 124 112 334 234  (10,10) 223 233 111 444
122 133 134 244 112 344 224 133
144 223 114 233 133 224 244 113
(10,11) 111 223 244 334  (10,12) 134 112 233 244

344 123 114 223
334 113 122 244

144 133 234 122
133 223 244 114

This large set of examples, together with those given earlier and those from
Lemma 3.1, can now be extended to produce many values for larger n. Since every
3Xn 3-latin rectangle can be extended to a 4Xn 3-latin rectangle of the same type, we
employ the resulting collection as a starting point for a solution for d =4.

5. The case d=4

We first exhibit 4X4 3-latin rectangles, completing in the process the precise
determination of ¥(4,4). We omit those arising from 3X4 rectangles, and those from
Lemma 3.1.

(0,15) 111 234 234 234  (1,15) 111 234 234 234
234 123 124 124 234 123 124 134
234 134 123 124 234 124 123 134
234 124 134 123 234 134 134 122
(1,16) 123 234 134 124  (2,14) 123 124 134 234
123 124 234 134 124 123 134 234
144 123 123 234 124 123 134 234
234 134 124 123 334 344 222 111
(2,5) 111 234 234 234  (2,16) 123 234 134 124
234 123 234 114 124 123 244 133
234 134 112 234 134 124 123 234
234 124 134 123 234 134 123 124
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(3,15)

(4,14)

(5,14)

(5,16)

(6,15)

(6,13)

(7,14)

(7,16)

(8,14)

(9,13)

(9,15)

(10,13)

111

234

234

234
124
124
123
334
122
124
134
334
123
124
123
344
111
344
233
224
111
222
334
344
124
234
112
334
123
124
123
344
114
224
123
334
111
222
334
344
111
244
234
233
111
222
334
344

234
134
124
123
124
123

344
124
123
123
344
234
123
124
134
234
123
144
123
234
111
234
234
124
112
233
344
234
233
124
114
224
113
123
344
234
133
244
112
223
123
344
114
234
113
234
124

244
123
123
234
234
112
134
234
344
112
123
134
134
134
222
134
244
123
123
134
134
134
222
233
444
112
123
344
123
112
123
233
444
122
113

234
122
133
144
233
234
244
111
334
234
224
111
124
133
344
122
234
112
234
134
234
334
124
112
233
234
244
111
124
113
344
223
233
234
244
111
244
113
123
234
234
113
123
244
244
133
114
223

(3,16)

(4,15)

(5,15)

(6,14)

(6,16)

(7,13)

(7,15)

(8,13)

(8,15)

(9,14)

(9,18)

(10,14)
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223 134 134 124
114 223 234 134
134 124 123 234
234 134 124 123
111 234 234 234
244 123 123 113
234 134 112 234
233 124 134 124
111 234 234 234
234 123 234 114
233 144 112 234
244 123 134 123
223 114 134 234
114 223 134 234
124 123 134 234
334 344 222 111
123 234 113 244
124 123 244 133
123 124 234 134
344 134 123 122
111 234 233 244
222 113 444 133
334 234 112 124
344 124 123 123
111 223 344 234
244 123 123 113
234 134 112 234
233 144 123 124
111 234 233 244
222 113 444 133
334 244 112 123
344 123 123 124
111 234 223 344
234 123 234 114
233 144 114 223
244 123 134 123
124 122 134 334
234 114 134 223
112 233 134 244
334 344 222 111
123 234 114 234
124 233 244 113
123 124 123 344
344 114 233 122
124 122 134 334
234 114 133 224
112 233 144 234
334 344 222 111



(10,5) 111 234 223 344  (10,16) 123 234 114 234

234 123 244 113 124 233 244 113
233 144 114 223 233 124 123 144
244 123 133 124 144 114 233 223
(11,12) 111 344 233 224  (11,13) 111 334 223 244
222 113 444 133 222 113 444 133
334 223 111 244 334 244 112 123
344 124 223 113 344 122 133 124
(11,14) 123 122 134 344  (11,15) 111 223 344 234
244 114 133 223 244 133 234 112
112 233 144 234 234 244 112 133
334 344 222 111 233 114 123 244
(11,16) 123 224 114 334  (12,13) 111 234 233 244
124 233 244 113 222 144 113 334
123 134 123 244 334 112 144 223
344 114 233 122 344 233 224 111
(12,14) 134 222 114 334 (12,15) 111 234 223 344
222 334 144 113 234 113 244 123
113 134 223 244 233 144 114 223
344 114 233 122 244 223 133 114
(13,13) 111 222 334 344  (13,14) 111 222 344 334
292 114 344 133 223 334 112 144
334 344 122 112 244 113 334 122
344 133 112 224 334 144 122 123
(13,15) 111 223 344 234 (13,16) 123 224 114 334
344 133 224 112 224 133 244 113
234 244 112 133 113 234 123 244
223 114 133 244 344 114 233 122
(14,14) 111 223 334 244  (14,15) 111 334 223 244
222 114 344 133 234 112 244 133
334 144 112 223 233 144 114 223
344 233 122 114 244 223 133 114
(14,18) 123 224 114 334  (15,15) 444 112 133 223
224 233 144 113 133 344 224 112
113 134 223 244 223 334 112 144
344 114 233 122 112 122 344 334

(15,16) 244 223 133 114
133 112 344 334
223 144 112 224
114 334 224 123

This list is complete for n=4. For n=35, we do not attempt to produce an
exhaustive list, but rather supply those examples which are most useful in the recur-
sion. Two general methods are useful here. The first employs a construction of {1]
directly, called Construction E in that paper. We restate the construction here,
correcting in the process some errors in the original presentation:

Construction E: Let F be a 3-factorization of type (t,8) of a r-regular subgraph of K,,,
and let oo be a vertex of ¥ incident with d doubly repeated and ¢ triply repeated
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edges. Then (2t—d,2s8—r+c) is the type of a 3-factorization of an r-regular subgraph
of 3K 9p—1,2n-1- O

Given the known solutions for 3-factorizations of 3K [1], we obtain by Construc-
tion E many 3-factorizations of subgraphs of Kss. In this way, we obtain that
{(1,20),(2,20),(3,18),(3,20),(4,20)} C Y (5,4).

A second general method is to prescribe a large portion of the 3-latin rectangle,
and examine all possible completions. Consider, for example, the following partial 5x4
3-latin rectangle:

555

123 4555

123 4555

1224555
Notice that the edges that remain form the edges of the 3-cube with each edge tripli-
cated; any completion of the rectangle corresponds to a 3-factor and 3 2-factors of the
triplicated 3-cube. Hence we can produce many different types by choosing the factors
of the triplicated 38-cube appropriately. In this way, one can construct
{(0,19),(1,19),(2,18),(3,19),(4,18),(4,19),(5,18),(5,19)} U Y (5,4).

Next we exhibit some ad hoc constructions.
(0,18) 111 345 245 235 234 (2,17) 235 145 145 234 123

345 345 124 125 123 245 135 145 234 123
345 222 145 135 134 245 135 145 234 123
345 345 125 123 124 334 344 222 111 555
(4,17) 245 145 145 233 123 (5,17) 122 245 145 335 123
245 135 145 234 123 124 235 145 235 123
235 135 145 244 123 134 235 145 225 123
334 344 222 111 555 334 344 222 111 555

For n=6, we can again employ the factorization of the triplicated 3-cube to com-
Plete the following partial 4X6 3-latin square:
111 222
234 156 11 2 2
234156 112 2
234 156 1122

We also employ an ad hoc example:
(1,23) 555 126 124 134 236 346
236 224 145 135 356 146
236 146 245 145 235 136
236 146 125 345 256 134

In the remaining examples, we exhibit only those entries which are not 3-times
repeated; the completion of these to latin rectangles of suitable (larger) sizes is easy
(and omitted).
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(0,14) 123 124 134 234 (0,17) 135 235 123 125

234 124 134 123 134 124 234 123
134 134 134 345 124 345 123 125
124 124 124 145 124 245 125
(3,12) 123 123 123 (3,14) 123 123 123
123 123 123 234 234 234
123 123 124 344 123 144 134 223
(3,17) 135 235 123 125 (4,17) 135 235 123 125
134 124 234 123 113 244 234 123
135 244 345 123 125 345 124 345 123 125
445 112 245 125 445 112 245 125

(1,18) 123 125 135 235
245 345 235 234

123 145 145 235 234

123 124 134 235 455

Now we apply Lemmas 3.2 and 3.3 to this large collection of 3-latin rectangles
with d =4. We employed a computer program to determine the values for n, s and ¢
for which a factorization of a 4-regular subgraph of 3K, , of type (t,8) results; this
was carried out for all n<15. We found that for 12<n <15, Y(n,4)=8(n,4). For
n <11, the lemmas fail to construct certain required types from the small rectangles
given here. For n=11, only type (1,31) is missed. For n=10, types (0,27), (1,27),
(2,27) and (1,31) are missed. For n=9, the following values are missed: (0,22), (1,22),
(2,22), (3,22), (5,22), (0,24), (1,24), (2,24), (1,27), (2,27), (3,27) and (5,27).

Numerous exceptions occur for 5<n <8. Nevertheless, we can now apply Lemma
3.2 to establish

Lemma 5.1: For n >12, Y(n,4)=B(n,4).
Proof:

For 12<n <15, this follows from Lemmas 3.2, 3.3 and the small rectangles given.
For n>>16, choose n, and n, so that n = n;+n,, with n;>12, n,>4, and n, and n,
as equal as possible. Apply Lemma 3.2 to combine ¥(n,,4) and Y (n,,4). O

8. Proof of the Main Theorem

We extend a 4Xn rectangle to an nXn square. The appended rows form an
(n—d)Xn rectangle, which we construct in general using Lemma 3.1. Our strategy is
to introduce first the general method which works for n 2>16; subsequently, using this
general method together with some special constructions for each n, we complete the
determination for 10<n <15.

We assume throughout the proof that n >10. Consider (¢,8) € B(n,n). If s<dn,
(t,8) €Y(n,n) with the possible exceptions for n =10 and 11 stated earlier. Hence we
may assume that 8 >4n.

If t>3n, choose f, g, h and k so that t=fn+g, s=hn+k, 2<f<n—4 and
n<g<k<4n. Then (g9,k) EY(n,4) and Lemma 3.1 provides the required (n—4)Xn
rectangle of type (fn,hn). Hence we may assume that ¢t <3n.

If t >2n, write t =2n+g, s=hn+k where 2<h <n—4, 0<g<n and 2n <k <4n.
Then (g,k) € Y(n,4) with the noted possible exceptions on n=10 and 11. Lemma 3.1
completes the construction.
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At this point, we have ¢t <2n and s >4n. If s >5n, write t =g, s=hn+k where
3<h<n—4,0<g <2n and 2n <k <4n and proceed as above.

For n>12, what remains is just those types (t,s) with 0<t <2n and 4n <s <5n;
some additional omissions occur for n =10 and 11 as a result of the possible exceptions
in Y(n,4). To handle these remaining values, we treat cases for n.

If n>16, Lemma 5.1 ensures that all values in Y(n,4) can be constructed by an
application of Lemma 3.2 in which n, and n, are chosen as equal as possible subject to
n,212 and n,>4. Hence we may assume that the 4 3-factors chosen partition 3G,
where G is a 4-regular spanning subgraph of K,,h,,lUK,,a,,’. One can 3-factorize
3(K, ,—G) with type (0,3n,). Now writing t =g, s=3n,+k for the remaining values
(¢,8) guarantees that k <4n. Moreover, k >n+3n,. We must verify that ¢ <k. Since
9 <2n and k>n+3n,, this holds provided 3n,>n and hence holds for all n >186.

Finally, we must treat small values of n. For n=15, the method for n >186 leaves
one possible omission, (1,64). Observe then that K 5,5 can be partitioned into three
subgraphs isomorphic to KUK sUK 55 Hence adding any nine types in Y(5,5) gives
a type in Y(15,15). Since {(0,0),(0,20),(0,25),(1,1)}CY(5,5), this constructs the
required value.

For n=14, the general method leaves the possible exceptions of
{(0,57),(1,57),(2,57),(1,61)}. K 14,14 €80 be partitioned into two factors, each isomorphic
to K7,UK7;. Since Y(7,4) contains (0,0), (0,12), (0,21), (0,24), (1,24), (1,28) and
(2,24), the required values are all constructed.

For n=13, we proceed similarly, applying Lemma 3.2 with n;=9 and n,=4.
Since we are only concerned with types with 53<8 <864, the only exceptions to handle
are (1,54), (2,54), (3,54) and (5,54). The remaining 9-regular graph from this construc-
tion has a 3-factorization of type (0,27), and hence since (0,12) €Y(9,4) and
{(1,15),(2,15),(3,15),(5,15)}CY (4,4), these omissions are constructed.

For n=12, employing the general method is complicated by the large number of
omissions in Y(8,4). Hence we handle the types (¢,s) with 48 <s <50 and 0<t<23in
a different way. K5, has a partition into three copies of K 1,4UK JUK , 4; hence we
can add any nine types in ¥(4,4) to obtain a type in ¥(12,12). Now Y (4,4) contains
(0,0), (0,12), (0,15), (0,18), (15,15), (16,16) and all types {(i,15),(i,16)} with 0<i <I5.
Summing these types, we obtain all values with s 6{51,52,53,54,57,58,59}. Since
(4,4) €Y (4,4), we obtain in addition all types with t >4 and s 6{49,50,55,56}. This
leaves only t €{0,1,2,3} and s € {49,50,55,56}. Next apply Lemma 3.2 with n,=7 and
ny=5. The complement has a factorization of type (0,21); since (0,8) €Y(7,4) and
{(2,19),(+,20)}CY(5,4) for i €{0,1,2,3}, this constructs the remaining examples with
t €{49,50}. Finally, applying Lemma 3.2 with n,=8 and ny,=4, we factor the comple-
ment with type (0,24); since (0,16) € ¥(8,4) and {(,15),(+,16)}CY (4,4) for ¢ € {0,1,2,3},
this settles the cases with s €{55,56} and completes the determination for n =12.

For n=11, we must handle all types (¢,s) with 0<t <21 and 45<s <54, in addi-
tion to those arising from the possible omission of (1,31) in ¥ (11,4). We handle the
latter cases first. Suppose in the earlier constructions that g=1 and k=31. Since
(1,20) and (1,42) are both in Y(11,4), we could instead choose k=20 unless
h=n-4=7; in this single case, we choose k =42 and decrement h by one. This leaves
the exception of (1,31) itself. For this value, apply Lemma 3.2 with n;=6 and ny=5;
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the bipartite complement is precisely the graph obtained by applying Lemma 3.3 with
n;=n,=6. In this latter graph, we have type (0,9). Then taking (0,0) € ¥(5,5) and
(1,22) € Y(8,5) constructs (1,31) in Y(11,11). Now we must deal with the large block
of omissions.

Apply Lemma 3.2 with n;=7 and ny=4. The 7-regular complement has a 3-fac-
tor which consists of two copies of a 3-cube together with K33. Observing that (0,0),
(0,9), (0,12), (0,21), (9,9), (9,21) and (12,12) all appear as types of factorizations of the
complement, and that (0,21), (0,26), (0,27) and (0,28) all appear in ¥(7,4), we add to
types {(¢,15),(#,16):0<i <15}CY(4,4) to settle all remaining cases, except those with
8=47. In this last case, we take (0,9) in the complement, (0,12) €Y (4,4) and
(£,26) € Y(7,4) for 0<i <26 to produce all types required with s =47.

For n =10, we treat the exceptions in the general constructions as above. To han-
dle the omission of (0,27), we employ (0,17) and (0,37) which are present. For the
omission of (2,27), we employ (2,17) and (2,37). However, for (1,27) we cannot employ
(1,17), which is forbidden by the necessary conditions; this results in the further omis-
sion of (1,57) and (21,47). Similarly, for the omission (1,31), we cannot employ (1,41)
and hence we obtain the further omissions of (1,91) and (21,91). Hence we have the
four original omissions, four additional ones, and all types (¢,s) with 0<t <19 and
41<s<49 to handle. Since Koo can be partitioned into four copies of Kjys, we
require some knowledge of ¥(5,5). In [1], a complete solution is given for the complete
graph 3Kjg; applying Construction E from [1] (as corrected earlier here), we find (at
least) that all types (t,8) with 0<t <25 and max(t,20)<s <25 appear in ¥(5,5). Hence
adding any four types in Y(5,5) produces all of the required values except the four ori-
ginal exceptions (remark that for (1,57) we are also employing that (0,15) € ¥(5.5)).

Let us then handle the last four omissions. Let Sg be the 4-regular spanning sub-
graph of Kgg whose bipartite complement forms two 6-cycles. Since Sg is 1-factorable,
35 has a 3-factorization of type (0,0). Now apply Lemma 3.2 with n,=6 and np,=4,
so that the subgraph of Kgg covered is Se. Then the 6-regular complement left by
Lemma 3.2 can be partitioned into two 3-factors, each consisting of two copies of K33
and one 3-cube. Hence the complement can be factored with type (0,12). Then since
(0,15), (1,15) and (2,15) appear in Y (4,4), the types (0,27), (1,27) and (2,27) in Y(10,10)
are handled. If instead one chooses the 4-regular subgraph of Kgg to have bipartite
complement consisting of three 4-cycles, one can factor the resulting 6-regular comple-
ment with type (0,15). Then since (1,16) is in ¥ (4,4), (1,31) is in ¥(10,10).

We have established that for all n>10, B(n,n)CY(n,n). Together with Lemma
2.1, this proves the Main Theorem.

7. Intermediate Cases

We have obtained a complete solution thus far for n=3 and 4, and for n>10. In
this section, we outline what remains for the intermediate cases.

For n =9, applying Lemma 3.1 to the solutions in Y(9,4) as in the proof of the
Main Theorem leaves all values (t,8) for 0<t <17 and 37 <s <44, in addition to those
resulting from the possible exceptions in ¥(9,4), namely (0,22), (1,22), (2,22), (3,22),
(5,22), (0,24), (1,24), (2,24), (1,27), (2,27), (3,27), (5,27), (18,40), (19,40), (20,40), (21,40),
(23,40), (0,49), (1,49), (2,49), (3,49) and (5,49). Earlier we observed that Construction E
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of [1] can be applied to produce many types in Y(5,5); applying Lemma 3.3 to the
resulting rectangles produces values in Y(9,5). In this way, we immediately handle all
possible exceptions with 37<s<44. Moreover, the complement remaining contains
K4, and hence we obtain the types with s =49, and the remaining values with s =27,
along with (0,24). Hence the only types whose membership in ¥(9,9) is in doubt are:
(0,22), (1,22), (2,22), (3,22), (5,22), (1,24) and (2,24).

For n =8, there is a large number of omissions in Y(8,4). We employed three con-
structions here, in addition to those used already for Y(8,4). First of all, Lemma 3.1
applies to extend those values in ¥ (8,4). Second, we observe that K 8,8 has a partition
into four copies of K, and hence we can add any four types in Y(4,4) to obtain a
type in Y(8,8). Third, remark that Lemma 3.3 with n;=5 and ny==4 partitions a
4-regular subgraph of K 88 Which is isomorphic to its bipartite complement, and hence
we can add any two types resulting from this application of Lemma 3.3 to obtain a
type in Y(8,8).

Many exceptions remain. Hence we resort to constructions of factorizations of
3K n9n from 3-factorizations of 3K,,. Our basic device is Construction C of [1):
whenever there is a 3-factorization of 3Ky, of type (t,8), there is a 3-factorization of
3Ky 2 of type (2¢,28). This can be done quite simply. Given a 3-factorization of
3K,;, on symbols 1,---,2n, form a 3-factorization of 3K, 0, on symbols

Ziit=1," -+ 2n}. In the kth 3-factor, connect z; and y; the same number of times
that ¢ and j are connected in the kth factor of 3K,,. Finally, add the triplicated
1-factor {{z;,y;}: i=1, - - - 2n}.

By exchanging edges from the triplicated 1-factor, we can achieve many different
values. For example, suppose that the kth factor of 3K 2n contains {i,5} as a singly
repeated edge. Then in the 3-factorization of 3K 9y 90, We “trade” edges {z;,y} and
{z;,:} of the kth factor with edges {zi,9:} and {z;,y;} of the 2nth factor to obtain a
3-factorization of type (2t+2,2s+2). In fact, since this can be done on disjoint singly
repeated edges, we also obtain types (2t +4,2s+4) and (2¢t+6,25+6) in this way. In a
similar vein, if {7} is singly repeated in a factor and {t,k} is singly repeated in a dif-
ferent factor, trading twice as above gives type (2t+2,25+3). If instead {i,k} is singly
repeated in the same factor, we obtain type (2t+3,2s+3). If {2.3}, {i,k} and {j,k} are
all singly repeated in different factors, trading three times as above gives type
(2t,2s43). If {i,5}, {5,e}, {5,k} and {k,£} appear singly in factors, so that incident
edges are in different factors, four such trades gives type (2¢,25+4).

After applying this generalized construction to the known 3-factorizations of 3Ky
in [1], the following exceptions remain in Y(8,38):
t | Omissions for &

18-23, 25, 26
19-26, 33-38, 49
17-25

18-26, 34, 50
18, 21-23, 25
17, 18, 21-25
17

17

17

17

© 00 NP A W =D
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Now turning to n=7, we observe first that applying Lemma 3.3 with n;=n,=4
leaves uncovered a 3-regular graph which is K33 and a 3-cube. Hence we can add a
type in ¥(3,3), a type in Y(4,3) and a type resulting from Lemma 3.3 to obtain a type
in Y(7,7). We can also apply Construction E of [1] to the 3-factorizations of 3K given
in [1); after doing so, we leave only the following possible exceptions:

t

Omissions for 8

© 00 =1 O b W= O

—
o

11

15-20, 22, 23, 25, 32, 43, 44
15, 16, 18-23, 25, 32, 34, 41, 43, 44, 46
14-22, 41, 43

12, 14-23, 34, 43, 44

14, 15, 17, 18, 20, 22

15, 16, 18-22, 43

13, 14, 17

13, 14, 15, 17, 18, 22

14

13, 14, 16, 17

14

14

For n = 6, we can add four types in ¥(3,3) to obtain a type in Y (6,8). We can
also apply Construction C of [1] to the 3-factorizations of 3Kj; in fact, we use the aug-
mented Construction outlined above for n=8. Combining all of these techniques, we
leave a large number of possible exceptions, as follows:

t

Omissions for 8

b
O © 00 NG WNY O

SO €O DD bt b
O O W

35

12, 14-16, 19, 21, 23, 25, 27, 29, 31-35
15, 16, 18-21, 23-36

14-19, 23, 25, 27, 29, 31, 33-36
14-16, 18-21, 23, 24, 34-36
12-16, 19, 20, 23, 25, 35
14-19, 24, 34, 36

11-14, 16, 19, 23

12-16, 19, 20, 23, 24, 34

9, 11, 12, 14, 16, 19, 23, 25
11-16, 34

19

19, 20, 22, 34

19

20

17, 18, 20

29, 30

31

34

35, 36

Finally, earlier results, together with the application of Construction E of [1],
leaves the following possible exceptions for n=>5:
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Omissions for a8
9, 12, 14, 17
15, 16, 18
14-16

12, 14-17

9, 12-14, 16
14-16

8, 9, 11-13, 16
8, 9, 12-17

8, 11, 16

11, 13

We expect that most of the omissions left for 5<n<9 could in fact be con-
structed.

© 00 N DU AW O~

We should also note that the results here can in fact be used to eliminate some of
the possible exceptions left in the case of complete graphs in [1].

8. Concluding Remarks

Of most interest in the results here are the differences between complete graphs
and complete bipartite graphs. For complete graphs, we find only forty-three omitted
types while here we find sixty-six. Nevertheless, the same conclusion holds: if ¢ or s is
large enough, there are no exceptions.
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